Math 542: Homework 7

- 1. Let k be a number field with ring of integers R_k . Prove that $M(2, R_k)$ is a maximal order of M(2, k).
- 2. Let k be a number field with class number one. Assuming that every maximal ideal of M(2,k) is conjugate to one of the form $\mathcal{O}(I) \subset M_2(k)$ given by $\begin{pmatrix} R_k & I \\ I^{-1} & R_k \end{pmatrix}$ for some integral ideal I (recall HW 6). Prove that all maximal orders are conjugate to $M(2, R_k)$.
- 3. Let $A = \begin{pmatrix} -1, 3 \\ \mathbf{Q} \end{pmatrix}$ and $\mathcal{O} = \mathbf{Z}[1, i, j, ij]$. Prove that A is a division algebra and that \mathcal{O} is not a maximal order.
- 4. Let A be a quaternion algebra over the number field k. Let $I \subset A$ be a finitely generated R_k -module that contains a k-basis of A (an ideal in the language of HW 6 Qn 10). Set $I^{-1} = \{a \in A : IaI \subset I\}$ show that I^{-1} is also an ideal.
- 5. Let A be a quaternion algebra over the number field k. Define the *discriminant* of an order $\mathcal{O} \subset A$ (denoted $d(\mathcal{O})$) as the ideal in R_k generated by the set {det(tr(x_ix_j)) : $1 \leq i, j \leq 4, x_i \in \mathcal{O}$ }.
- (i) Prove that the discriminant is always a non-zero ideal.

(ii) Prove that if \mathcal{O} has a free R_k -basis $\{e_1, e_2, e_3, e_4\}$, then $d(\mathcal{O})$ is the principal ideal $(\det(tr(e_ie_j)))R_k$.

- 6. Referring to Q5, compute the discriminant of the order \mathcal{O} in Q3.
- 7. Let $A = \left(\frac{a,b}{k}\right)$. Complete the proof from class of the following equivalences:
- (a) A has zero divisors.
- (b) $n_{A/k}$ is isotropic.
- (c) $n_{A/k}$ restricted to A_0 is isotropic.
- (d) There is a solution to $ax^2 + by^2 = 1$ in $k \times k$.
- (e) If $E = k(\sqrt{b})$, then $a \in N_{E/k}(E)$ (i.e. a is in the image of the norm map from $E \to k$).
 - 8. Let $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where $c \neq 0$. Let \mathcal{H} be a horosphere tangent to ∞ at height h. Prove that $T(\mathcal{H})$ is a horosphere tangent to a/c of diameter $\frac{1}{h|c|^2}$.
 - 9. Let p, q, r be odd primes and L(p), L(q) and L(r) Lens spaces with fundamental groups of order p, q, r respectively. Let M = L(p) # L(q) # L(r). Prove that for p, q and r sufficiently large, M does not contain a knot K with $M \setminus K \to \mathbf{H}^3/\mathrm{PSL}(2, \mathrm{O}_d)$.

10. Prove that the (orientation-preserving) triangle group $\Delta(2,3,8)$ is arithmetic. Compute the Hilbert Symbol of the invariant quaternion algebra.