Math 542: Homework 3

- 1. Let G be a group and $\Gamma_1, \Gamma_2 < G$. Say Γ_1 and Γ_2 are *commensurable* if $\Gamma_1 \cap \Gamma_2$ has finite index in both Γ_1 and Γ_2 .
- (a) Prove that commensurability is an equivalence relation.

(b) Let $\operatorname{Comm}_{G}(\Gamma) = \{g \in G | g\Gamma g^{-1} \text{ is commensurable with } \Gamma\}$. Prove that $\operatorname{Comm}_{G}(\Gamma)$ is a subgroup of G.

- (c) Identify $\operatorname{Comm}_{PSL(2,\mathbf{C})}(PSL(2,\mathbf{Z}[i]))$.
- 2. (a) Assume that Γ_1 is a Kleinian group, and Γ_2 is commensurable with Γ_1 . Prove that Γ_2 is a Kleinian group.

(b) Assume that Γ_1 and Γ_2 are Kleinian groups. Prove that Γ_1 has (algebraic) integral traces if and only if Γ_2 has integral traces.

- 3. Prove that the set of parabolic fixed points is a commensurability invariant.
- 4. (a) Prove that a dodecahedron D with all dihedral angles $2\pi/5$ exists in \mathbf{H}^3 (Hint: Show the 2nd barycentric subdivision yields a particular tetrahedron in \mathbf{H}^3).

(b) Show that identifying opposite faces of D with a $3\pi/5$ twist produces a topological 3-manifold. (The Seifert-Weber Dodecahedral space).

(c) Compute the trace field of $\pi_1(D)$.

5. Below is the presentation of a co-compact Kleinian group Γ .

 $< a, b|a^4 = 1, waw^{-1}b^{-1} = 1, w = ab^{-1}a^{-1}b > b^{-1}a^{-1}b > b^{$

(a) Compute the trace-field of Γ .

(b) Find a subgroup of finite index in Γ whose trace-field is a proper subfield of the trace-field. (**Hint**: Index 2).

- 6. Prove that $tr(\gamma^N)$ is a monic integer polynomial in $tr(\gamma)$.
- 7. Prove that if $tr(\gamma) = \lambda + 1/\lambda$, then $tr(\gamma)$ is an algebraic integer if and only λ is a unit.
- 8. Compute the signatures of the following number fields.
- (i) $\mathbf{Q}(t)$ where $t^3 + t^2 2t 1 = 0$.
- (ii) $\mathbf{Q}(t)$ where $t^4 2t^2 + 3t 1 = 0$.
- (iii) **Q** $(i, \cos(\pi/12))$
 - 9. Let k be a totally real number field and $t \in k$ negative. Suppose that all (non-identity) Galois conjugates of t are positive. What is the signature of the number field $\mathbf{Q}(\sqrt{t})$?

- 10. Let Γ be a non-elementary Kleinian group. The *limit set* $\Lambda(\Gamma)$ of Γ is the set of accumulation points on the sphere-at-infinity of Γ -orbits of points in \mathbf{H}^3 .
- (a) Show that $\Lambda(\Gamma)$ is the closure of the set of fixed points of hyperbolic elements in Γ .

(b) Show that $\Lambda(\Gamma)$ is the smallest non-empty, closed, Γ -invariant subset of the sphere-atinfinity.

(c) Let $\Omega(\Gamma)$ denote the complement of $\Lambda(\Gamma)$ in the sphere-at-infinity. Prove that Γ acts discontinuously on $\Omega(\Gamma)$.