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1 Introduction

Let M be a compact Riemannian manifold, andAet Ay denote the Laplace—
Beltrami operator oM acting on 12(M). The eigenvalue spectrumé& (M) con-
sists of the eigenvalues @f listed with their multiplicities. Two manifold$/;
andM; are said to bésospectralif & (M;) = &(Mz). Geometric and topological
constraints are forced on isospectral manifolds; for example if the manifolds are
hyperbolic (complete with all sectional curvature equat-t then they must have
the same volume [18], and so for surfaces the same genus.

Another invariant oM is thelength spectrum.Z (M) of M; that is the set of
all lengths of closed geodesics dhcounted with multiplicities. Two manifolds
M1 andM; are said to béso-length spectralif .2 (M;) = .2 (Mz). Under the hy-
pothesis of negative sectional curvature the invaridtitd ) and.#’ (M) are closely
related. For example, it is known théitM) determines the set of lengths of closed
geodesics, and in the case of closed hyperbolic surfaces, the stronger statement that
& (M) determinesZ’ (M) and vice-versa holds|[7] 8].

In this paper we address the issue of how much information is lost by forget-
ting multiplicities. More precisely, for a compact Riemannian manifdiddefine
the eigenvalue set(resp.length setand primitive length set) to be the set of
eigenvalues oA (resp. set of lengths all closed geodesics and lengths of all prim-
itive closed geodesics) counted without multiplicities. These sets will be denoted
E(M), L(M) andLp(M) respectively. Two manifold#1; and M, are said to be
eigenvalue equivalen{resp.length equivalentandprimitive length equivalent)
if E(M1) = E(Mz) (resp.L(M1) =L(M2) andLp(M;) = Lp(M>)). Although length
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spectrum and primitive length spectrum determine each other, the corresponding
statement for length sets is false. Primitive length equivalent manifolds are clearly
length equivalent, but we shall see that the converse is false.

We will focus mainly on hyperbolic manifolds of finite volume. Even in this
setting little seems known about the existence of manifolds which are eigenvalue
(resp. length or primitive length) equivalent but not isospectral or iso-length spec-
tral. Examples of non-compact arithmetic hyperbolic 2—manifolds that are length
equivalent were constructed in Theorem 2 of [24] using arithmetic methods. How-
ever, as far as the authors are aware, no examples of closed hyperbolic surfaces that
are length equivalent and not iso-length spectral were known, and it would appear
that no examples of eigenvalue equivalent or primitive length equivalent hyperbolic
manifolds which are not isospectral or iso-length spectral were known. Our main
results rectify this situation for hyperbolic surfaces and indeed for all finite volume
hyperbolicm-manifolds.

Theorem 1.1.Let M be a closed hyperbolic m—manifold. Then there exist infinitely
many pairs of finite covergM;,N; } of M such that

(@) E(M;) =E(N)),
(b) vol(Mj)/vol(Nj) — oo.
Moreover, EM;j) = E(N;) for any Riemannian metric on M.

The method of proof of Theoreim 1.1 does not provide (primitive) length equiv-
alent pairs of covers. However, we can prove an analogue for primitive length
equivalence (and hence also length equivalence).

Theorem 1.2. Let M be a finite volume hyperbolic m—manifold. Then there exist
infinitely many pairs of finite covefgM;,N; } of M such that

(@ Lp(Mj) = Lp(Nj)
(b) vol(Mj)/vol(Nj) — oo.
Moreover, L,(M;) = Lp(N;) for any Riemannian metric on M.

Indeed, as we point out i§b.1, for every finite volume hyperbolie-manifold
wheren # 3,4,5 we can produce pairs of finite sheeted covers of arbitrarily large
volume ratio that are both primitive length equivalent and eigenvalue equivalent.

The methods of the paper are largely group theoretic, relying on the fundamen-
tal group rather than the geometry, and a quick way to provide lots of examples
in many more situations is given by the following. Recall that a grioup called
large if it contains a finite index subgroup that surjects a free non-abelian group.
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Theorem 1.3. (Theoreni 3]1 is a stronger version.) Let M be a compact Rieman-
nian manifold with large fundamental group. Then there exist infinitely many pairs
of finite coverg{M;, N; } of M such that

(@) L(Mj) =L(N;),
(b) E(Mj) =E(N;),
(c) vol(Mj)/vol(N;) — oo.

Moreover, (a) and (b) hold for any Riemannian metric on M, angh {M) is hy-
perbolic, L,(M;j) = Lp(N;) also holds for any Riemannian metric on M.

Our arguments start with Sunada’s construction [28] of isospectral manifolds,
which was based on a well known construction in number theory of “arithmeti-
cally equivalent” number fields (see |17]). Our length equivalence of manifolds
similarly has a number theoretic counterpart called “Kronecker equivalence” of
number fields, as we discovered after doing this work; see the book [10]. The re-
sults contained here can thus be viewed as providing the geometric investigation
proposed in the sentence from the last paragraph of that bbokziew of the
relations between arithmetical and Kronecker equivalence, one should also study
Kronecker equivalence in this geometric situation.”

In the final section we collate some remarks and questions. In particular, we
note that Mark Kac’s famous paper “Can one hear the shape of a drum” [9] has
been a catalyst for much of the work on isospectrality, and we revisit that paper
and the Gordon-Webb-Wolpert answer to his question [5] in the light of our work.

2 Equivalence

We first recall Sunada’s construction.

For any finite groups and subgroupsl andK of G, we say thatH andK are
almost conjugate(or “Gassmann equivalent” in the terminology of Petlis|[17]) if
for anyg in G the following condition holds (whergg) denotes conjugacy class):

HN(g)l = IKN(g)l-

In [28] Sunada proved the following theorem relating almost conjugate pairs with
isospectral covers.

Theorem (Sunada).Let M be a closed Riemannian manifold, G a finite group,
and H and K almost conjugate subgroups of GrilfM) admits a homomorphism
onto G, then the finite coversiMand M¢ associated to the pullback subgroups
of H and K are isospectral. Moreover, the manifolds lnd M¢ are iso-length
spectral.



The proof of this is an easy exercise, but checking when manifolds produced
by Sunada’s method are non-isometric requires more work. However, for length
equivalence far less is required, and the resolution of the isometry problem is built
into our construction.

Length equivalence, primitive length equivalence, and eigenvalue equivalence
each require a different condition on the grd@p In each instance, we describe
a group theoretic condition, and then explain how it is used to produce examples
with the desired features.

2.1 Length and primitive length equivalence

Though it is not essential, the gro@will always be finite in what follows.

Definition 2.1 (Elementwise conjugacy).Subgroups H and K of G are said to be
elementwise conjugati for any g in G the following condition holds:

HN(g)#0 ifandonlyif Kn(g)#0. 1)
(Or, more briefly, ¥ = K©, where H* = Ug.c97'Hg.)

It is immediate from the definition that almost conjugate subgroups are ele-
mentwise conjugate.

To produce primitive length equivalent manifolds, we impose further condi-
tions onH andK, and also orry (M).

Definition 2.2 (Primitive). We shall call a subgroup H of @rimitive in G if the
following holds:

(&) All non-trivial cyclic subgroups of H have the same order p (necessarily
prime).

(b) Ngec g tHg={1}.

Theorem 2.3. Let M be a Riemannian manifold, G a group, and H and K elemen-
twise conjugate subgroups of G.

(1) If m1(M) admits a homomorphism onto G, then the covegsaid M¢ asso-
ciated to the pullback subgroups of H and K are length equivalent.

(2) If, in addition, H and K are primitive in G and; (M) has the property that
any pair of distinct maximal cyclic subgroups lofintersect trivially, then
the covers M and Mg associated to the pullback subgroups of H and K are
primitive length equivalent.



Remark. It is well known that wherM admits a metric of negative sectional
curvature, thenr; (M) satisfies the condition needed to apply Thedrerh 2.3.

Proof of theorem.To prove (1) it suffices to show that a closed geodgsin M
has a lift to a closed geodesic bty if and only if it has a lift to a closed geodesic
onMg. Let p denote the homomorphism (M) — G. By standard covering space
theory,y has a closed lift tiMy if and only if p([y]) € G is conjugate intdd. By
assumption this is true fatl if and only if it is true forK, proving (1).

For (2) we will show the inclusioh.,(My) C Lp(Mk); the reverse inclusion
then follows by symmetry. We argue by contradiction, assuming there is a primitive
v in m1(My), every conjugate of which im; (Mg ) is imprimitive. Lety be any
conjugate ofy in m(Mk) and letd € m1(Mk ) andr > 1 be such thad" = 1. The
arguments splits into two cases.

Case 1p(8) =1.

Since kep < m1(My), all conjugates ob are contained i1 (My ). This con-
tradicts the primitivity ofy, as am;(M)—conjugate ob powers toy.

Case 2.p(8) # 1, sop(8) has prime ordep by Definition[2.2 (a). We split
this into two subcases.

Case 2.1p(k) # 1.

Since(p(yk)) is nontrivial and contained ifp(8)) which has prime order, itis
equal to{p(8)). Thus,p(udu=1) € (p(y)), whereu is the element ofr; (M) con-
jugatingyk to y. Since the cyclic subgroup(y)) is contained iH, p(udu=1) is
contained irH, soudu 1t is an element of; (My ). This contradicts the primitivity
of ysince(udu=1)" =v.

Case 2.2p(k)=1.

By Definition[2.2 (b), there exists an elemenin G which conjugatep (5)
outside ofK. For any element € p~1(g), oo ! € m (M) and by assumption
this cannot be primitive. Therefore, there exiétsn m (Mg ) ands > 1 such that
oo 1 =65 We have the equalitfodo—1)" = 65. By assumption{céc 1)
and(d;) are contained in a common maximal cyclic subgr@upf 71 (M). The
intersection ofp(C) with K is a cyclic subgroup which contains the image of
(p(81)). By Definition[2.2 (a), the cyclic subgroups &f have prime ordemp,
and sop(C)NK|=1orp.

Assume first that the latter holds. NgwC) has a unique cyclic subgroup of
orderp, sop(C)NK must equalp(cdc1)). Hence the elememt(cdo 1) isin
K, which contradicts the choice of. Therefore, we can assume tjpdC) K = 1.
Thenp(8;) = 1. Replacingk by oy ot ands by &1, Case 1 provides the desired
contradiction. m



2.2 Eigenvalue equivalence

To give context to our construction below of eigenvalue equivalence, we begin by
recalling the following well known equivalent formulation of almost conjugacy.

Proposition 2.4. Subgroups H and K of a finite group G are almost conjugate if
and only if for every finite dimensional complex representgtiaf G,

dimFix(p|H) = dimFix(p|K),
whereFix(p|H) denotes the subspacemfH )—fixed vectors.

Proof. A convenient reference for the character theory used here and later is [26].
The dimension of Figp|H) is the inner produc([x'f,x,'j‘H) of the trivial character

on H and the character gf|[H. By definition this isﬁ S heH x"j‘H(h), and since
characters are constant on conjugacy classes, this e%@é?(g) NH| x,?(g),

where the sum is over conjugacy classe&inThus the equality dimFip|H) =
dimFix(p|K) is equivalent to

\HI 2 ll@)nHIxzy (g “ZZ(QWK!JC,?(Q)- e

Clearly, almost conjugacy ¢ andK implies this equality.

For the converse, note first that the equality dimppd) = dimFix(p|K)
applied to the regular representation ®fbecomes(G : H| = [G : K], whence
|H| = |K|. Since characters of irreducible representations form a basis for class
functions onG, letting p run over all irreducible representations®fin equation
now implies that(g) "H| = |(g) NK]| for each conjugacy class). O

Definition 2.5. We say subgroups H and K of a finite group G &ised point
equivalentif for any finite dimensional complex representatmof G, the restric-
tion p|y has a nontrivial fixed vector if and onlygfjx does.

Theorem 2.6. Let H and K be fixed point equivalent subgroups of a finite group
G. If M is a compact Riemannian manifold ang(M) admits a homomorphism
onto G, then the coversiMand M associated to the pullbacks m (M) of H and

K are eigenvalue equivalent.

Proof. Let M be the cover oM associated to the pullback i (M) of the trivial
subgroup of3. The action ofG on M is by isometries, and the quotients Hyand
K give covering mappy : M — My andpk : M — M, respectively.

The covering projection induces an embeddjjig L2(My) — L?(M) whose
image is theH—fixed subspaced(M)" of L2(M). SinceAg o pf; = Py ©Aw,,, the
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action ofH on L?(M) restricts to an action on the—eigenspace 4(M), and p;,
identifies 12(My), with (L2(M);)". ThusA is an eigenvalue foMy if and only
if (L2(M);)" has positive dimension.

Since G is finite, the representation @ on LZ(MV)A decomposes as a di-
rect sum of finite dimensional representations (in fact, compactnedsimiplies
LZ(MV)A is finite dimensional, but we do not need this). Hencdl ilndK are
fixed point equivalent(L2(M); )" will be non-trivial if and only if (L?(M); )X is
non-trivial. O

Remark. 1. The compactness assumption Mnis not necessary. I is non-
compact our argument extends easily to show that under the conditions of the the-
orem both the discrete and non-discrete spectMpfindMy agree when viewed

as sets.

2. What makes the Sunada construction work for both the length and eigen-
value spectra is the equivalence of almost conjugacy with the condition of Proposi-
tion[2.4. Our weakening of almost conjugacy to elementwise conjugacy on the one
hand, and, via Proposition 2.4, to fixed point equivalence on the other, go in dual
directions. They therefore cannot be expected to be equivalent, and it is a little
surprising that in the examples we know, the two weaker conditions still tend to
have significant overlap.

2.3 Examples

An elementary example of elementwise conjugacy is the following.G.be the
alternating group Al4), and seta = (12)(34) andb = (14)(23). Then the sub-
groupsH = {1,a} and the Klein 4—grouf = {1,a,b,ab} are elementwise con-
jugate. However note tha€ is not primitive since it is a normal subgroup. In
additionH andK are not fixed point equivalent sinéehas no fixed vector under
the irreducible 3—dimensional representatiorGoivhile H has a fixed vector. On
the other hand, it is not hard to check tlhis fixed point equivalent to the trivial
subgroup{1}.

We now generalize this example.

Let Fp be the prime field of ordep, and letn > 2 be a positive integer. The
n—-dimensional specialf,—affine groupis the semidirect produdt; < SL(n;Fp)
defined by the standard action of @t ,) on IFB. We call anylF ,—vector subspace
V of Iy atranslational subgroup of Iy x SL(n; Fp).

Theorem 2.7. Let V and W be translational subgroups of=GF x SL(n;Fp).
Then,

() if V and W are both non-trivial then they are elementwise conjugate in G,
and they are moreover primitive if they are proper subgroupslof
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(i) if V and W are both proper subgroups Bf then they are fixed point equiv-
alentin G.

Proof. (i). Since SL(n; ) acts transitively on non-trivial eIements]Eg, the ele-
mentwise conjugacy is immediate. Moreover, conditions (a) and (b) of Definition
clearly hold fol if V is a proper subgroup dﬂ,

(ii). It suffices to show that any proper translational subgrdup fixed point
equivalent to the trivial subgroup. So we must show that for rmrgimensional
representatiop of Iy x SL(n;[Fp) with m > 0, the restrictiorply has a nontrivial
fixed subspace when restricted\o To this end, lety be the character gb.

The dimension of the fixed space pf, is dim(Fix(plv)) = \Vl\ Svev X (V). Since
2(1) = mand any two nontrivial elements df are conjugate irf'y x SL(n;Fp),
we can rewrite this:

dim(Fix(plv)) = |\/1] (m+ (V] =1)x(x),

wherex € V — {0}. Similarly, the dimension of the fixed space for the full transla-
tion subgrougy is

dim(FiX(pim)) = = (- ([FY[ — 1) (x)) .
[F3|
Thusm+ (|F| —1)x(x) > 0, sox(x) > |F;|"11. Hence,
dim(Fix(plv)) = ﬁ (m+(V[=1)x(x)) > ﬁ (m— mh;/g|_11> > 0. O

3 Proofs of main results

The following is a stronger version of Theorém|1.3:

Theorem 3.1.Let M be a compact Riemannian manifold whose fundamental group
is large. For every integer & 2 and every odd prime p, there exists a finite tower
of covers of M

Mo— M — ... — Mp_1 — My — M,
with each M — M; 1 of degree p, such that:
(@ L(Mj)=L(My) forO<jk<n-1;
(b) E(Mj) =E(My) forl1<jk<n;



Moreover, (a),(b) hold for any Riemannian metric on M. FinallygifM) is hy-
perbolic then for any Riemannian metric on M,

(© Lp(Mj) =Lp(My) forl<jk<n-1

Proof. SinceM is large we can find finite index subgroups which surject any
finitely generated free group, so there is a finite covef M with

m1(X) —= F} x SL(n; Fp) .
Consider any completg,—flag
{0} =V CViCcVaC...CVoh 1 CVh=TF}
in 3. Pulling these subgroups backztg(X) C 71 (M) we obtain a tower
Mg—M] — ... — Mp_1 — My —M

of corresponding covers ®fl. The theorem then follows from Theor¢m|2.7 com-
bined with Theoremis 2.3 and 2.6. O

This theorem implies Theorerps L[T,]1.2, 1.3 in the case of closed hyper-
bolic surfaces. In addition, it is well-known that closed and finite volume hyper-
bolic manifolds whose fundamental groups are large exist in all dimensions (see
e.g., [12]). This provides examples of hyperbolic manifolds in all dimensions sat-
isfying the conclusions of Theorernsfi[.1,]1.2, 1.3. To proveatiatiosed or
finite volume hyperbolic manifold has finite sheeted covers with these properties
requires additional work.

We mention in passing that Theorém|3.1 (b) applied to surfaces produces arbi-
trarily long towers of abelian covers

M{ — ... — Mn_1 — My

whose first nontrivial eigenvalue remains constant. On the other hand, it is well
known that any infinite tower of abelian covers of a fixed hyperbolic surfacéhas
tending to zero (se€|[1] and [28]).

3.1 More families

Theorem 3.2. (i) Let p> 3 be a prime. ThePSL(2;Z/p?Z) contains sub-
groups K< H with [H : K] = p which are fixed point equivalent.



(ii) Let k# Q be a number field with ring of integerg,. Let & be the set of
non-dyadic prime idealg of &y for which &y /p = Fq is a non-prime field
(this set is infinite by the Cebotarev Density Theorem). Thep fiorZ? the
groupPSL(2; &y /p?) contains subgroups K H with [H : K] = p which are
primitive and elementwise conjugateR$L(2; Oy /p?).

The proof of Theorein 3] 2 will be deferred uril. Assuming this we complete
the proofs of Theorenjs 1.1 ahd[1.2 in the next subsection.

3.2 Completion of proofs

We shall need the following special case of the Strong Approximation Theorem
(see[30] and [16]; see alsio [11] for a discussion of the proof in the particular case
of hyperbolic manifolds). Suppo$¢™ is a finite volume hyperbolic manifold with

m> 3. We shall identify IsortH™) with PQy(m,1) so 1 (M) < PGy(m,1). We

can assume there is a number fiklduch thatr; (M) < PQy(m, 1;S) for a finite
extension ringS of &y with k the field of fractions ofS (see [22] for the details).

We choosé& minimal.

Theorem 3.3 (Strong Approximation). For all but finitely many primes of S the
image ofr1 (M) under the reduction homomorphism

ryi: PQy(m1;8) — PO(m,1;S/p’)

contains the commutator subgro@qm, 1;S/p!) of PO(m, 1;S/pl) for all j > 1.
t

Proof of Theorern I]1Theorenj 1]L is shown for hyperbolic surfaces in the com-
ment following the proof of Theorefn 3.1, so we can assume khé a closed
hyperbolic manifold of dimensiom > 3. We will produce surjections of; (M)
onto finite groups containing P$2;Z/p?Z) for infinitely many p.

Let Sbe as in the Strong Approximation Theorem above. For all but a finite
number of primeg of Sthe image ofr1 (M) < POy(m, 1;S) under the restriction
homomorphisnr,,; containsQ(m, 1;S/pl) for all j > 1. If pis the integer prime
that p divides thenr,;(m1(M)) therefore contains the subgro@(m,1;Z/p'Z),
and therefore also the subgro@2,1;Z/p'Z) of Q(m,1;,Z/p'Z).

We claim the finite group®(2,1;7Z/p!Z) and PSI(2;Z/piZ) are isomorphic.

To see this, first recall that the-adic Lie groups PS12;Q,) andQ(2,1;Qy) are
isomorphic (asp-adic Lie groups). The groups P&LZ,) andQ(2,1,Z,) are
the respective maximal compact subgroups of 23Q,) andQ(2,1;Qp), and are
unique up to isomorphism (see [19, Ch 3.4]). Hence the groupsZ®3}) and
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Q(2,1,Zyp) are isomorphic ag—adic Lie groups. Reducing modulo the ideal gen-
erated by thgth power of the uniformizer of Z; yields the asserted isomorphism
betweerQ(2,1;Z/p!Z) and PSI(2;Z/p Z).

Restricting now toj = 2 we have shown,z(m1(M)) contains a subgroup iso-
morphic to PSI2;7Z/p?Z). So by passage to a subgroup of finite indexitV),
we can arrange a finite covr of M with a surjectionr; (X) — PSL(2;7Z/p?Z).
The existence of pairgM;,N;} as stated in Theorefn 1.1 now follows from Theo-
rem[2.6, Theorerhn 3.2(i), and the infinitude &f. O

Proof of Theorerh T|2We have already shown this for hyperbolic surfaces in the
comments following Theorefn 3.1. We next consider hyperbolic 3—-manifolds. Let
M be a hyperbolic 3—manifold with holonomy representatim(M) < PSL(2;S)
(againS chosen minimally). The field of fractions & a finite ring extension of
7Z, is necessarily a proper extension@fseel[14]. In particular, by the Cebotarev
Density Theorem, there exist infinitely many prime idgalsf S such thatS/p is
a nontrivial extension of ,. The Strong Approximation Theorem applies here to
see that for all but finitely many among this infinite set of prime idealS tife
reduction maps

rp2: m(M) — PSL(2;S/p?),

are onto. By Theorefn 3.2 (ii) and Theorgm|2.3 (ii), there exists a pair of covers

with Lp(N,) = Lp(M,) and vo[N,)/vol(M,) = p.

We extend this to all hyperbolie-manifolds withm > 3 as follows. LetS=
Z[i] and letZ be the set of prime ideals defined in Theo@ 3.2 (specifically, these
are the ideal9Z[i] with p =3 mod 4). Fom > 3 andp € & we first claim we
have an injection of PS2;Z[i]/p!) into Q(m,1;Z/plZ). For this, we argue as
follows. First, there exists a quadratic foiBa defined overQ of signature(3,1)
and an injection

PSL(2;Z[i]) — PSQ)(B4;Z).

For each prime = pZ|i], this induces isomorphisms
PSL(2;Z[i]/p)) — Q(B4; Z/p'7Z).

For j = 1, this can be found ir_[29]. Foy > 1, this is established by an argu-
ment similar to that used in the proof of the equivalence of RSL/p!Z) and
Q(2,1;7/piZ) in proving Theorem 1]1. Extending the forfa from Q* to Q™+*
for m > 3 by the identity produces injections

Q(B4Z/p'Z) — Q(M 1;Z/p'Z).
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In particular, we can view
PSL(2;Z[i]/p)) < QM 1,Z/p'Z)

forallm> 3, all j, and allp € & as claimed. Since we have already shown in the
proof of Theorel that; (M) surjects finite groups containir@(m, 1;Z/p!Z)

for all but finitely many primes, Theoren 3.2 (i) with= Z[i] and Theorerh 2|3
(i) now complete the proof. O

4 Proof of Theorem[3.2

Throughout this sectiop will be an odd prime. For any rin® let M(2;R) be
the algebra of % 2 matrices oveR. The Lie algebral(2;Fy) of SL(2;[F,) con-
sists of traceless matricesi(2;Fp) = {X € M(2;Fp) | X11 = —X22}. The ad-
joint action of SL2;Fy) on sl(2;Fy) is the action by conjugation. As a vector
spaces((2;Fp) has a natural S[2;FFp)—invariant bilinear form, the Killing form
B defined byB(X,Y) = Tr(XY). The associated quadratic for@g (defined by
B(X,X) =2Qg(X)) is thus also invariant. Explicitly, foX,Y € s((2;Fp):

B(X,Y) = 2Xu1Y11+ Xia¥o1 + XoaYiz,  Qe(X) = Xf1 + Xa2Xon.
Lemma 4.1. There is a short exact sequence
1 — sl(2;Fp) — SL(2,Z/p?Z) — SL(2;Fp) — 1.

The conjugation action odL(2;F,) onsl(2;Fp) induced by this sequence is the
adjoint action.

Proof. The inclusionZ/pZ — 7/ p?7Z is given bya — pa. It induces an inclusion
M(2;Z/pZ) — M(2;Z/p?Z) given byX — pX.

Reduction modulop induces the surjectiom: SL(2;Z/p?Z) — SL(2;Fp)
whose kernel is clearly

ker(r) = {l + pX € M(2;Z/p’Z) | det] + pX) =1} .

Now de(l + pX) = 1+ pTr(X) + p?>detX) = 1+ pTr(X) since we are ifZ/ p°Z,
SO we can rewrite:
ker(m) = {l + pX | X € s[(2;Fp)}.

The equatiorfl + pX)(I + pY) = | + pX+ pY now shows that the map — | + pX
is an isomorphism of the additive groaf{2;[F) to ker(z). The final sentence of
the lemma is clear. O
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Lemma 4.2. The number o8L(2;Z/ p?Z)—conjugacy classes 1(2;Fp,) (ie, or-

bits of the adjoint action 08L(2;F)) is exactly(p+ 2), as listed in the follow-

ing table. In the table n represents a fixed quadratic non-residug,iand “qr”

is short for quadratic residue (i.e., a square). Each of rows 2 and 3 represents
(p—1)/2conjugacy classes, asQQg(X) runs respectively through the quadratic
residues and non-residuesliy — {0}.

| description | size | #classes| representative
trivial 1 1 (8 8)
anisotropic gr p(p+1) | (p—1)/2 <8%>
anisotropic non-qr| p(p—1) | (p—1)/2 <8 (l)>
isotropic qr | (p?—1)/2 1 ((1) 8)
isotropic non-gr | (p?—1)/2 1 (g 8)

Proof. We will prove this in several steps.
Step 1. Any (’; fx> € sl(2;Fp) is SL(2;Fp)—equivalent to a matrix of the form
0y
(2 %)
To see this, note first that
a by (x vy d —-b\ _ ((1+2bc)x+bdz—acy =
(c d) (z —x) (—c a>_( * *>>

so we want to solve the equatioad — bc= 1 and(1+ 2bc)x+ bdz— acy= 0 for
a,b,c,d.

e If y#£0choosdb=0,a=d=1and solvex—cy= 0 forc.
e If y=0andz=# 0 choosea=0,b= —c=1 and solve fod.
e If y=2z=0choose Bc= —1,a= 1 and solve fod.
Step2.fQ=Q (’Z‘ j’x) #£ 0then (’Z( j’x> is SL(2;Fp)—equivalent to(% (l))
We have shown we can assume 0. Then
G Y& D) =(EE o) ®)
SinceQ = yz+# 0 we havey,z+# 0 soa?y — b’z = 1 can be solved foa,b. Then

(i 2) = (;‘Z §y> does what is required.
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Step 3. Excluding the zero-element, if@ _yx> = 0then (;‘ _yx> is SL(2;Fp)—

0

), where n is a fixed quadratic non-

equivalent to exactly one r(l? 8) or (g 0

residue.

We can assume= 0. If z= 0 we conjugate by an element wih= 0 to get
y = 0. Thus we can assunxe= y = 0 andz # 0. Now looking at equatiorj [3), one
sees that ik = y = 0 thenz can be changed only by squares.

Step 4. It remains to verify the sizes of the conjugacy classes.

For each class in row 2 or 3 we must simply count the number of elements
X y . 2 o . . .
( _X) with x* +yz= Q. HereQ # 0. If Q is a quadratic non-residue then we

z
must haveyz £ 0, so for each op choices ofk and each op— 1 choices ofy # 0
we get a unique. There are thereforp(p — 1) elements in the class. A similar
count givesp(p+ 1) elements ifQ is a residue.
If Q=0 itis easier to work out the isotropy group of a representative of
the class. For an element in our normal foxm- y = O the isotropy group con-

sists of all <d;1 g) with d*> = 1. This clearly has size®so the class has size

|SL(2;Fp)|/2p= (p*—1)/2. O
We now investigate the §R;F,)—classes of proper non-trivial subgroups in
s[(2;Fp). The groups((2;Fp) itself has ordep®.
We first consider the subgroups of orgerUsing Lemma 42 it is clear there
are three classes. Namely

I. Isotropic lines Each isotropic line hagp — 1)/2 isotropic qr elements and
(p—1)/2 isotropic non-qgr elements. There gre- 1 such lines in this class.

A representative is the Iin{a(S 8) |yeFp}.

R. Anisotropic gr lines Each such line has exactly two elements in each anisotropic
gr conjugacy class. There apgp+ 1)/2 such lines in this class. A repre-

sentative is the ling (8 é) |yeFp}.

N. Anisotropic non-gr lines Each such line has exactly two elements in each
anisotropic non-gr conjugacy class. There pfp— 1)/2 such lines in this

class. A representative is the Ii@eér?y g) |y eFp}.

Next, we determine the conjugacy classes of subgroups of pfdee., planes.
Since the Killing formB is nonsingular, the orthogonal complement of such a plane
with respect toB will be a line, and vice versa, so we can classify planes up to
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conjugacy by the conjugacy classes of their orthogonal complements. There are
therefore three classes of planes:

|-, Orthogonal complements of isotropic lings representative such plane is

IL:{(; f’x) |xy€Fp}.

The Killing form is degenerate on this plane, with nullsphc€his nullspace
contains all isotropic elements of the plane and the remaining elements con-
sist of 2p elements from each anisotropic gr conjugacy class. The plane has
no anisotropic non-gr elements. There pre 1 of these planes.

RL. Orthogonal complements of anisotropic gr lindsrepresentative such plane

° RL:{(fy j’x) |xy€eFp}.

Such a plane has exactlp2 2 isotropic elements, which, together with O,
form two isotropic lines (irR*- the linesx =y andx = —y). For anyQ # 0
there are exactlp — 1 elementX € R+ with Qg(X) = Q. Thus such a plane
intersects every conjugacy classsii2;Fp). There arep(p+ 1)/2 of these
planes.

N-+. Orthogonal complements of anisotropic non-qr lin@srepresentative such

plane is
Nl = {<—);1y —yx> | Xy € Fp}‘

Such a plane has no isotropic elements and for@s¥0 it hasp+ 1 ele-
ments withQg(X) = Q. There arep(p— 1)/2 of these planes.

We note for future reference

Lemma 4.3. Any plane of type Ris elementwise conjugate BL(2;Z/p?Z) to
sl(2;Fp) O

Proof of Theorerh 32 (i)We will show that the trivial subgroup is fixed point
equivalent to any anisotropic gr line. It suffices to show that the only finite
dimensional representation of §;7/p?Z) without anR-fixed vector is the triv-
ial representation. Given such a representation, each subgroeoptainingR will
also have no fixed vector. We will use this information for the subgréup$type
R I+, RE, Nt andsl(2;Fp) to show the representation must be trivial.

To begin, the sum of the characteiof a representation over the non-zero ele-
ments of a line is[(2;Fp) will only depend on the conjugacy class of the line, and
thus give numbers that we shall cXll(x), Xr(x), Xn (%), depending on whether
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the line is isotropic, anisotropic gr, or anisotropic non-qr. AlsoXigly) be the di-
mension of the representation; thigigvaluated on the trivial elementsin(2;IF ).

If H is a subgroup 0$((2;Fp), then the sum of over the elements df gives|H|
times the dimension of the fixed space of the representation restrickédtence
zero under our assumption thidt has no non-trivial fixed points. Sindé is a
union of lines that are disjoint except at 0, this then gives an equation of the form

Xo(%) + 11X (%) + RaXr(x) + NuXn(x) = 0.

Here the coefficientky, Ry, Ny are the number of lines of each typeHn By our
discussion above, these numbers for the subgroups of interest to us are:

In Ry Ny
H=R 0 1 0
H=1"t 1 p 0
H=R" 2 (p-1/2 (p-1)/2
H =Nt 0 (p+1)/2 (p+1)/2

H=5sl(2Fp) p+1 (P*+Pp)/2 (P°—p)/2

These five different types of subgroups contairfitgield five linear equations in
the four unknown quantitieXy(x), X (x), Xr(%), Xn(x)- Since already the coeffi-
cient matrix of the first four equations,

10 1 0
11 p 0

1 2 (p-1)/2 (p-1/2)"
1 0 (p+1)/2 (p+1)/2

has nonzero determinant (namelp?), the equations have only the trivial solution.
This impliesXo(x) = 0, proving the representation is trivial, as desired.  [J

Remark. By computing the character table of &;7/p?Z) one can show that
there is no other fixed point equivalence in(81Z/p?Z) between non-conjugate
subgroups 0§((2;Fp).

Proof of Theorerp 3]2 (ii)Let p be a prime ideal o such thatdy/p = Fq is

a proper extension af, and p > 3; that such a prime exists follows from the
Cebotarev Density Theorem. Consider the following inclusion of short exact se-
qguences:

1——Vp——=PSL(2;Z/p?Z) — PSL(2;Fp) —=1

L |

1—Vy — PSL(2; 0k /p?) — PSL(2;Fq) — 1
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By Lemmg 4.1 we already know the kerivglin the first sequence i8(2;F,) (the
transition from SL to PSL just factors Hytl } and does not affect the kernel).

Although we do not need it, we note thdt = sl(2;Fqy). If p is principal,
p = (), say, then we could argue as in the proof of Le 4.1. In general we can
replacek by its localization ap without changing the second exact sequence and
thenp becomes principal, so the argument applies.

We claim that in PS[2;0k/p?) any element o/, can be conjugated out of
Vp. We only need show this for the representatives of conjugacy classes given
in Lemma[ 4.2 and the claim is then a simple calculation using equafion (3) with
beFq—Fp,a=d=1, andc=0.

The proof is now complete, since Lemina]4.3 gives elementwise conjugate
subgroups iV, and we have just shown they are primitive in R310y/p?). O

5 Locally symmetric manifolds and other generalities

5.1 R-rank 1 geometries

We shall denote byH{ the n—dimensional hyperbolic spaces modelledor
{C,H,0} (wheren =2 whenY = Q). The methods used to produce eigenvalue,
length, and primitive length equivalent manifolds extend with little fuss to complex,
guaternionic, and Cayley hyperbolic manifolds. We give the version for primitive
length.

Theorem 5.1. Let I be a torsion-free lattice insom(Hy). Then there exist in-
finitely many pairs of finite covers of M HY /", {M;j,N;} such that

(@) Lp(Mj) =Lp(Nj),
(b) vol(Mj)/vol(N;j) — oo,
Moreover, (a) and (b) hold for any finite volume Riemannian metric on M.

Proof. The argument we give breaks into a few cases. First, in most cases we have
the inclusion
PQy(B4; Z) < Gyn(Z)

whereBy is the form from the proof of Theore@.@wm is Q—-algebraic, and
Gyn(R) with the analytic topology is Lie isomorphic to Isgkk}). ForY = C,
this fails only whenmn = 1,2. ForY = H, whenn > 3, this is clear. The remain-
ing cases oh = 1,2 follows from the exceptional isometry betwekeh%I andH*
together with the isometric inclusion &f}; into HZ. Finally, forY = Q, this fol-
lows from the isometric inclusion dfi% into H3. For all these cases, as in the
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proof of Theoren 1]2, an application of the Strong Approximation Theorem (cf
[30], [16]) in combination with the Cebotarev Density Theorem provides infinitely
many primes such thal™ surjects onto certain finite grou@(S/p?) of Lie type
which contain PS[2;Z[i]/p?Z[i]). The proof is completed just as it was in the
proof of Theoren 1)2.

It remains to deal wittY = C andn = 1,2. The case of n=1 is simply the
case of hyperbolic surfaces. Case 2 cannot be handled indirectly, and we must use
primitive pairs in the finite groups RQ, 1;0k/p?), wherek/Q is an imaginary
quadratic extension d@ andp is a prime ideal ok. Selectingy such thatoy/p
is a quadratic extension @f,, we have the short exact sequence

1 — su(2,1;0k/p) — SU(2,1;6¢/p?) — SU(2,1; 6k /p) — 1,

wheresu(2,1; 0k /p) is the Lie algebra of S(2,1) over the fielddy/p. With the
inclusions

sl(2;Fp) <su(2,1;0k/p), Q(2,1;F,) <SU(2,1;0k/p),

The subgroups((2;Fp) and R- are elementwise conjugate in §J1;0y/p?)
whereR" is a 2—plane from Lemmla 4.3. It is straightforward to verify that the
pair satisfies the additional requirements needed for the primitive case. [

Our methods also produce eigenvalue equivalent covers for all of these groups
as well. In addition, for sufficiently large, we can produce covers which are
both primitive length and eigenvalue equivalent; hete 5 andY can beR, C, or
H. To do this, by[[13] Proposition 4 Window 2 for> 5 we can arrange for the
simple groups of orthogonal type to contain a copyR)fSL(3;Fp) which contains
a group of the type given in TheorémP.7.

5.2 Locally symmetric manifolds

Length and eigenvalue equivalent covers As is clear from this discussion (and
the generality of the Strong Approximation Theoreniin [30] and [16]) our methods
also apply to lattices in every non-compact higher rank simple Lie group. The
discussion given at the end also applies in this setting to arrange for the
finite groups of Lie type occurring in Strong Approximation to contain a group a
copy of (P) SL(3;Fp).

Primitive length equivalent covers Construction of primitive length equivalent
covers over a fixed locally symmetric manifold is more subtle since in many set-
tings the associated fundamental group fails to have the needed condition on max-
imal cyclic subgroups. It seems interesting to try to weaken the condition on max-
imal cyclic subgroups to produce examples in this setting.
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6 Final Remarks

6.1 Relations among length, primitive length, and eigenvalue equiva-
lence

Example A. Let M be a closed surface of genus at least 2 equipped with a hy-
perbolic metric. LeG be the alternating group A#) andH andK the elemen-
twise conjugate pair described §2.3. Then, given a surjectiom (M) — G, let

y € m1(M) map toa € G and correspond to a primitive closed geodesiblithere
are infinitely many primitive elements mapping to any elemengpf The non-
primitive geodesic oM corresponding tg has four lifts toMy, two primitive and
two not, and it has three lifts thlk, all non-primitive. Of course, there might
accidentally be some unrelated primitive geodesiMijn of the right length, but
for a generic hyperbolic metric, and a homomaorphisnGtthat factors through a
free group this does not happen aid andMg are not primitive length equiva-
lent. Indeed, assumgeis the shortest closed geodesiciMrand every other closed
geodesic has much larger length. Thepihaps toa, one can see thady andMg
are not primitive length equivalent.

Example B. Eigenvalue equivalent surfaces obtained from Thegrein 3.1 using the
trivial subspace 0} and any proper subspaceﬂﬂg generically produce examples
which are not length equivalent. In particular, eigenvalue equivalence need not
imply length or primitive length equivalence.

It seems plausible that length equivalent hyperbolic examples constructed from
TheorenE]l using’y and any nontrivial subspace Bf, will generically fail to be
eigenvalue equivalent, but this is more subtle. Using the results of Zelditch [31]
it is easy to see that for a hyperbolic maniféit" of sufficiently high dimension
this approaclwill give length equivalent but not eigenvalue equivalent examples
for generic (not necessarily hyperbolic) deformations of the metriMoriJsing
G = Alt(4) this allows one to find such examples in dimensions 3.

All of our examples of primitive length equivalence are also examples of eigen-
value equivalence.

Question 6.1. Are two primitive length equivalent hyperbolic manifolds necessar-
ily eigenvalue equivalent?
6.2 Complex lengths

All our results for equal length sets actually produce manifolds which have the
samecomplex length sets Recall that the complex length of a closed geodegsic
in a Riemannianm-manifold is a pai(¢(y),V) where/(g) is the length ofy and
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V € O(m—1) is determined by the holonomy gf The complex length spectrum is

the collection of such complex lengths with multiplicities, and the complex length
set forgets multiplicities as before. The point is that Thedrer 2.3 gives manifolds
with the same complex length sets, just as Sunada’s theorem gives equal complex
length spectra. See [23] for more on the complex length spectrum.

6.3 Commensurability

The known methods of producing isospectral or iso-length spectral hyperbolic
manifolds result in commensurable manifolds and it is an open question as to
whether this is always the case. By construction, the eigenvalue and (primitive)
length equivalent hyperbolic manifolds constructed here are also commensurable.

Question 6.2. Let M; and M, be eigenvalue (resp. length or primitive length)
equivalent closed hyperbolic manifolds. Are they commensurable?

There has been some recent activity on this question. It is shown that Question
[6.9 has an affirmative answer in the length equivalent setting if the manifblds
and M, are arithmetic hyperbolic 3—manifolds$ ([3]), or if the manifolds are even
dimensional arithmetic hyperbolic manifolds ([21]). Indeed, the results of [21]
apply to more general locally symmetric spaces. In contrasi, [21] also exhibts
arbitrarily large collections of incommensurable hyperbolic 5—-manifolds which are
length commensurable. The commensurability classes of these manifolds seem to
be the best candidates for producing a negative answer Quiestjon 6.2.

6.4 Infinite sets of examples

Our constructions show that there can be no uniform bound on the number of pair-
wise eigenvalue (resp. length or primitive length) equivalent, non-isometric mani-
folds. Thus a natural question is.

Question 6.3. Are there infinite sets of pairwise eigenvalue (resp. length or primi-
tive length) equivalent, closed hyperboiire-manifolds?

In the context of length equivalence a positive answer would follow if one
can find infinitely many mutually elementwise conjugate subgroups of finite index
in a finitely generated free group. C. Praeger pointed out to us that a slightly
stronger version of this question is listed as an open problem (Problem 11.71) in the
Kourovka Notebook [15]. It was asked there in the parallel context of Kronecker
equivalence of number fields. It seems likely that the answer to this question is
“no”, but the limited partial answers that are known involved considerable effort,
see|[20].
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6.5 Can one hear the size of a drum?

Mark Kac's famous paper “Can one hear the shape of a drum” [9] is quoted in
many papers on isospectrality. Of course, the “drums” of his title were not closed
hyperbolic manifolds, but rather flat plane domains. The first pair of different
“drums” with the same sound (i.e., non-isometric isospectral plane domains) were
found in the 1990’s by Gordon, Webb, and Wolpért [5].

However, one might question whether the sounds of their didyrendD, are
really indistinguishable. They comment: “... to produce the same sound (i.e., the
same frequencies with the same amplitudes) as would result from stbkiag a
given point with a given (unit) intensity ... one must striRe simultaneously at
seven points with appropriate intensities”. A more obvious example of this issue
is a pretty example of S. Chapman [2]. Chapman reinterprets earlier discussion of
the Gordon—Webb—-Wolpert examples in terms of paper folding and cutting, as is
familiar from making paper dolls. Of course, by cutting too much one can create
disconnected objects, and by this means Chapman derives from the Gordon—Webb—
Wolpert example the following simple examplB; is the disjoint union of a unit
square and an isosceles right triangle with legs of length 2Dgnd the disjoint
union of a 1x 2 rectangle and an isosceles right triangle with legs of leR¢h
This pair of domains is isospectral, but one can ask to what extent they really sound
the same.

A more honest example of equal sound might be the following: purchase three
identical drums and leD; consists of one of them arid, consist of the disjoint
union of the other two. It would be hard to distinguidh from D, on hearing a
drummer strike either one once. This example suggests that eigenvalue equivalence
may have as much right as isospectrality to be interpreted as “same sound.”

In his paper Kac gave a proof that drums that sound the same have equal area,
but this was based on isospectrality. Revisiting this in the context of eigenvalue
equivalence we ask:

Question 6.4. Do there exist connected eigenvalue equivalent plane domains of
unequal area?
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