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1 Introduction

Let M be a compact Riemannian manifold, and let∆ = ∆M denote the Laplace–
Beltrami operator ofM acting on L2(M). Theeigenvalue spectrumE (M) con-
sists of the eigenvalues of∆ listed with their multiplicities. Two manifoldsM1

andM2 are said to beisospectralif E (M1) = E (M2). Geometric and topological
constraints are forced on isospectral manifolds; for example if the manifolds are
hyperbolic (complete with all sectional curvature equal to−1) then they must have
the same volume [18], and so for surfaces the same genus.

Another invariant ofM is thelength spectrumL (M) of M; that is the set of
all lengths of closed geodesics onM counted with multiplicities. Two manifolds
M1 andM2 are said to beiso-length spectralif L (M1) = L (M2). Under the hy-
pothesis of negative sectional curvature the invariantsE (M) andL (M) are closely
related. For example, it is known thatE (M) determines the set of lengths of closed
geodesics, and in the case of closed hyperbolic surfaces, the stronger statement that
E (M) determinesL (M) and vice-versa holds [7, 8].

In this paper we address the issue of how much information is lost by forget-
ting multiplicities. More precisely, for a compact Riemannian manifoldM, define
the eigenvalue set(resp. length set and primitive length set) to be the set of
eigenvalues of∆ (resp. set of lengths all closed geodesics and lengths of all prim-
itive closed geodesics) counted without multiplicities. These sets will be denoted
E(M), L(M) andLp(M) respectively. Two manifoldsM1 andM2 are said to be
eigenvalue equivalent(resp.length equivalentandprimitive length equivalent)
if E(M1) = E(M2) (resp.L(M1) = L(M2) andLp(M1) = Lp(M2)). Although length
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spectrum and primitive length spectrum determine each other, the corresponding
statement for length sets is false. Primitive length equivalent manifolds are clearly
length equivalent, but we shall see that the converse is false.

We will focus mainly on hyperbolic manifolds of finite volume. Even in this
setting little seems known about the existence of manifolds which are eigenvalue
(resp. length or primitive length) equivalent but not isospectral or iso-length spec-
tral. Examples of non-compact arithmetic hyperbolic 2–manifolds that are length
equivalent were constructed in Theorem 2 of [24] using arithmetic methods. How-
ever, as far as the authors are aware, no examples of closed hyperbolic surfaces that
are length equivalent and not iso-length spectral were known, and it would appear
that no examples of eigenvalue equivalent or primitive length equivalent hyperbolic
manifolds which are not isospectral or iso-length spectral were known. Our main
results rectify this situation for hyperbolic surfaces and indeed for all finite volume
hyperbolicm–manifolds.

Theorem 1.1.Let M be a closed hyperbolic m–manifold. Then there exist infinitely
many pairs of finite covers{M j ,Nj} of M such that

(a) E(M j) = E(Nj),

(b) vol(M j)/vol(Nj)→ ∞.

Moreover, E(M j) = E(Nj) for any Riemannian metric on M.

The method of proof of Theorem 1.1 does not provide (primitive) length equiv-
alent pairs of covers. However, we can prove an analogue for primitive length
equivalence (and hence also length equivalence).

Theorem 1.2. Let M be a finite volume hyperbolic m–manifold. Then there exist
infinitely many pairs of finite covers{M j ,Nj} of M such that

(a) Lp(M j) = Lp(Nj)

(b) vol(M j)/vol(Nj)→ ∞.

Moreover, Lp(M j) = Lp(Nj) for any Riemannian metric on M.

Indeed, as we point out in§5.1, for every finite volume hyperbolicn–manifold
wheren 6= 3,4,5 we can produce pairs of finite sheeted covers of arbitrarily large
volume ratio that are both primitive length equivalent and eigenvalue equivalent.

The methods of the paper are largely group theoretic, relying on the fundamen-
tal group rather than the geometry, and a quick way to provide lots of examples
in many more situations is given by the following. Recall that a groupΓ is called
large if it contains a finite index subgroup that surjects a free non-abelian group.
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Theorem 1.3. (Theorem 3.1 is a stronger version.) Let M be a compact Rieman-
nian manifold with large fundamental group. Then there exist infinitely many pairs
of finite covers{M j ,Nj} of M such that

(a) L(M j) = L(Nj),

(b) E(M j) = E(Nj),

(c) vol(M j)/vol(Nj)→ ∞.

Moreover, (a) and (b) hold for any Riemannian metric on M, and ifπ1(M) is hy-
perbolic, Lp(M j) = Lp(Nj) also holds for any Riemannian metric on M.

Our arguments start with Sunada’s construction [28] of isospectral manifolds,
which was based on a well known construction in number theory of “arithmeti-
cally equivalent” number fields (see [17]). Our length equivalence of manifolds
similarly has a number theoretic counterpart called “Kronecker equivalence” of
number fields, as we discovered after doing this work; see the book [10]. The re-
sults contained here can thus be viewed as providing the geometric investigation
proposed in the sentence from the last paragraph of that book:“In view of the
relations between arithmetical and Kronecker equivalence, one should also study
Kronecker equivalence in this geometric situation.”

In the final section we collate some remarks and questions. In particular, we
note that Mark Kac’s famous paper “Can one hear the shape of a drum” [9] has
been a catalyst for much of the work on isospectrality, and we revisit that paper
and the Gordon-Webb-Wolpert answer to his question [5] in the light of our work.

2 Equivalence

We first recall Sunada’s construction.
For any finite groupG and subgroupsH andK of G, we say thatH andK are

almost conjugate(or “Gassmann equivalent” in the terminology of Perlis [17]) if
for anyg in G the following condition holds (where(g) denotes conjugacy class):

|H ∩ (g)|= |K∩ (g)| .

In [28] Sunada proved the following theorem relating almost conjugate pairs with
isospectral covers.

Theorem (Sunada). Let M be a closed Riemannian manifold, G a finite group,
and H and K almost conjugate subgroups of G. Ifπ1(M) admits a homomorphism
onto G, then the finite covers MH and MK associated to the pullback subgroups
of H and K are isospectral. Moreover, the manifolds MH and MK are iso-length
spectral.
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The proof of this is an easy exercise, but checking when manifolds produced
by Sunada’s method are non-isometric requires more work. However, for length
equivalence far less is required, and the resolution of the isometry problem is built
into our construction.

Length equivalence, primitive length equivalence, and eigenvalue equivalence
each require a different condition on the groupG. In each instance, we describe
a group theoretic condition, and then explain how it is used to produce examples
with the desired features.

2.1 Length and primitive length equivalence

Though it is not essential, the groupG will always be finite in what follows.

Definition 2.1 (Elementwise conjugacy).Subgroups H and K of G are said to be
elementwise conjugateif for any g in G the following condition holds:

H ∩ (g) 6= /0 if and only if K∩ (g) 6= /0. (1)

(Or, more briefly, HG = KG, where HG =
⋃

g∈Gg−1Hg.)

It is immediate from the definition that almost conjugate subgroups are ele-
mentwise conjugate.

To produce primitive length equivalent manifolds, we impose further condi-
tions onH andK, and also onπ1(M).

Definition 2.2 (Primitive). We shall call a subgroup H of Gprimitive in G if the
following holds:

(a) All non-trivial cyclic subgroups of H have the same order p (necessarily
prime).

(b)
⋂

g∈Gg−1Hg = {1}.

Theorem 2.3. Let M be a Riemannian manifold, G a group, and H and K elemen-
twise conjugate subgroups of G.

(1) If π1(M) admits a homomorphism onto G, then the covers MH and MK asso-
ciated to the pullback subgroups of H and K are length equivalent.

(2) If, in addition, H and K are primitive in G andπ1(M) has the property that
any pair of distinct maximal cyclic subgroups ofΓ intersect trivially, then
the covers MH and MK associated to the pullback subgroups of H and K are
primitive length equivalent.
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Remark. It is well known that whenM admits a metric of negative sectional
curvature, thenπ1(M) satisfies the condition needed to apply Theorem 2.3.

Proof of theorem.To prove (1) it suffices to show that a closed geodesicγ on M
has a lift to a closed geodesic onMH if and only if it has a lift to a closed geodesic
onMK . Let ρ denote the homomorphismπ1(M)→G. By standard covering space
theory,γ has a closed lift toMH if and only if ρ([γ]) ∈ G is conjugate intoH. By
assumption this is true forH if and only if it is true forK, proving (1).

For (2) we will show the inclusionLp(MH) ⊆ Lp(MK); the reverse inclusion
then follows by symmetry. We argue by contradiction, assuming there is a primitive
γ in π1(MH), every conjugate of which inπ1(MK) is imprimitive. LetγK be any
conjugate ofγ in π1(MK) and letδ ∈ π1(MK) andr > 1 be such thatδ r = γK . The
arguments splits into two cases.

Case 1.ρ(δ ) = 1.
Since kerρ < π1(MH), all conjugates ofδ are contained inπ1(MH). This con-

tradicts the primitivity ofγ, as aπ1(M)–conjugate ofδ powers toγ.
Case 2.ρ(δ ) 6= 1, soρ(δ ) has prime orderp by Definition 2.2 (a). We split

this into two subcases.
Case 2.1.ρ(γK) 6= 1.
Since〈ρ(γK)〉 is nontrivial and contained in〈ρ(δ )〉 which has prime order, it is

equal to〈ρ(δ )〉. Thus,ρ(µδ µ−1) ∈ 〈ρ(γ)〉, whereµ is the element ofπ1(M) con-
jugatingγK to γ. Since the cyclic subgroup〈ρ(γ)〉 is contained inH, ρ(µδ µ−1) is
contained inH, soµδ µ−1 is an element ofπ1(MH). This contradicts the primitivity
of γ since(µδ µ−1)r = γ.

Case 2.2.ρ(γK) = 1.
By Definition 2.2 (b), there exists an elementg in G which conjugatesρ(δ )

outside ofK. For any elementσ ∈ ρ−1(g), σγKσ−1 ∈ π1(MK) and by assumption
this cannot be primitive. Therefore, there existsδ1 in π1(MK) ands> 1 such that
σγKσ−1 = δ s

1. We have the equality(σδσ−1)r = δ s
1. By assumption,

〈
σδσ−1

〉
and〈δ1〉 are contained in a common maximal cyclic subgroupC of π1(M). The
intersection ofρ(C) with K is a cyclic subgroup which contains the image of
〈ρ(δ1)〉. By Definition 2.2 (a), the cyclic subgroups ofK have prime orderp,
and so|ρ(C)∩K|= 1 or p.

Assume first that the latter holds. Nowρ(C) has a unique cyclic subgroup of
orderp, soρ(C)∩K must equal

〈
ρ(σδσ−1)

〉
. Hence the elementρ(σδσ−1) is in

K, which contradicts the choice ofσ . Therefore, we can assume thatρ(C)∩K = 1.
Thenρ(δ1) = 1. ReplacingγK by σγKσ−1 andδ by δ1, Case 1 provides the desired
contradiction.
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2.2 Eigenvalue equivalence

To give context to our construction below of eigenvalue equivalence, we begin by
recalling the following well known equivalent formulation of almost conjugacy.

Proposition 2.4. Subgroups H and K of a finite group G are almost conjugate if
and only if for every finite dimensional complex representationρ of G,

dimFix(ρ|H) = dimFix(ρ|K) ,

whereFix(ρ|H) denotes the subspace ofρ(H)–fixed vectors.

Proof. A convenient reference for the character theory used here and later is [26].
The dimension of Fix(ρ|H) is the inner product(χH

1 ,χH
ρ|H) of the trivial character

on H and the character ofρ|H. By definition this is 1
|H| ∑h∈H χH

ρ|H(h), and since

characters are constant on conjugacy classes, this equals1
|H| ∑ |(g) ∩H|χG

ρ (g),
where the sum is over conjugacy classes inG. Thus the equality dimFix(ρ|H) =
dimFix(ρ|K) is equivalent to

1
|H|∑ |(g)∩H|χG

ρ (g) =
1
|K|∑ |(g)∩K|χG

ρ (g) . (2)

Clearly, almost conjugacy ofH andK implies this equality.
For the converse, note first that the equality dimFix(ρ|H) = dimFix(ρ|K)

applied to the regular representation ofG becomes[G : H] = [G : K], whence
|H| = |K|. Since characters of irreducible representations form a basis for class
functions onG, letting ρ run over all irreducible representations ofG in equation
(2) now implies that|(g)∩H|= |(g)∩K| for each conjugacy class(g).

Definition 2.5. We say subgroups H and K of a finite group G arefixed point
equivalentif for any finite dimensional complex representationρ of G, the restric-
tion ρ|H has a nontrivial fixed vector if and only ifρ|K does.

Theorem 2.6. Let H and K be fixed point equivalent subgroups of a finite group
G. If M is a compact Riemannian manifold andπ1(M) admits a homomorphism
onto G, then the covers MH and MK associated to the pullbacks inπ1(M) of H and
K are eigenvalue equivalent.

Proof. Let M̃ be the cover ofM associated to the pullback inπ1(M) of the trivial
subgroup ofG. The action ofG on M̃ is by isometries, and the quotients byH and
K give covering mapspH : M̃ →MH andpK : M̃ →MK , respectively.

The covering projection induces an embeddingp∗H : L2(MH)→ L2(M̃) whose
image is theH–fixed subspace L2(M̃)H of L2(M̃). Since∆M̃ ◦ p∗H = p∗H ◦∆MH , the

6



action ofH on L2(M̃) restricts to an action on theλ–eigenspace L2(M̃)λ and p∗H
identifies L2(MH)λ with (L2(M̃)λ )H . Thusλ is an eigenvalue forMH if and only
if (L2(M̃)λ )H has positive dimension.

Since G is finite, the representation ofG on L2(M̃)λ decomposes as a di-
rect sum of finite dimensional representations (in fact, compactness ofM implies
L2(M̃)λ is finite dimensional, but we do not need this). Hence, ifH andK are
fixed point equivalent,(L2(M̃)λ )H will be non-trivial if and only if (L2(M̃)λ )K is
non-trivial.

Remark. 1. The compactness assumption onM is not necessary. IfM is non-
compact our argument extends easily to show that under the conditions of the the-
orem both the discrete and non-discrete spectra ofMH andMK agree when viewed
as sets.

2. What makes the Sunada construction work for both the length and eigen-
value spectra is the equivalence of almost conjugacy with the condition of Proposi-
tion 2.4. Our weakening of almost conjugacy to elementwise conjugacy on the one
hand, and, via Proposition 2.4, to fixed point equivalence on the other, go in dual
directions. They therefore cannot be expected to be equivalent, and it is a little
surprising that in the examples we know, the two weaker conditions still tend to
have significant overlap.

2.3 Examples

An elementary example of elementwise conjugacy is the following. LetG be the
alternating group Alt(4), and seta = (12)(34) andb = (14)(23). Then the sub-
groupsH = {1,a} and the Klein 4–groupK = {1,a,b,ab} are elementwise con-
jugate. However note thatK is not primitive since it is a normal subgroup. In
additionH andK are not fixed point equivalent sinceK has no fixed vector under
the irreducible 3–dimensional representation ofG while H has a fixed vector. On
the other hand, it is not hard to check thatH is fixed point equivalent to the trivial
subgroup{1}.

We now generalize this example.
Let Fp be the prime field of orderp, and letn≥ 2 be a positive integer. The

n–dimensional specialFp–affine group is the semidirect productFn
p o SL(n;Fp)

defined by the standard action of SL(n;Fp) onFn
p. We call anyFp–vector subspace

V of Fn
p a translational subgroup of Fn

p oSL(n;Fp).

Theorem 2.7. Let V and W be translational subgroups of G= Fn
p o SL(n;Fp).

Then,

(i) if V and W are both non-trivial then they are elementwise conjugate in G,
and they are moreover primitive if they are proper subgroups ofFn

p;
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(ii) if V and W are both proper subgroups ofFn
p then they are fixed point equiv-

alent in G.

Proof. (i). Since SL(n;Fp) acts transitively on non-trivial elements ofFn
p, the ele-

mentwise conjugacy is immediate. Moreover, conditions (a) and (b) of Definition
2.2 clearly hold forV if V is a proper subgroup ofFn

p.
(ii). It suffices to show that any proper translational subgroupV is fixed point

equivalent to the trivial subgroup. So we must show that for anym-dimensional
representationρ of Fn

p oSL(n;Fp) with m> 0, the restrictionρ|V has a nontrivial
fixed subspace when restricted toV. To this end, letχ be the character ofρ.
The dimension of the fixed space ofρ|V is dim(Fix(ρ|V)) = 1

|V| ∑v∈V χ(v). Since
χ(1) = m and any two nontrivial elements ofV are conjugate inFn

p o SL(n;Fp),
we can rewrite this:

dim(Fix(ρ|V)) =
1
|V|

(m+(|V|−1)χ(x)) ,

wherex∈V−{0}. Similarly, the dimension of the fixed space for the full transla-
tion subgroupFn

p is

dim(Fix(ρ|Fn
p
)) =

1∣∣Fn
p

∣∣ (
m+(

∣∣Fn
p

∣∣−1)χ(x)
)

.

Thusm+(
∣∣Fn

p

∣∣−1)χ(x)≥ 0, soχ(x)≥ −m
|Fn

p|−1
. Hence,

dim(Fix(ρ|V)) = 1
|V| (m+(|V|−1)χ(x))≥ 1

|V|

(
m−m |V|−1

|Fn
p|−1

)
> 0.

3 Proofs of main results

The following is a stronger version of Theorem 1.3:

Theorem 3.1.Let M be a compact Riemannian manifold whose fundamental group
is large. For every integer n≥ 2 and every odd prime p, there exists a finite tower
of covers of M

M0 −→M1 −→ . . .−→Mn−1 −→Mn −→M ,

with each Mi →Mi+1 of degree p, such that:

(a) L(M j) = L(Mk) for 0≤ j,k≤ n−1;

(b) E(M j) = E(Mk) for 1≤ j,k≤ n;
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Moreover, (a),(b) hold for any Riemannian metric on M. Finally, ifπ1(M) is hy-
perbolic then for any Riemannian metric on M,

(c) Lp(M j) = Lp(Mk) for 1≤ j,k≤ n−1.

Proof. Since M is large we can find finite index subgroups which surject any
finitely generated free group, so there is a finite coverX of M with

π1(X) // // Fn
p oSL(n;Fp) .

Consider any completeFp–flag

{0}= V0 ⊂V1 ⊂V2 ⊂ . . .⊂Vn−1 ⊂Vn = Fn
p

in Fn
p. Pulling these subgroups back toπ1(X)⊂ π1(M) we obtain a tower

M0 −→M1 −→ . . .−→Mn−1 −→Mn −→M

of corresponding covers ofM. The theorem then follows from Theorem 2.7 com-
bined with Theorems 2.3 and 2.6.

This theorem implies Theorems 1.1, 1.2, and 1.3 in the case of closed hyper-
bolic surfaces. In addition, it is well-known that closed and finite volume hyper-
bolic manifolds whose fundamental groups are large exist in all dimensions (see
e.g., [12]). This provides examples of hyperbolic manifolds in all dimensions sat-
isfying the conclusions of Theorems 1.1, 1.2, and 1.3. To prove thatany closed or
finite volume hyperbolic manifold has finite sheeted covers with these properties
requires additional work.

We mention in passing that Theorem 3.1 (b) applied to surfaces produces arbi-
trarily long towers of abelian covers

M1 −→ . . .−→Mn−1 −→Mn

whose first nontrivial eigenvalue remains constant. On the other hand, it is well
known that any infinite tower of abelian covers of a fixed hyperbolic surface hasλ1

tending to zero (see [1] and [28]).

3.1 More families

Theorem 3.2. (i) Let p > 3 be a prime. ThenPSL(2;Z/p2Z) contains sub-
groups K< H with [H : K] = p which are fixed point equivalent.
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(ii) Let k 6= Q be a number field with ring of integersOk. Let P be the set of
non-dyadic prime idealsp of Ok for whichOk/p = Fq is a non-prime field
(this set is infinite by the Cebotarev Density Theorem). Then forp in P the
groupPSL(2;Ok/p2) contains subgroups K< H with [H : K] = p which are
primitive and elementwise conjugate inPSL(2;Ok/p2).

The proof of Theorem 3.2 will be deferred until§4. Assuming this we complete
the proofs of Theorems 1.1 and 1.2 in the next subsection.

3.2 Completion of proofs

We shall need the following special case of the Strong Approximation Theorem
(see [30] and [16]; see also [11] for a discussion of the proof in the particular case
of hyperbolic manifolds). SupposeMm is a finite volume hyperbolic manifold with
m≥ 3. We shall identify Isom(Hm) with PO0(m,1) so π1(M) < PO0(m,1). We
can assume there is a number fieldk such thatπ1(M) < PO0(m,1;S) for a finite
extension ringS of Ok with k the field of fractions ofS (see [22] for the details).
We choosek minimal.

Theorem 3.3 (Strong Approximation). For all but finitely many primesp of S the
image ofπ1(M) under the reduction homomorphism

rp j : PO0(m,1;S)−→ PO(m,1;S/p j)

contains the commutator subgroupΩ(m,1;S/p j) of PO(m,1;S/p j) for all j ≥ 1.

Proof of Theorem 1.1.Theorem 1.1 is shown for hyperbolic surfaces in the com-
ment following the proof of Theorem 3.1, so we can assume thatM is a closed
hyperbolic manifold of dimensionm≥ 3. We will produce surjections ofπ1(M)
onto finite groups containing PSL(2;Z/p2Z) for infinitely manyp.

Let S be as in the Strong Approximation Theorem above. For all but a finite
number of primesp of S the image ofπ1(M) < PO0(m,1;S) under the restriction
homomorphismrp j containsΩ(m,1;S/p j) for all j ≥ 1. If p is the integer prime
that p divides thenrp j (π1(M)) therefore contains the subgroupΩ(m,1;Z/p jZ),
and therefore also the subgroupΩ(2,1;Z/p jZ) of Ω(m,1;Z/p jZ).

We claim the finite groupsΩ(2,1;Z/p jZ) and PSL(2;Z/p jZ) are isomorphic.
To see this, first recall that thep–adic Lie groups PSL(2;Qp) andΩ(2,1;Qp) are
isomorphic (asp–adic Lie groups). The groups PSL(2;Zp) and Ω(2,1;Zp) are
the respective maximal compact subgroups of PSL(2;Qp) andΩ(2,1;Qp), and are
unique up to isomorphism (see [19, Ch 3.4]). Hence the groups PSL(2;Zp) and
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Ω(2,1;Zp) are isomorphic asp–adic Lie groups. Reducing modulo the ideal gen-
erated by thejth power of the uniformizerπ of Zp yields the asserted isomorphism
betweenΩ(2,1;Z/p jZ) and PSL(2;Z/p jZ).

Restricting now toj = 2 we have shownrp2(π1(M)) contains a subgroup iso-
morphic to PSL(2;Z/p2Z). So by passage to a subgroup of finite index inπ1(M),
we can arrange a finite coverX of M with a surjectionπ1(X) → PSL(2;Z/p2Z).
The existence of pairs{M j ,Nj} as stated in Theorem 1.1 now follows from Theo-
rem 2.6, Theorem 3.2(i), and the infinitude ofP.

Proof of Theorem 1.2.We have already shown this for hyperbolic surfaces in the
comments following Theorem 3.1. We next consider hyperbolic 3–manifolds. Let
M be a hyperbolic 3–manifold with holonomy representationπ1(M) < PSL(2;S)
(againS chosen minimally). The field of fractions ofS, a finite ring extension of
Z, is necessarily a proper extension ofQ, see [14]. In particular, by the Cebotarev
Density Theorem, there exist infinitely many prime idealsp of S such thatS/p is
a nontrivial extension ofFp. The Strong Approximation Theorem applies here to
see that for all but finitely many among this infinite set of prime ideals ofS the
reduction maps

rp2 : π1(M)−→ PSL(2;S/p2),

are onto. By Theorem 3.2 (ii) and Theorem 2.3 (ii), there exists a pair of covers

Np −→Mp −→M

with Lp(Np) = Lp(Mp) and vol(Np)/vol(Mp) = p.
We extend this to all hyperbolicm–manifolds withm> 3 as follows. LetS=

Z[i] and letP be the set of prime ideals defined in Theorem 3.2 (specifically, these
are the idealspZ[i] with p≡ 3 mod 4). Form> 3 andp ∈ P we first claim we
have an injection of PSL(2;Z[i]/p j) into Ω(m,1;Z/p jZ). For this, we argue as
follows. First, there exists a quadratic formB4 defined overQ of signature(3,1)
and an injection

PSL(2;Z[i])−→ PSO0(B4;Z).

For each primep = pZ[i], this induces isomorphisms

PSL(2;Z[i]/p j)−→ Ω(B4;Z/p jZ).

For j = 1, this can be found in [29]. Forj > 1, this is established by an argu-
ment similar to that used in the proof of the equivalence of PSL(2;Z/p jZ) and
Ω(2,1;Z/p jZ) in proving Theorem 1.1. Extending the formB4 from Q4 to Qm+1

for m> 3 by the identity produces injections

Ω(B4;Z/p jZ)−→ Ω(m,1;Z/p jZ).
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In particular, we can view

PSL(2;Z[i]/p j) < Ω(m,1;Z/p jZ)

for all m> 3, all j, and allp ∈P as claimed. Since we have already shown in the
proof of Theorem 1.1 thatπ1(M) surjects finite groups containingΩ(m,1;Z/p jZ)
for all but finitely many primes, Theorem 3.2 (ii) withS= Z[i] and Theorem 2.3
(ii) now complete the proof.

4 Proof of Theorem 3.2

Throughout this sectionp will be an odd prime. For any ringR let M(2;R) be
the algebra of 2×2 matrices overR. The Lie algebrasl(2;Fp) of SL(2;Fp) con-
sists of traceless matrices:sl(2;Fp) = {X ∈ M(2;Fp) | X11 = −X22}. The ad-
joint action of SL(2;Fp) on sl(2;Fp) is the action by conjugation. As a vector
spacesl(2;Fp) has a natural SL(2;Fp)–invariant bilinear form, the Killing form
B defined byB(X,Y) = Tr(XY). The associated quadratic formQB (defined by
B(X,X) = 2QB(X)) is thus also invariant. Explicitly, forX,Y ∈ sl(2;Fp):

B(X,Y) = 2X11Y11+X12Y21+X21Y12, QB(X) = X2
11+X12X21.

Lemma 4.1. There is a short exact sequence

1−→ sl(2;Fp)−→ SL(2;Z/p2Z)−→ SL(2;Fp)−→ 1.

The conjugation action ofSL(2;Fp) on sl(2;Fp) induced by this sequence is the
adjoint action.

Proof. The inclusionZ/pZ→ Z/p2Z is given bya 7→ pa. It induces an inclusion
M(2;Z/pZ)→M(2;Z/p2Z) given byX 7→ pX.

Reduction modulop induces the surjectionπ : SL(2;Z/p2Z) → SL(2;Fp)
whose kernel is clearly

ker(π) = {I + pX ∈M(2;Z/p2Z) | det(I + pX) = 1} .

Now det(I + pX) = 1+ pTr(X)+ p2det(X) = 1+ pTr(X) since we are inZ/p2Z,
so we can rewrite:

ker(π) = {I + pX | X ∈ sl(2;Fp)} .

The equation(I + pX)(I + pY) = I + pX+ pY now shows that the mapX → I + pX
is an isomorphism of the additive groupsl(2;Fp) to ker(π). The final sentence of
the lemma is clear.
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Lemma 4.2. The number ofSL(2;Z/p2Z)–conjugacy classes insl(2;Fp) (ie, or-
bits of the adjoint action ofSL(2;Fp)) is exactly(p+ 2), as listed in the follow-
ing table. In the table n represents a fixed quadratic non-residue inFp and “qr”
is short for quadratic residue (i.e., a square). Each of rows 2 and 3 represents
(p−1)/2conjugacy classes, as Q= QB(X) runs respectively through the quadratic
residues and non-residues inFp−{0}.

description size # classes representative

trivial 1 1
(

0 0
0 0

)
anisotropic qr p(p+1) (p−1)/2

(
0 1
Q 0

)
anisotropic non-qr p(p−1) (p−1)/2

(
0 1
Q 0

)
isotropic qr (p2−1)/2 1

(
0 0
1 0

)
isotropic non-qr (p2−1)/2 1

(
0 0
n 0

)
Proof. We will prove this in several steps.

Step 1. Any
(

x y
z −x

)
∈ sl(2;Fp) is SL(2;Fp)–equivalent to a matrix of the form(

0 y′

z′ 0

)
.

To see this, note first that(
a b
c d

)(
x y
z −x

)(
d −b
−c a

)
=

(
(1+2bc)x+bdz−acy ∗

∗ ∗

)
,

so we want to solve the equationsad−bc= 1 and(1+2bc)x+bdz−acy= 0 for
a,b,c,d.

• If y 6= 0 chooseb = 0, a = d = 1 and solvex−cy= 0 for c.

• If y = 0 andz 6= 0 choosea = 0, b =−c = 1 and solve ford.

• If y = z= 0 choose 2bc=−1, a = 1 and solve ford.

Step 2. If Q = Q
(

x y
z −x

)
6= 0 then

(
x y
z −x

)
is SL(2;Fp)–equivalent to

(
0 1
Q 0

)
.

We have shown we can assumex = 0. Then(
a b
c d

)(
0 y
z 0

)(
d −b
−c a

)
=

(
bdz−acy a2y−b2z
d2z−c2y acy−bdz

)
. (3)

SinceQ = yz 6= 0 we havey,z 6= 0 soa2y−b2z= 1 can be solved fora,b. Then(
a b
c d

)
=

(
a b
bz ay

)
does what is required.
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Step 3. Excluding the zero-element, if Q
(

x y
z −x

)
= 0 then

(
x y
z −x

)
is SL(2;Fp)–

equivalent to exactly one of
(

0 0
1 0

)
or

(
0 0
n 0

)
, where n is a fixed quadratic non-

residue.

We can assumex = 0. If z= 0 we conjugate by an element witha = 0 to get
y = 0. Thus we can assumex = y = 0 andz 6= 0. Now looking at equation (3), one
sees that ifx = y = 0 thenz can be changed only by squares.

Step 4. It remains to verify the sizes of the conjugacy classes.

For each class in row 2 or 3 we must simply count the number of elements(
x y
z −x

)
with x2 + yz= Q. HereQ 6= 0. If Q is a quadratic non-residue then we

must haveyz 6= 0, so for each ofp choices ofx and each ofp−1 choices ofy 6= 0
we get a uniquez. There are thereforep(p−1) elements in the class. A similar
count givesp(p+1) elements ifQ is a residue.

If Q = 0 it is easier to work out the isotropy group of a representative of
the class. For an element in our normal formx = y = 0 the isotropy group con-

sists of all
(

d−1 0
c d

)
with d2 = 1. This clearly has size 2p so the class has size

|SL(2;Fp)|/2p = (p2−1)/2.

We now investigate the SL(2;Fp)–classes of proper non-trivial subgroups in
sl(2;Fp). The groupsl(2;Fp) itself has orderp3.

We first consider the subgroups of orderp. Using Lemma 4.2 it is clear there
are three classes. Namely

I . Isotropic lines. Each isotropic line has(p−1)/2 isotropic qr elements and
(p−1)/2 isotropic non-qr elements. There arep+1 such lines in this class.

A representative is the line
{(

0 0
y 0

)
| y∈ Fp

}
.

R. Anisotropic qr lines. Each such line has exactly two elements in each anisotropic
qr conjugacy class. There arep(p+ 1)/2 such lines in this class. A repre-

sentative is the line
{(

0 y
y 0

)
| y∈ Fp

}
.

N. Anisotropic non-qr lines. Each such line has exactly two elements in each
anisotropic non-qr conjugacy class. There arep(p−1)/2 such lines in this

class. A representative is the line
{(

0 y
ny 0

)
| y∈ Fp

}
.

Next, we determine the conjugacy classes of subgroups of orderp2, i.e., planes.
Since the Killing formB is nonsingular, the orthogonal complement of such a plane
with respect toB will be a line, and vice versa, so we can classify planes up to
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conjugacy by the conjugacy classes of their orthogonal complements. There are
therefore three classes of planes:

I⊥. Orthogonal complements of isotropic lines. A representative such plane is

I⊥ =
{(

x 0
y −x

)
| x,y∈ Fp

}
.

The Killing form is degenerate on this plane, with nullspaceI . This nullspace
contains all isotropic elements of the plane and the remaining elements con-
sist of 2p elements from each anisotropic qr conjugacy class. The plane has
no anisotropic non-qr elements. There arep+1 of these planes.

R⊥. Orthogonal complements of anisotropic qr lines. A representative such plane
is

R⊥ =
{(

x y
−y −x

)
| x,y∈ Fp

}
.

Such a plane has exactly 2p−2 isotropic elements, which, together with 0,
form two isotropic lines (inR⊥ the linesx = y andx = −y). For anyQ 6= 0
there are exactlyp−1 elementsX ∈R⊥ with QB(X) = Q. Thus such a plane
intersects every conjugacy class insl(2;Fp). There arep(p+1)/2 of these
planes.

N⊥. Orthogonal complements of anisotropic non-qr lines. A representative such
plane is

N⊥ =
{(

x y
−ny −x

)
| x,y∈ Fp

}
.

Such a plane has no isotropic elements and for anyQ 6= 0 it hasp+ 1 ele-
ments withQB(X) = Q. There arep(p−1)/2 of these planes.

We note for future reference

Lemma 4.3. Any plane of type R⊥ is elementwise conjugate inSL(2;Z/p2Z) to
sl(2;Fp)

Proof of Theorem 3.2 (i).We will show that the trivial subgroup is fixed point
equivalent to any anisotropic qr lineR. It suffices to show that the only finite
dimensional representation of SL(2;Z/p2Z) without anR–fixed vector is the triv-
ial representation. Given such a representation, each subgroupH containingRwill
also have no fixed vector. We will use this information for the subgroupsH of type
R, I⊥, R⊥, N⊥, andsl(2;Fp) to show the representation must be trivial.

To begin, the sum of the characterχ of a representation over the non-zero ele-
ments of a line insl(2;Fp) will only depend on the conjugacy class of the line, and
thus give numbers that we shall callXI (χ), XR(χ), XN(χ), depending on whether
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the line is isotropic, anisotropic qr, or anisotropic non-qr. Also, letX0(χ) be the di-
mension of the representation; this isχ evaluated on the trivial element insl(2;Fp).
If H is a subgroup ofsl(2;Fp), then the sum ofχ over the elements ofH gives|H|
times the dimension of the fixed space of the representation restricted toH, hence
zero under our assumption thatH has no non-trivial fixed points. SinceH is a
union of lines that are disjoint except at 0, this then gives an equation of the form

X0(χ)+ IHXI (χ)+RHXR(χ)+NHXN(χ) = 0.

Here the coefficientsIH , RH , NH are the number of lines of each type inH. By our
discussion above, these numbers for the subgroups of interest to us are:

IH RH NH

H = R 0 1 0
H = I⊥ 1 p 0
H = R⊥ 2 (p−1)/2 (p−1)/2
H = N⊥ 0 (p+1)/2 (p+1)/2

H = sl(2;Fp) p+1 (p2 + p)/2 (p2− p)/2

These five different types of subgroups containingR yield five linear equations in
the four unknown quantitiesX0(χ),XI (χ),XR(χ),XN(χ). Since already the coeffi-
cient matrix of the first four equations,

1 0 1 0
1 1 p 0
1 2 (p−1)/2 (p−1)/2
1 0 (p+1)/2 (p+1)/2

 ,

has nonzero determinant (namely−p2), the equations have only the trivial solution.
This impliesX0(χ) = 0, proving the representation is trivial, as desired.

Remark. By computing the character table of SL(2;Z/p2Z) one can show that
there is no other fixed point equivalence in SL(2;Z/p2Z) between non-conjugate
subgroups ofsl(2;Fp).

Proof of Theorem 3.2 (ii).Let p be a prime ideal ofOk such thatOk/p = Fq is
a proper extension ofFp and p > 3; that such a prime exists follows from the
Cebotarev Density Theorem. Consider the following inclusion of short exact se-
quences:

1 // Vp //

��

PSL(2;Z/p2Z) //

��

PSL(2;Fp) //

��

1

1 // Vp // PSL(2;Ok/p2) // PSL(2;Fq) // 1

16



By Lemma 4.1 we already know the kernelVp in the first sequence issl(2;Fp) (the
transition from SL to PSL just factors by{±I} and does not affect the kernel).

Although we do not need it, we note thatVp = sl(2;Fq). If p is principal,
p = (π), say, then we could argue as in the proof of Lemma 4.1. In general we can
replacek by its localization atp without changing the second exact sequence and
thenp becomes principal, so the argument applies.

We claim that in PSL(2;Ok/p2) any element ofVp can be conjugated out of
Vp. We only need show this for the representatives of conjugacy classes given
in Lemma 4.2 and the claim is then a simple calculation using equation (3) with
b∈ Fq−Fp, a = d = 1, andc = 0.

The proof is now complete, since Lemma 4.3 gives elementwise conjugate
subgroups inVp and we have just shown they are primitive in PSL(2;Ok/p2).

5 Locally symmetric manifolds and other generalities

5.1 R–rank 1 geometries

We shall denote byHn
Y the n–dimensional hyperbolic spaces modelled onY ∈

{C,H,O} (wheren = 2 whenY = O). The methods used to produce eigenvalue,
length, and primitive length equivalent manifolds extend with little fuss to complex,
quaternionic, and Cayley hyperbolic manifolds. We give the version for primitive
length.

Theorem 5.1. Let Γ be a torsion-free lattice inIsom(Hn
Y). Then there exist in-

finitely many pairs of finite covers of M= Hn
Y/Γ, {M j ,Nj} such that

(a) Lp(M j) = Lp(Nj),

(b) vol(M j)/vol(Nj)→ ∞.

Moreover, (a) and (b) hold for any finite volume Riemannian metric on M.

Proof. The argument we give breaks into a few cases. First, in most cases we have
the inclusion

PO0(B4;Z) < GY,n(Z)

whereB4 is the form from the proof of Theorem 1.2,GY,n is Q–algebraic, and
GY,n(R) with the analytic topology is Lie isomorphic to Isom(Hn

Y). For Y = C,
this fails only whenn = 1,2. ForY = H, whenn≥ 3, this is clear. The remain-
ing cases ofn = 1,2 follows from the exceptional isometry betweenH1

H andH4

together with the isometric inclusion ofH1
H into H2

H. Finally, forY = O, this fol-
lows from the isometric inclusion ofH2

H into H2
O. For all these cases, as in the
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proof of Theorem 1.2, an application of the Strong Approximation Theorem (cf
[30], [16]) in combination with the Cebotarev Density Theorem provides infinitely
many primesp such thatΓ surjects onto certain finite groupsG(S/p2) of Lie type
which contain PSL(2;Z[i]/p2Z[i]). The proof is completed just as it was in the
proof of Theorem 1.2.

It remains to deal withY = C and n = 1,2. The case of n=1 is simply the
case of hyperbolic surfaces. Case 2 cannot be handled indirectly, and we must use
primitive pairs in the finite groups PU(2,1;Ok/p2), wherek/Q is an imaginary
quadratic extension ofQ andp is a prime ideal ofOk. Selectingp such thatOk/p

is a quadratic extension ofFp, we have the short exact sequence

1−→ su(2,1;Ok/p)−→ SU(2,1;Ok/p2)−→ SU(2,1;Ok/p)−→ 1,

wheresu(2,1;Ok/p) is the Lie algebra of SU(2,1) over the fieldOk/p. With the
inclusions

sl(2;Fp) < su(2,1;Ok/p), Ω(2,1;Fp) < SU(2,1;Ok/p),

The subgroupssl(2;Fp) and R⊥ are elementwise conjugate in SU(2,1;Ok/p2)
whereR⊥ is a 2–plane from Lemma 4.3. It is straightforward to verify that the
pair satisfies the additional requirements needed for the primitive case.

Our methods also produce eigenvalue equivalent covers for all of these groups
as well. In addition, for sufficiently largen, we can produce covers which are
both primitive length and eigenvalue equivalent; heren≥ 5 andY can beR, C, or
H. To do this, by [13] Proposition 4 Window 2 forn≥ 5 we can arrange for the
simple groups of orthogonal type to contain a copy of(P)SL(3;Fp) which contains
a group of the type given in Theorem 2.7.

5.2 Locally symmetric manifolds

Length and eigenvalue equivalent covers As is clear from this discussion (and
the generality of the Strong Approximation Theorem in [30] and [16]) our methods
also apply to lattices in every non-compact higher rank simple Lie group. The
discussion given at the end of§5.1 also applies in this setting to arrange for the
finite groups of Lie type occurring in Strong Approximation to contain a group a
copy of(P)SL(3;Fp).

Primitive length equivalent covers Construction of primitive length equivalent
covers over a fixed locally symmetric manifold is more subtle since in many set-
tings the associated fundamental group fails to have the needed condition on max-
imal cyclic subgroups. It seems interesting to try to weaken the condition on max-
imal cyclic subgroups to produce examples in this setting.
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6 Final Remarks

6.1 Relations among length, primitive length, and eigenvalue equiva-
lence

Example A. Let M be a closed surface of genus at least 2 equipped with a hy-
perbolic metric. LetG be the alternating group Alt(4) andH andK the elemen-
twise conjugate pair described in§2.3. Then, given a surjectionπ1(M) → G, let
γ ∈ π1(M) map toa∈G and correspond to a primitive closed geodesic inM (there
are infinitely many primitive elements mapping to any element ofG). The non-
primitive geodesic ofM corresponding toγ has four lifts toMH , two primitive and
two not, and it has three lifts toMK , all non-primitive. Of course, there might
accidentally be some unrelated primitive geodesic inMK of the right length, but
for a generic hyperbolic metric, and a homomorphism toG that factors through a
free group this does not happen andMH andMK are not primitive length equiva-
lent. Indeed, assumeγ is the shortest closed geodesic onM and every other closed
geodesic has much larger length. Then ifγ maps toa, one can see thatMH andMK

are not primitive length equivalent.

Example B. Eigenvalue equivalent surfaces obtained from Theorem 3.1 using the
trivial subspace{0} and any proper subspace ofFn

p generically produce examples
which are not length equivalent. In particular, eigenvalue equivalence need not
imply length or primitive length equivalence.

It seems plausible that length equivalent hyperbolic examples constructed from
Theorem 3.1 usingFn

p and any nontrivial subspace ofFn
p will generically fail to be

eigenvalue equivalent, but this is more subtle. Using the results of Zelditch [31]
it is easy to see that for a hyperbolic manifoldMm of sufficiently high dimension
this approachwill give length equivalent but not eigenvalue equivalent examples
for generic (not necessarily hyperbolic) deformations of the metric onM. Using
G = Alt(4) this allows one to find such examples in dimensionsm≥ 3.

All of our examples of primitive length equivalence are also examples of eigen-
value equivalence.

Question 6.1.Are two primitive length equivalent hyperbolic manifolds necessar-
ily eigenvalue equivalent?

6.2 Complex lengths

All our results for equal length sets actually produce manifolds which have the
samecomplex length sets. Recall that the complex length of a closed geodesicγ

in a Riemannianm–manifold is a pair(`(γ),V) where`(g) is the length ofγ and
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V ∈O(m−1) is determined by the holonomy ofγ. The complex length spectrum is
the collection of such complex lengths with multiplicities, and the complex length
set forgets multiplicities as before. The point is that Theorem 2.3 gives manifolds
with the same complex length sets, just as Sunada’s theorem gives equal complex
length spectra. See [23] for more on the complex length spectrum.

6.3 Commensurability

The known methods of producing isospectral or iso-length spectral hyperbolic
manifolds result in commensurable manifolds and it is an open question as to
whether this is always the case. By construction, the eigenvalue and (primitive)
length equivalent hyperbolic manifolds constructed here are also commensurable.

Question 6.2. Let M1 and M2 be eigenvalue (resp. length or primitive length)
equivalent closed hyperbolic manifolds. Are they commensurable?

There has been some recent activity on this question. It is shown that Question
6.2 has an affirmative answer in the length equivalent setting if the manifoldsM1

andM2 are arithmetic hyperbolic 3–manifolds ([3]), or if the manifolds are even
dimensional arithmetic hyperbolic manifolds ([21]). Indeed, the results of [21]
apply to more general locally symmetric spaces. In contrast, [21] also exhibts
arbitrarily large collections of incommensurable hyperbolic 5–manifolds which are
length commensurable. The commensurability classes of these manifolds seem to
be the best candidates for producing a negative answer Question 6.2.

6.4 Infinite sets of examples

Our constructions show that there can be no uniform bound on the number of pair-
wise eigenvalue (resp. length or primitive length) equivalent, non-isometric mani-
folds. Thus a natural question is.

Question 6.3.Are there infinite sets of pairwise eigenvalue (resp. length or primi-
tive length) equivalent, closed hyperbolicm–manifolds?

In the context of length equivalence a positive answer would follow if one
can find infinitely many mutually elementwise conjugate subgroups of finite index
in a finitely generated free group. C. Praeger pointed out to us that a slightly
stronger version of this question is listed as an open problem (Problem 11.71) in the
Kourovka Notebook [15]. It was asked there in the parallel context of Kronecker
equivalence of number fields. It seems likely that the answer to this question is
“no”, but the limited partial answers that are known involved considerable effort,
see [20].
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6.5 Can one hear the size of a drum?

Mark Kac’s famous paper “Can one hear the shape of a drum” [9] is quoted in
many papers on isospectrality. Of course, the “drums” of his title were not closed
hyperbolic manifolds, but rather flat plane domains. The first pair of different
“drums” with the same sound (i.e., non-isometric isospectral plane domains) were
found in the 1990’s by Gordon, Webb, and Wolpert [5].

However, one might question whether the sounds of their drumsD1 andD2 are
really indistinguishable. They comment: “... to produce the same sound (i.e., the
same frequencies with the same amplitudes) as would result from strikingD1 at a
given point with a given (unit) intensity ... one must strikeD2 simultaneously at
seven points with appropriate intensities”. A more obvious example of this issue
is a pretty example of S. Chapman [2]. Chapman reinterprets earlier discussion of
the Gordon–Webb–Wolpert examples in terms of paper folding and cutting, as is
familiar from making paper dolls. Of course, by cutting too much one can create
disconnected objects, and by this means Chapman derives from the Gordon–Webb–
Wolpert example the following simple example:D1 is the disjoint union of a unit
square and an isosceles right triangle with legs of length 2, andD2 is the disjoint
union of a 1×2 rectangle and an isosceles right triangle with legs of length

√
2.

This pair of domains is isospectral, but one can ask to what extent they really sound
the same.

A more honest example of equal sound might be the following: purchase three
identical drums and letD1 consists of one of them andD2 consist of the disjoint
union of the other two. It would be hard to distinguishD1 from D2 on hearing a
drummer strike either one once. This example suggests that eigenvalue equivalence
may have as much right as isospectrality to be interpreted as “same sound.”

In his paper Kac gave a proof that drums that sound the same have equal area,
but this was based on isospectrality. Revisiting this in the context of eigenvalue
equivalence we ask:

Question 6.4. Do there exist connected eigenvalue equivalent plane domains of
unequal area?
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