Math 542: Homework 1

- 1. (a) Let ρ be defined on \mathbf{H}^2 as in class. Prove that it is a metric.
- (b) Prove that the topology induced on \mathbf{H}^2 by ρ is the same as the Euclidean topology.
 - 2. (a) Prove that the hyperbolic metric ρ can be expressed as follows: Let $z, w \in \mathbf{H}^2$, then:

$$\cosh(\rho(z, w)) = 1 + \frac{|z - w|^2}{2\mathrm{Im}(z)\mathrm{Im}(w)}$$

- (b) Use (a) to show that $||\gamma||^2 = 2\cosh(\rho(i,\gamma i))$.
 - 3. (a) Prove that $PSL(2, \mathbf{R})$ acts transitively on \mathbf{H}^2 .
- (b) Prove that $PSL(2, \mathbb{C})$ acts triply transitively on $\mathbb{C} \cup \infty$.
- 4. Prove that the Möbius transformation action of $PSL(2, \mathbb{Z}[i])$ on $\mathbb{C} \cup \infty$ is not a discontinuous action.
- 5. Let $A, B \in PSL(2, \mathbb{C})$. Prove that:
- (a) A and B have a common fixed-point in $\mathbf{C} \cup \infty$ if and only if tr[A, B] = 2.

(b) If A is a hyperbolic element and A and B have *exactly* one fixed point in common, then $\langle A, B \rangle$ is not discrete.

- 6. Let Γ be a Kleinian group and $P < \Gamma$ with $P \cong \mathbb{Z} \oplus \mathbb{Z}$. Show that all non-trivial elements of P are parabolic elements.
- 7. Let Γ be a Kleinian group and $N(\Gamma) = \{g \in PSL(2, \mathbb{C}) : g\Gamma g^{-1} = \Gamma\}$ denote the normalizer of Γ in $PSL(2, \mathbb{C})$. Prove that $N(\Gamma)$ is a Kleinian group (i.e. it is a discrete group).
- 8. (a) Prove that the homomorphism $\phi_n : PSL(2, \mathbb{Z}) \to PSL(2, \mathbb{Z}/n\mathbb{Z})$ from class is onto.
- (b) Prove that $\Gamma(2)$ is torsion-free, and identify the quotient surface $\mathbf{H}^2/\Gamma(2)$.
 - 9. Prove that $T \in PSL(2, \mathbb{R})$ preserves area; i.e. if $E \subset \mathbb{H}^2$ then Area(T(E)) = Area(E).