Math 542: Homework 2

- 1. As in class let $I(\gamma)$ denote the isometric circle of $\gamma \in PSL(2, \mathbb{C})$. Prove
- (a) $\gamma: I(\gamma) \to I(\gamma^{-1}).$
- (b) γ maps the outside of $I(\gamma)$ to the inside of $I(\gamma^{-1})$.
- (c) $\gamma(\infty)$ is the centre of $I(\gamma^{-1})$

2. (a) Prove that the product of two inversions or reflections is an element of $PSL(2, \mathbb{C})$.

(b) Let $\gamma \in PSL(2, \mathbb{C})$, with $\gamma(\infty) \neq \infty$. Describe the action of γ on $\mathbb{C} \cup \infty$ in terms of inversions in isometric circles associated to γ and γ^{-1} , a reflection, and in the case of a hyperbolic a rotation.

3. (a) Prove that the Ford fundamental polyhedron is indeed a fundamental polyhedron.

- (b) Compute a Ford fundamental polyhedron for $PSL(2, \mathbb{Z}[\sqrt{-2}])$.
 - 4. Prove that the Dirichlet fundamental polyhedron at a point p is a fundamental polyhedron.

(c) Complete the proof that Ford fundamental polygon for $PSL(2, \mathbb{Z})$ is also a Dirichlet fundamental polygon.

- 5. Let Γ be a Kleinian group containing the element $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Prove that for any other element $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, either c = 0 or $|c| \ge 1$.
- 6. Prove that if Γ is a Kleinian group of finite covolume, the center of Γ is trivial.
- 7. Prove that if $K = K_1 \# K_2$ is the connect sum of two non-trivial knots, the swallow-follow torus T (as constructed in class) is incompressible, i.e.:

$$\pi_1(T) \hookrightarrow \pi_1(S^3 \setminus (K_1 \# K_2))$$
 is injective.

- 8. A Kleinian group Γ is called *geometrically finite* if it has a finite sided fundamental polyhedron. Otherwise the group is called *geometrically infinite*.
- (a) Prove that the following group is geometrically finite. Here n is a positive integer.

$$\Gamma_n = < \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$$

(b) Let Γ be a Kleinian group and $H < \Gamma$ of finite index. Then Γ is geometrically finite if and only if H is geometrically finite.

9. Prove that a non-elementary subgroup of $PSL(2, \mathbb{C})$ contains infinitely many hyperbolic elements.