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ABSTRACT

Let C(Γ) be the set of isomorphism classes of the finite groups that are

quotients (homomorphic images) of Γ. We investigate the extent to which

C(Γ) determines Γ when Γ is a group of geometric interest. If Γ1 is a lattice

in PSL(2,R) and Γ2 is a lattice in any connected Lie group, then C(Γ1) =

C(Γ2) implies that Γ1
∼= Γ2. If F is a free group and Γ is a right-angled

Artin group or a residually free group (with one extra condition), then

C(F ) = C(Γ) implies that F ∼= Γ. If Γ1 < PSL(2,C) and Γ2 < G are non-

uniform arithmetic lattices, where G is a semisimple Lie group with trivial

centre and no compact factors, then C(Γ1) = C(Γ2) implies that G ∼=
PSL(2,C) and that Γ2 belongs to one of finitely many commensurability

classes. These results are proved using the theory of profinite groups; we

do not exhibit explicit finite quotients that distinguish among the groups

in question. But in the special case of two non-isomorphic triangle groups,

we give an explicit description of finite quotients that distinguish between

them.

1. Introduction

Let Γ be a finitely-generated group and let C(Γ) denote the set of isomorphism

classes of finite groups that are quotients (homomorphic images) of Γ. If Γ is

residually finite, then one can recover any finite portion of its Cayley graph

or multiplication table by examining the finite quotients of the group. It is

therefore natural to wonder whether, under reasonable hypotheses, the set C(Γ)
might determine Γ up to isomorphism. (One certainly needs some hypothe-

ses: for example, Remeslennikov [47] showed that a finitely-generated nilpotent

group is not always uniquely determined by C(Γ).)
A celebrated instance of this question is the following (see Problem (F14) in

[43]): If Fn is the free group of rank n, and Γ is a finitely-generated, residually

finite group, then does C(Γ) = C(Fn) imply that Γ ∼= Fn? This question remains

out of reach for the moment, as does the broader question of whether every

Fuchsian group is distinguished from other finitely-generated, residually finite

groups by its set of finite quotients. But in this paper we shall answer these

questions in the affirmative for groups Γ that belong to various classes of groups

that cluster naturally around Fuchsian groups. For example, we prove the

following:

Theorem 1.1: Let Γ1 be a finitely-generated Fuchsian group and let Γ2 be a

lattice in a connected Lie group. If C(Γ1) = C(Γ2), then Γ1
∼= Γ2.
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We remind the reader that a Fuchsian group is, by definition, an infinite

discrete subgroup of PSL(2,R). To avoid trivial special cases, we shall assume

that all of the groups considered are non-elementary (that is, are not virtually

cyclic). Thus, for us, every Fuchsian group Γ has a subgroup of finite index that

maps onto a non-abelian free group, and hence every finitely-generated group

is a quotient of some finite-index subgroup of Γ. Deciding which groups arise

as quotients of Γ itself is a more subtle matter, but much progress has been

made on understanding the finite quotients, that is, deciphering the structure

of C(Γ); see [17], [20], [31] and [37] and references therein.

The structure of the set C(Γ) is intimately connected with the subgroup

growth of Γ, so it is interesting to contrast our results with what is known

about the subgroup growth of Fuchsian groups (see [42] and [31]). Let sn(Γ)

denote the number of subgroups in Γ that have index precisely n. In [42] an

equivalence relation on the set of finitely-generated groups was introduced: Γ1

and Γ2 are declared to be equivalent if and only if sn(Γ1) = (1 + o(1))sn(Γ2)

asymptotically (that is, as n → ∞). Also in [42], Müller and Schlage-Puchta

exhibited an infinite sequence of pairwise non-isomorphic Fuchsian groups that

are all equivalent in this sense. Our Theorem 1.1 shows that these equivalent

groups are distinguished by their finite quotients.

Here, and throughout this paper, we use the term ‘surface group’ to mean a

group that is isomorphic to the fundamental group of a closed surface of genus at

least 1. A basic case in Theorem 1.1 is the situation where Γ1 is a free group and

Γ2 is a surface group. This is not a difficult case to handle, but we give several

proofs, each pointing to an argument that enables one to distinguish free groups

by means of C(Γ) in broader classes; Theorem 1.2 records some of these classes

and broader, more technically defined classes will be described in Section 4. One

proof relies on the observation that in a surface group, every subgroup of finite

index has even first betti number, whereas any finitely-generated free group has

a subgroup of finite index with odd first betti number. A second proof relies on

the observation that the number of elements needed to generate a surface group

is equal to the rank of its abelianisation. A third proof relies on the fact that

surface groups are good in the sense of Serre (see Section 2.4), LERF (locally

extended residually finite), and of cohomological dimension 2 over a finite field.

Theorem 1.2: Let Γ1 be a free group and let Γ2 be a finitely-generated group.

Then C(Γ1) �= C(Γ2) if Γ2 satisfies one of the following conditions:
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(a) Γ2 is the fundamental group of a compact Kähler manifold ;

(b) Γ2 is residually free and contains a surface subgroup ;

(c) Γ2 is a non-free, right-angled Artin group.

In the preceding discussion, we have regarded finitely-generated free groups as

examples of Fuchsian groups, residually free groups, right-angled Artin groups,

and lattices in connected Lie groups. But except in the case of Fuchsian groups,

we have not addressed the question of whether the operator C distinguishes the

isomorphism types within these classes. For general lattices, it certainly does

not: it has long been known that there exist lattices in distinct nilpotent Lie

groups that have the same collection of finite quotients [50] Chapter 11, and

Aka [4] and [5] recently provided examples of such pairs of lattices in distinct

semisimple Lie groups G1, G2. Indeed there are examples where the real ranks

of G1 and G2 are different (for example, rank 2 and rank 10) but nevertheless

there exist lattices Γj < Gj such that C(Γ1) = C(Γ2). There also exist pairs of

finitely-generated residually free groups Γ1 �∼= Γ2 such that C(Γ1) = C(Γ2); see

Remark 4.19. In addition, in the context of 3-manifold groups, Funar [21] has

shown the existence of non-homeomorphic torus bundles over the circle whose

fundamental groups have the same finite quotients.

In contrast, there are reasons to suspect that for lattices in PSL(2,C), and

in particular the fundamental groups of finite-volume orientable hyperbolic 3-

manifolds, the situation may be more reminiscent of PSL(2,R), with lattices

being uniquely determined by their finite quotients, both amongst themselves

and amongst lattices in arbitrary Lie groups. In pursuit of this conviction, we

prove the following theorem in Section 7.

Theorem 1.3: Let Γ1 be a non-uniform lattice in PSL(2,C), and let Γ2 be a

non-uniform irreducible arithmetic lattice in a semisimple Lie group G that has

trivial centre and no compact factors. If C(Γ1) = C(Γ2) then G ∼= PSL(2,C).

Moreover, if Γ1 is arithmetic then the family of all Γ2 with C(Γ1) = C(Γ2)

divides into finitely many commensurability classes.

It is interesting to compare the conclusion of Theorem 1.3 with Pickel’s The-

orem [45] and recent work by Aka [5]. In the latter it is shown that among

higher rank lattices which have the Congruence Subgroup Property, there are

only finitely many that can have the same set of finite quotients, whilst in the
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former it is shown that only finitely many finitely-generated nilpotent groups

can have the same set of finite quotients.

We have deliberately stated our results in terms of the naively defined set

C(Γ), but it is both natural and useful to regard them as statements about the

profinite completions of the groups in question. We remind the reader that the

profinite completion Γ̂ of a group Γ is the inverse limit of the finite quotients

Γ/N of Γ. (The maps in the inverse system are the obvious ones: if N1 < N2

then Γ/N1 → Γ/N2.) If Γ is finitely-generated, then C(Γ) = C(Γ̂); thus Γ̂1
∼= Γ̂2

implies C(Γ1) = C(Γ2). Less obviously, C(Γ) uniquely determines Γ̂ (see [19],

[48] p. 89 and Section 3 below). Thus we may rephrase all of the preceding

results in terms of profinite completions. For example:

Theorem 1.4: Let Γ1 and Γ2 be as in Theorem 1.1 or 1.2. If Γ̂1
∼= Γ̂2 then

Γ1
∼= Γ2.

Our invocation of profinite groups is more than a matter of terminology: in

particular, our proofs of Theorems 1.1 and 1.3 rely on various aspects of the

theory of profinite groups, and the interplay between the abstract group and its

profinite completion. Certain of the arguments also rely on deep properties of

the lattices concerned.

Our detours through the theory of profinite groups are such that, for the most

part, we prove that groups have distinct profinite completions without exhibiting

specific finite quotients that distinguish them. Indeed, even in relatively small

examples, identifying such finite quotients appears to be rather delicate. In the

final section of this paper we tackle this problem head-on in the case of triangle

groups, where it succumbs to a direct analysis.

We close this introduction with some comments concerning logic and decid-

ability. First, note that whenever one has a class of finitely-presented residu-

ally finite groups where Γ̂1
∼= Γ̂2 implies Γ1

∼= Γ2, one obtains a solution to

the isomorphism problem in that class of groups. Indeed, since each group

is finitely-presented, one can effectively enumerate its finite quotients, and in

this way one will prove in a finite number of steps that C(Γ1) �= C(Γ2) if this

is the case; and running this partial algorithm in parallel with a naive search

for mutually-inverse homomorphisms Γ1 ↔ Γ2 will (in finite time) determine

whether or not Γ1 is isomorphic to Γ2. Similarly, Theorem 1.1 implies that there

exists an algorithm that, given a finite presentation of a lattice in a connected

Lie group, will determine whether or not the group presented is Fuchsian. And
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Theorem 1.3 provides an algorithm for determining if a finite presentation of a

non-uniform arithmetic lattice is Kleinian.

A recent result of Jarden and Lubotzky [26], which relies on deep work of

Nikolov and Segal [44], shows that there exists an isomorphism Γ̂1
∼= Γ̂2 if and

only if there is an equivalence of the elementary theories Th(Γ̂1) ≡ Th(Γ̂2) (in

the sense of first order logic). So our results can also be interpreted as criteria for

determining if such elementary theories are distinct. This is particularly striking

in the light of the solution to Tarski’s problem by Sela [51] and Kharlampovich–

Myasnikov [28], which implies that the fundamental group of any closed surface

of Euler characteristic at most −2 has the same elementary theory as a free

group of any finite rank r ≥ 2. For clarity, we highlight a special case of this

discussion, but stress that we have contributed only a small part of the proof.

Theorem 1.5: If Γ1 and Γ2 are any two non-isomorphic, non-elementary,

torsion-free Fuchsian groups, then Th(Γ1) ≡ Th(Γ2) but Th(Γ̂1) �≡ Th(Γ̂2).

We conclude this introduction with a brief outline of the paper. In Section 2

we recall some basic properties of the profinite completion of a (discrete) resid-

ually finite group Γ, the correspondence between subgroups of Γ and that of its

profinite completion, as well as the relationship between the profinite completion

of subgroups and their closures in the profinite completion of Γ. In addition,

we recall some of the theory of the cohomology of profinite groups, including

Serre’s notion of goodness and cohomological dimension, and we discuss actions

of profinite groups on profinite trees. In Section 3 we describe a connection

(via Lück’s Approximation Theorem) between groups with isomorphic profinite

completions and the first L2-Betti number. In Section 4 we prove a variety of

results that restrict the class of groups that can have the same profinite com-

pletion as a free group, and in Section 5 we prove a result controlling torsion

in the profinite completion of a finitely-generated Fuchsian group. The proof

of Theorem 1.1 is completed in Section 6, by putting together results proved

in Sections 2, 3 and 5. In Section 7 we prove Theorem 1.3, relying heavily

on Section 2. In Section 8 we explain how to distinguish triangle groups more

directly, by describing exhibit explicit finite quotients that do so.

Acknowledgements. We thank Gopal Prasad and Alex Lubotzky for help-

ful comments concerning Theorem 3.6. The first and third authors thank the

University of Auckland, Massey University and The New Zealand Institute for
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2. Profinite completions

In this section we recall some background on profinite completions and the

theory of profinite groups; see [48], [50] and [52] for more details.

2.1. Residually finite groups and their completions. By definition, the

profinite completion Γ̂ of a finitely-generated group Γ is the inverse limit of

the system of finite quotients of Γ. The natural map Γ → Γ̂ is injective if and

only if Γ is residually finite. By definition Γ̂ maps onto every finite quotient

of Γ. On the other hand, the image of Γ is dense regardless of whether Γ is

residually finite, so the restriction to Γ of any continuous homomorphism from

Γ̂ to a discrete group (such as a finite group) is surjective. A deep theorem of

Nikolov and Segal [44] states that every homomorphism from Γ̂ to a finite group

is continuous, so we have the following basic result (in which Hom(G,Q) denotes

the set of homomorphisms from the group G to the group Q, and Epi(G,Q)

denotes the set of epimorphisms).

Lemma 2.1: Let Γ be a finitely-generated group and let ι : Γ → Γ̂ be the

natural map to its profinite completion. Then, for every finite group Q, the

map Hom(Γ̂, Q) → Hom(Γ, Q) defined by g 	→ g ◦ ι is a bijection, and this

restricts to a bijection Epi(Γ̂, Q) → Epi(Γ, Q).

Corollary 2.2: If Γ1 is finitely-generated and Γ̂1
∼= Γ̂2, then

|Hom(Γ1, Q)| = |Hom(Γ2, Q)| for every finite group Q.

Closely related to this we have the following proposition (which is taken from

[48, Chapter 3.2], using the Nikolov–Segal theorem to replace ‘open’ by ‘finite-

index’).

Notation: Given a subset X of a profinite group G, we write X to denote the

closure of X in G.

Proposition 2.3: With Γ as above, there is a one-to-one correspondence be-

tween the set X of finite-index subgroups of Γ and the set Y of all finite-index
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subgroups of Γ̂. If Γ is identified with its image in Γ̂, then this bijection takes

H ∈ X to H , and conversely, takes Y ∈ Y to Y ∩ Γ. Also |Γ : H | = |Γ̂ : H |.
Moreover, H is normal in Γ̂ if and only if H is normal in Γ, in which case

Γ/H ∼= Γ̂/H.

Corollary 2.4: Let Γ be a finitely-generated group, and for each d ∈ N, let

Md denote the intersection of all normal subgroups of index at most d in Γ.

Then the closure Md of Md in Γ̂ is the intersection of all normal subgroups of

index at most d in Γ̂, and hence
⋂

d∈N
Md = 1.

Proof. If N1 and N2 are the kernels of epimorphisms from Γ to finite groups Q1

and Q2, then N1 ∩N2 is the kernel of the extension of Γ → Q1×Q2 to Γ̂, while

N1×N2 is the kernel of the map Γ̂ → Q1×Q2 that one gets by extending each

of Γ → Qi and then taking the direct product. The uniqueness of extensions

tells us that these maps coincide, and hence N1 ∩N2 = N1 ∩ N2. The claims

follow from repeated application of this observation.

We finish this subsection with a discussion of the relationship between the

statement C(Γ1) = C(Γ2) for finitely-generated residually finite groups Γ1 and

Γ2, and the statement that the profinite completions Γ̂1 and Γ̂2 are isomorphic.

Suppose that Γ̂1 and Γ̂2 are isomorphic. Following the aforementioned work of

Nikolov and Segal [44], by ‘isomorphic’ we simply mean ‘isomorphic as groups’,

for by [44], each group-theoretic isomorphism is continuous, and so any such

isomorphism will be an isomorphism of topological groups. Given an isomor-

phism between Γ̂1 and Γ̂2, it is easy to deduce from Proposition 2.3 that this

implies that Γ1 and Γ2 have the same collection of finite quotient groups. The

converse is also true; see [19] and [48, pp. 88–89].

Theorem 2.5: Suppose that Γ1 and Γ2 are finitely-generated abstract groups.

Then Γ̂1 and Γ̂2 are isomorphic if and only if C(Γ1) = C(Γ2).

We close the subsection with a comment on terminology. In [24] (see also [5])

the notion of genus of a group Γ from within a class of groups G is discussed:

it is defined to be the set of isomorphism classes of groups in G with the same

profinite completion as Γ, and is denoted by g(G,Γ). Hence if we let L denote

the set of all lattices in connected Lie groups, our main result can be rephrased

as:
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Theorem 2.6: Let Γ be a finitely-generated Fuchsian group, then g(L,Γ) =

{Γ}.
We have chosen not to use this notation elsewhere in this article in order to

avoid confusion with the classical use of the term genus in the sense of surfaces

(and their fundamental groups).

2.2. Completion and closure. Let Γ be a residually finite (abstract) group,

and u : H ↪→ Γ the inclusion mapping of a proper subgroup H of Γ. The

canonical homomorphism û : Ĥ → Γ̂ is injective if and only if the profinite

topology on Γ induces the full profinite topology on H ; in more elementary

terms, for every normal subgroup H1 < H of finite index, there is a normal

subgroup Γ1 < Γ of finite index with Γ1 ∩H < H1.

Recall that if Γ is a group and H a subgroup of Γ, then Γ is called H-

separable if for every g ∈ G � H , there is a subgroup K of finite index in Γ

such that H ⊂ K but g /∈ K; equivalently, the intersection of all finite index

subgroups in Γ containing H is precisely H . The group Γ is called LERF (or

subgroup separable) if it is H-separable for every finitely-generated subgroup

H , or equivalently, if every finitely-generated subgroup is a closed subset in the

profinite topology.

In the context of this paper, it is important to note that even if the subgroup

H of Γ is separable, it need not be the case that the profinite topology on Γ

induces the full profinite topology on H . Stronger separability properties do

suffice, however, as we now indicate. The following lemma is well-known, but

we include a proof for the convenience of the reader.

Lemma 2.7: Let Γ be a finitely-generated group, and H a finitely-generated

subgroup of Γ. Suppose that Γ is H1-separable for every finite index subgroup

H1 in H . Then the profinite topology on Γ induces the full profinite topology

on H ; that is, the natural map Ĥ → H is an isomorphism.

Proof. Since Γ is H1 separable, the intersection of all subgroups of finite index

in Γ containing H1 is H1 itself. Thus we can find a finite-index subgroup K1

of Γ such that K1 ∩H = H1. Replacing K1 by a normal subgroup Γ1 of finite

index provides the required subgroup Γ1 ∩H of H1.

Subgroups of finite index are obviously separable.
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Corollary 2.8: If Γ is residually finite and H is a finite-index subgroup of Γ,

then the natural map from Ĥ to H (the closure of H in Γ̂) is an isomorphism.

Corollary 2.9: If Γ1 and Γ2 are finitely-generated and residually finite and

Γ̂1
∼= Γ̂2, then there is a bijection I from the set of subgroups of finite index

in Γ1 to the set of subgroups of finite-index in Γ2, such that Î(H) ∼= Ĥ and

|Γ1 : H | = |Γ2 : I(H)| for every subgroup H of finite index in Γ1. Moreover, H

is normal in Γ1 if and only if I(H) is normal in Γ2.

Proof. If φ : Γ̂1 → Γ̂2 is an isomorphism, define I(H) = φ(H) ∩ Γ2. Proposi-

tion 2.3 tells us that I is a bijection and that |Γ1 : H | = |Γ2 : I(H)|. Corol-

lary 2.8 tells us that Ĥ ∼= H ∼= I(H) ∼= Î(H).

2.3. Betti numbers. The first betti number of a finitely-generated group is

b1(Γ) = rank((Γ/[Γ,Γ])⊗Z Q).

This invariant can be detected in the finite quotients of Γ since it is the greatest

integer b such that Γ has the elementary p-group of rank b among its quotients,

for every prime p. We exploit this observation as follows:

Lemma 2.10: Let Λ and Γ be finitely-generated groups. If Λ is isomorphic to

a dense subgroup of Γ̂, then b1(Λ) ≥ b1(Γ).

Proof. For every finite group A, each epimorphism Γ̂ → A will restrict to an

epimorphism from both Γ and Λ, and every epimorphism Γ → A extends to an

epimorphism Γ̂ → A. Therefore, if Γ maps onto an elementary p-group of rank

b, then so does Λ (but perhaps not vice versa).

Corollary 2.11: If Γ1 and Γ2 are finitely-generated and Γ̂1
∼= Γ̂2, then

b1(Γ1) = b1(Γ2).

2.4. Goodness and cohomological dimension. Following Serre [52], we

say that a group Γ is good if for every finite Γ-moduleM , the homomorphism of

cohomology groups Hn(Γ̂;M) → Hn(Γ;M) induced by the natural map Γ → Γ̂

is an isomorphism between the cohomology of Γ and the continuous cohomology

of Γ̂. (See [52] and [48, Chapter 6] for details about the cohomology of profinite

groups.)

It is easy to see that free groups are good, but it seems that goodness is hard

to establish in general. One can, however, establish goodness for a group Γ that
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is LERF if one has a well-controlled splitting of the group as a graph of groups

[23]. Using the fact that Fuchsian groups are LERF [49], it is proved in [23]

that Fuchsian groups are good.

Now a useful criterion for goodness is provided by the next lemma due to

Serre (see [52, Chapter 1, Section 2.6])

Lemma 2.12: The group Γ is good if there is a short exact sequence

1 → N → Γ → H → 1,

such that H and N are good, N is finitely-generated, and the cohomology group

Hq(N,M) is finite for every q and every finite Γ-module M .

Recent work of Agol [1] and Wise [57] establishes that finite-volume hyper-

bolic 3-manifolds are virtually fibered, and so Lemma 2.12 can be applied to

establish goodness for the fundamental groups of such manifolds. In addition,

since goodness is preserved by commensurability (see [23] Lemma 3.2), it fol-

lows that the fundamental groups of all finite-volume hyperbolic 3-manifolds

are good. We summarize this discussion, and that for Fuchsian groups, in the

following result:

Theorem 2.13: Lattices in PSL(2,R) and PSL(2,C) are good.

Let G be a profinite group. Then the p-cohomological dimension of G

is the least integer n such that for every discrete torsion G-module A and for

every q > n, the p-primary component of Hq(G;A) is zero, and this is denoted

by cdp(G). The cohomological dimension of G is defined as the supremum of

cdp(G) over all primes p, and this is denoted by cd(G).

We also retain the standard notation cd(Γ) for the cohomological dimension

(over Z) of a discrete group Γ.

Lemma 2.14: Let Γ be a discrete group that is good. If cd(Γ) ≤ n, then

cd(Γ̂) ≤ n.

Discrete groups of finite cohomological dimension (over Z) are torsion-free.

We are interested in conditions that allow one to deduce that Γ̂ is also torsion-

free. For this we need the following result that mirrors the behaviour of coho-

mological dimension for discrete abstract groups (see [52, Chapter 1 §3.3]).
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Proposition 2.15: Let p be a prime, let G be a profinite group, and H a

closed subgroup of G. Then cdp(H) ≤ cdp(G).

Corollary 2.16: Suppose that Γ is a residually finite, good group of finite

cohomological dimension over Z. Then Γ̂ is torsion-free.

Proof. If Γ̂ were not torsion-free, then it would have an element x of prime

order, say q. Since 〈x〉 is a closed subgroup of Γ̂, Proposition 2.15 tells us that

cdp(〈x〉) ≤ cdp(Γ̂) for all primes p. But H2k(〈x〉;Fq) �= 0 for all k > 0, so

cdq(〈x〉) and cdq(Γ̂) are infinite. Since Γ is good and has finite cohomological

dimension over Z, we obtain a contradiction from Lemma 2.14.

The following simple observation will prove very useful in the sequel.

Corollary 2.17: Let Γ1 and Γ2 be finitely-generated (abstract) residually

finite groups with Γ̂1
∼= Γ̂2. Assume that Γ1 is good and cd(Γ1) = n < ∞.

Furthermore, assume that H is a good subgroup of Γ2 for which the natural

mapping Ĥ → Γ̂2 is injective. Then Hq(H ;Fp) = 0 for all q > n and all primes

p.

Proof. If Hq(H ;Fp) were non-zero for some q > n, then by goodness we would

have Hq(Ĥ ;Fp) �= 0, so cdp(Ĥ) ≥ q > n. Now Ĥ → Γ̂2 is injective and so

Ĥ ∼= H . Hence Γ̂1 contains a closed subgroup of p-cohomological dimension

greater than n, a contradiction.

2.5. Actions on profinite trees. In this subsection we recall some basics

of Bass-Serre theory for profinite groups that will be required later. (See [41]

and [48] for more detailed accounts.)

If G1 and G2 are profinite groups with a common profinite subgroup H , then

we denote by G1 �H G2 the profinite amalgamated free product of G1 and G2,

with H amalgamated.

As in the case of abstract groups, if a profinite group G splits as a profi-

nite amalgamated free product, then there is control on where any given finite

subgroup lies. The following result was proved for free profinite products in

[25] and for more general profinite amalgamated free products in [41, Theorem

3.10].

Theorem 2.18: Let G = G1�HG2 be any profinite amalgamated free product.

If K is a finite subgroup of G, then K is conjugate to a subgroup of G1 or G2.
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Now if A and B are abstract groups with a common subgroup C, and Γ

denotes the abstract amalgamated free product A ∗C B, then it is not generally

true that Γ̂ is isomorphic to Â �
̂C B̂. But this does hold when Γ is residually

finite and the profinite topology on Γ induces the full profinite topologies on

A, B and C; see [48, pp. 379–380]. In particular, we record the following

consequence that will be useful for us.

Proposition 2.19: If Γ = Γ1 ∗C Γ2 is LERF, then Γ̂ ∼= Γ̂1 � ̂C Γ̂2.

A case of particular interest to us occurs when Γ is a finitely-generated Fuch-

sian group; such groups are known to be LERF (see [49]).

Corollary 2.20: If Γ = A ∗C B is a finitely-generated Fuchsian group, then

Γ̂ ∼= Â �
̂C B̂.

Note that it follows from [32] that if Γ is any finitely-generated Fuchsian

group that is not a (p, q, r)-triangle group, then Γ can be decomposed as non-

trivial free products with amalgamation A ∗C B. (For most Fuchsian groups,

this follows easily using a geometric decomposition of the hyperbolic 2-orbifold.)

3. L2-Betti numbers and profinite completions

L2-Betti numbers provide powerful invariants for distinguishing the profinite

completions of various classes of groups that cluster around free groups. We

refer the reader to Lück’s treatise [36] for a comprehensive introduction to L2-

Betti numbers. For our purposes, it is best to view these invariants not in

terms of their original (more analytic) definition, but instead as asymptotic

invariants of towers of finite-index subgroups. This is made possible by the

Lück’s Approximation Theorem [35]:

Theorem 3.1: Let G be a finitely-presented group, and let G = G1 > G2 >

· · · > Gm > · · · be a sequence of finite-index subgroups that are normal in G

and intersect in the identity. The first L2-Betti number of G is given by the

formula

b
(2)
1 (G) = lim

m→∞
b1(Gm)

|G : Gm| .

An important point to note is that this limit does not depend on the tower,

and hence is an invariant of G.
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Proposition 3.2: Let Λ and Γ be finitely-presented residually finite groups

and suppose that Λ is a dense subgroup of Γ̂. Then b
(2)
1 (Γ) ≤ b

(2)
1 (Λ).

Proof. For each positive integer d let Md be the intersection of all normal sub-

groups of index at most d in Γ, and let Ld = Λ∩Md in Γ̂. We saw in Corollary 2.4

that
⋂

d Md = 1, and so
⋂

d Ld = 1. Since Λ and Γ are both dense in Γ̂, the

restriction of Γ̂ → Γ̂/Md to each of these subgroups is surjective, and hence

|Λ : Ld| = |Γ̂ : Md| = |Γ : Md|.
Now Ld is dense inMd, while M̂d = Md, so Lemma 2.10 implies that b1(Ld) ≥

b1(Md), and then we can use the towers (Ld) in Λ and (Md) in Γ to compare

L2-betti numbers and find

b
(2)
1 (Γ) = lim

d→∞
b1(Md)

|Γ : Md| ≤ lim
d→∞

b1(Ld)

|Λ : Ld| = b
(2)
1 (Λ),

by Lück’s approximation theorem.

This has the following important consequence:

Corollary 3.3: Let Γ1 and Γ2 be finitely-presented residually finite groups.

If Γ̂1
∼= Γ̂2, then b

(2)
1 (Γ1) = b

(2)
1 (Γ2).

Remark 3.4: In [12] the first and third authors prove versions of Proposition

3.2 and Corollary 3.3 for finitely-presented groups which are residually-p for

some prime p. In this setting the profinite completion is replaced by the pro-p

completion.

When we make further use of L2-betti numbers, we will exploit the following

additional elementary observation:

Proposition 3.5: If Γ is a lattice in PSL(2,R) with rational Euler character-

istic χ(Γ), then b
(2)
1 (Γ) = −χ(Γ).

Proof. It follows from Lück’s approximation theorem that if H is a subgroup

of index index d in Γ (which is finitely-presented) then b
(2)
1 (H) = d b

(2)
1 (Γ).

Rational Euler characteristic is multiplicative in the same sense. Thus we may

pass to a torsion-free subgroup of finite index in Γ, and assume that it is either

a free group Fr of rank r, or the fundamental group Σg of a closed orientable

surface of genus g. In both cases, a subgroup Γd of index d in Γ will be a group

of the same form, with the rank and genus given by the expressions d(r− 1)+1
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and d(g−1)+1. In the free case, the (ordinary) first betti number is d(r−1)+1

and so b1(Γd) = 1 − d χ(Γ), while in the second case the first betti number is

2d(g− 1)+2 and so b1(Γd) = 2−d χ(Γ). In both cases, dividing by d = |Γ : Γd|
and taking the limit, we find b

(2)
1 (Γ) = −χ(Γ).

We shall now present a reduction of Theorem 1.1 using Corollary 3.3 and

Proposition 3.5. The proof of Theorem 1.1 will be completed in Sections 5 and

6.

We draw the reader’s attention to the fact that in Corollary 3.3 both groups

are assumed to be residually finite, whereas in the following theorem Λ need not

be residually finite since we have not assumed that the Lie group G is linear.

The proof shows how to by-pass this problem.

Theorem 3.6: Let Λ be a lattice in a connected Lie group G and suppose that

Λ̂ ∼= Γ̂ for some Fuchsian group Γ. Then, either Λ is isomorphic to a Fuchsian

group, or else Λ̂ has a non-trivial finite normal subgroup.

Proof. Let Z(G) denote the centre of G and let Z = Λ∩Z(G). As Z(G) is the

kernel of the adjoint representation, G/Z(G) is linear. In addition, since Λ is a

lattice in a connected Lie group it is finitely generated (see [46] §6.18), and it

follows that Λ/Z is a finitely generated residually finite group. In particular, Z

contains the kernel of the natural map Λ → Λ̂, which we call I. We first claim

that either Z = I or else Δ := Λ/I has a non-trivial finite normal subgroup;

at the end of this proof we shall show that such a subgroup remains normal in

Δ̂, which is isomorphic to Λ̂ because Δ is the image of Λ in Λ̂. The only other

possibility is that Z/I is an infinite central subgroup of the residually finite

group Δ. But Δ cannot have an infinite normal amenable subgroup, because

Cheeger–Gromov [15] prove that this would force the first L2-betti number of

Δ to be zero, contradicting Corollary 3.3 and Proposition 3.5, since Δ̂ ∼= Γ̂.

Now we deal with the case I = Z, adapting an argument of Lott [34]. Let

Rad be the radical of G, let K be the maximal compact connected normal

subgroup of a Levi complement, let G1 = Rad ·K and recall that G2 = G/G1 is

a connected semisimple Lie group with no compact connected normal subgroup.

The short exact sequence

1 → G1 → G → G2 → 1
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restricts to

1 → Λ1 → Λ → Λ2 → 1,

where Λ1 = Λ ∩G1, and factoring out Z (and its image Z ′ in Λ2) we get

1 → Λ1Z/Z → Λ/Z → Λ2/Z
′ → 1.

By repeating the argument with L2-betti numbers, we see that Λ1Z/Z must

be finite, as it is amenable (since Λ1 is a closed subgroup of the amenable G1)

and Δ = Λ/Z has the same profinite completion as the Fuchsian group Γ. So

either we again obtain a finite non-trivial normal subgroup in Δ, or else Λ1Z/Z

is trivial, in which case Δ ∼= Λ2/Z
′. Now we appeal to the fact that since Λ2

is a lattice in a semisimple Lie group with no compact factors, Λ2 modulo its

centre Z(Λ2) is itself a lattice in a semisimple Lie group (see [46] Corollary 8.27).

If Z ′ = Z(Λ2), then Δ = Λ2/Z(Λ2) and we are in the setting considered by

Lott ([34], Lemma 1), who proves that either Δ has a non-trivial finite normal

subgroup or else Δ is isomorphic to a Fuchsian group. If Z ′ is a proper subgroup

of Z(Λ2) then Δ has a non-trivial centre and we conclude as before.

All that remains is to prove that if M < Δ is a non-trivial normal subgroup,

then M remains normal in Δ̂. Indeed for any group H , if N is a finite normal

subgroup of H , then the image of N in Ĥ , which we denote N , is also normal.

For if it were not normal then there would be n ∈ N and x ∈ Ĥ such that the

set S = {xnx−1n′ | n′ ∈ N} did not contain the identity. By residual finiteness,

the finite set S ∪ {1} would inject into some finite quotient of Ĥ . But H maps

onto this finite quotient, and N is normal in H . This contradiction shows that

N is normal in Ĥ, as claimed.

Remark 3.7: In Section 5 we shall conclude that the second possibility in Theo-

rem 3.6 does not occur, thereby reducing the proof of Theorem 1.1 to Fuchsian

groups.

4. Three obstructions to profinite freeness

In this section we present three different proofs of the fact that the fundamental

group of a closed surface cannot have the same set of finite quotients as a free

group. Each proof highlights a different obstruction to having the same profinite

completion as a free group, and thereby sheds light on the fundamental question
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of whether a finitely-generated residually finite group that has the same profinite

completion as a free group must itself be free.

4.1. The Hopf Property and Rank. It is well-known and easy to prove that

if a finitely-generated group Γ is residually finite, then it has the Hopf property

— that is, every epimorphism Γ → Γ is an isomorphism. Certain proofs of this

fact extend in a straightforward manner to finitely-generated profinite groups.

The following lemma captures this idea in more pedestrian language.

Lemma 4.1: Let φ : Γ1 → Γ2 be an epimorphism of finitely-generated groups.

If Γ1 is residually finite and Γ̂1
∼= Γ̂2, then φ is an isomorphism.

Proof. Let k ∈ kerφ. If k were non-trivial, then since Γ1 is residually finite,

there would be a finite group Q and an epimorphism f : Γ1 → Q such that

f(k) �= 1. This map f does not lie in the image of the injection Hom(Γ2, Q) ↪→
Hom(Γ1, Q) defined by g 	→ g ◦ φ. Thus |Hom(Γ1, Q)| > |Hom(Γ2, Q)|, contra-
dicting Corollary 2.2.

Definition 4.2: The rank d(Γ) of a finitely-generated group Γ is the least integer

k such that Γ has a generating set of cardinality k. The rank d̂(G) of a profinite

group G is the least integer k for which there is a subset S ⊂ G with k = |S|
and 〈S〉 is dense in G.

In the following proposition, we do not assume that Γ is residually finite.

Proposition 4.3: Let Γ be a finitely-generated group and let Fn be a free

group. If Γ has a finite quotient Q such that d(Γ) = d(Q), and Γ̂ ∼= F̂n, then

Γ ∼= Fn.

Proof. First Γ̂ ∼= F̂n, so Q is a quotient of Fn. Hence n ≥ d(Q). But d(Q) =

d(Γ) and for every integer s ≥ d(Γ) there exists an epimorphism Fs → Γ. Thus

we obtain an epimorphism Fn → Γ, and application of the preceding lemma

completes the proof.

Corollary 4.4: Let Γ be a finitely-generated group. If Γ and its abelianisation

have the same rank, then Γ̂ ∼= F̂n if and only if Γ ∼= Fn.

Proof. Every finitely-generated abelian group A has a finite quotient of rank

d(A).
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Let K be a finite simplicial graph with vertex set V = {v1, . . . , vn} and edge

set E ⊂ V × V . Then the right angled Artin group (or RAAG) associated

with K is the group A(K) given by the following presentation:

A(K) = 〈 v1, . . . , vn | [vi, vj ] = 1 for all i, j such that {vi, vj} ∈ E 〉.
For example, if K is a graph with n vertices and no edges, then A(K) is the

free group of rank n, while if K is the complete graph on n vertices, then A(K)

is the free abelian group Zn of rank n.

If the group Γ has a presentation of the form 〈A |R〉 where A is finite and all

of the relators r ∈ R lie in the commutator subgroup of the free group F (A),

then both Γ and its abelianisation (which is free abelian) have rank |A|. The

standard presentations of RAAGs and closed surface groups are of this form.

Also the fundamental group of a closed non-orientable surface has a presentation

of the form Γ = 〈 a1, b1, . . . , ag, bg, c | c2 =
∏

i[ai, bi] 〉, so again Γ has the same

rank as its abelianisation.

Proposition 4.5: If Γ is a right-angled Artin group that is not free, or the

fundamental group of a closed surface, then there exists no free group F such

that F̂ ∼= Γ̂.

Remark 4.6: Proposition 4.3 shows that if Γ is a finitely-generated, residually

finite group that is not free, but Γ̂ is a free profinite group, then d(Γ) > d̂(Γ̂).

In this context, it is worth noting that for an arbitrarily large integer d, there

exist residually finite hyperbolic groups Γ such that d(Γ) = d but d̂(Γ̂) = 2. To

construct such groups, one can follow the first steps of the main construction

in [11]. For each integer d ≥ 3 there exists a finitely-presented group Q with

d(Q) = d such that Q̂ = {1} and H2(Q,Z) = 0. The Rips construction provides

a short exact sequence 1 → N → Γ → Q → 1 such that Γ satisfies a strict small-

cancellation condition and N is a 2-generator group. Wise [56] proves that the

hyperbolic group Γ is the fundamental group of a compact non-positively curved

cube complex, and Agol [1] proves that such groups are linear, hence residually-

finite. It is shown in [11] that N̂ ∼= Γ̂, from which it follows that d̂(Γ̂) = 2. But

Γ maps onto Q, and therefore d(Γ) ≥ d.

4.2. The parity of virtual betti numbers.

Lemma 4.7: Let F be a free group of rank r ≥ 1. If Γ̂ ∼= F̂ , then for every

positive integer d there exists a subgroup Λ of index d in Γ such that b1(Λ) =
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d(r − 1) + 1. In particular, Γ has subgroups of finite index with odd first betti

number.

Proof. First, F has subgroups of every possible index, and every subgroup of

index d is free of rank d(r − 1) + 1. Next, by Corollary 2.9, for every subgroup

H < F of index d there is a subgroup Λ < Γ of index d such that Ĥ ∼= Λ̂, and

then by Lemma 2.11 we have b1(Λ) = b1(H) = d(r − 1) + 1.

The first betti number of the fundamental group of a closed orientable surface

is even, and any subgroup of finite index in such a group is again the funda-

mental group of a closed orientable surface. Thus Lemma 4.7 provides us with

a second proof that surface groups do not have the same profinite completions

as free groups. This argument can be extended to the fundamental groups of

compact Kähler manifolds. Recall that a smooth manifold X with a Riemann-

ian metric g, symplectic form ω, and complex structure J is said to be Kähler

if g(J(u), J(v)) = g(u, v) and g(Jp(u), v) = ω(u, v) for all p ∈ X and all tan-

gent vectors u, v ∈ Tp(X). Although every finitely-presented group occurs as

the fundamental group of a closed symplectic manifold and a closed complex

manifold, the Kähler condition imposes significant constraints (see [6]). For

example:

Proposition 4.8: If Γ is the fundamental group of a compact Kähler manifold,

then there exists no non-trivial free group F such that F̂ ∼= Γ̂.

Proof. Hodge theory implies that the torsion-free rank of the first homology

of a compact Kähler manifold is even (see [6], p. 7), and this is the first betti

number of its fundamental group Γ. A finite-sheeted covering of a compact

Kähler manifold is again a compact Kähler manifold, so the first betti number

of any subgroup of finite index in Γ is also even. By the preceding lemma, this

completes the proof.

4.3. Goodness and surface subgroups. Goodness was defined in Section

2.4. By taking Γ = S in the following proposition, we obtain a further proof

that a surface group cannot have the same profinite completion as a free group.

We shall then extend this result to (conjecturally all) residually free groups.

A group Γ is termed a Poincaré duality group over a field F (or PDd(F) for

short) if there is an integer d such that H∗(Γ;F) = H∗−d(Γ;F). The prototypes



20 M. R. BRIDSON, M.D.E. CONDER AND A.W. REID Isr. J. Math.

for such groups are the fundamental groups of closed aspherical manifolds. We

will write Fp for the field with p elements.

Proposition 4.9: Let Γ be a group that contains a subgroup S that is PDd(Fp)

for some d > 1 and some prime p. If S is good and Ŝ → Γ̂ is injective, then

there does not exist a free group L such that Γ̂ ∼= L̂.

Proof. Since free groups are good, Hq(L̂;Fp) = 0 for all q ≥ 2. Hence if Γ̂ were

isomorphic to L̂, then from Corollary 2.17 we would have H2(H ;Fp) = 0 for

all q ≥ 2 and all good subgroups H < Γ with Ĥ → Γ̂ injective. Now S is such

a group, but Hd(S;Fp) = H0(S;Fp) = Fp.

As noted earlier, it was established in [23] that surface groups are good. The

following lemma includes the case where Γ itself is a surface group.

Corollary 4.10: If Γ contains a surface group S, and Ŝ → Γ̂ is injective, then

Γ̂ is not isomorphic to the profinite completion of any free group.

A similar argument shows the following:

Lemma 4.11: If L is a non-abelian free group, then L̂ does not contain the

profinite completion of any surface group, nor that of any free abelian group of

rank greater than 1.

Remark 4.12: Note that L̂ does contain surface subgroups S of arbitrary large

genus (as shown in [10] for example) and free abelian subgroups of arbitrary

rank, but the natural map Ŝ → L̂ is never injective. The surface subgroup

examples of [10] are in fact dense in L̂.

4.4. Word hyperbolic groups. Next we single out a particular case of an

application of Proposition 4.9 that is worth recording. This result connects to

two well-known open problems about word hyperbolic groups, namely:

(A) Does every 1-ended word-hyperbolic group contain a surface subgroup?

(B) Is every word-hyperbolic group residually finite?

The first question, due to Gromov, was motivated by the case of hyperbolic

3-manifolds, and in this special case the question was settled recently by Kahn

and Markovic [27]. Indeed, given [27], a natural strengthening of (A) above is

to ask:
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(A′) Does every 1-ended word-hyperbolic group contain a quasi-convex sur-

face subgroup?

Theorem 4.13: Suppose that every 1-ended word-hyperbolic group is residu-

ally finite and contains a quasi-convex surface subgroup. Then there exist no

1-ended word-hyperbolic group Γ and free group F such that Γ̂ ∼= F̂ .

Proof. Assume the contrary, and let Γ be a counter-example, with Γ̂ ∼= F̂ for

some free group F . Let H be a quasi-convex surface subgroup of Γ. Note

that the finite-index subgroups of H are also quasi-convex in Γ. Under the

assumption that all 1-ended hyperbolic groups are residually finite, it is proved

in [2] that H and all its subgroups of finite index must be separable in Γ. Hence

by Lemma 2.7, the natural map Ĥ → H < Γ̂ is an isomorphism. But now

Proposition 4.9 yields a contradiction.

Corollary 4.14: Suppose that there exists a 1-ended word hyperbolic group

Γ with Γ̂ ∼= F̂ for some free group F . Then either there exists a word-hyperbolic

group that is not residually finite, or there exists a word-hyperbolic group that

does not contain a quasi-convex surface subgroup.

4.5. Residually free groups. A group Γ is called residually free if for

every non-trivial element g ∈ Γ there is a homomorphism φg from Γ to a free

group such that φg(g) �= 1, and Γ is fully residually free if for every finite

subset X ⊆ Γ there is a homomorphism from Γ to a free group that restricts to

an injection on X .

Following Sela [51], we use the term limit group to describe a finitely-

generated group Γ that is fully residually free. This defines a rich class of

groups, the prototypes for which are the free abelian groups and torsion-free

Fuchsian groups (with the exception of cocompact groups of Euler characteristic

−1). Indeed an arbitrary limit group can be built from these basic examples in

a simple hierarchical manner, by starting with a join of n-tori, closed surfaces

and compact graphs, and at each level attaching a torus along a coordinate

circle to the space at the previous level, or attaching a hyperbolic surface along

a boundary curve; one requires that the new space retracts onto the previous

level. The finitely-generated subgroups of the fundamental groups of these

spaces are precisely the limit groups; see [51, 28].
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Lemma 4.15: If Γ is finitely-generated and residually free, then either Γ is a

hyperbolic limit group, or else Γ has a free abelian subgroup of rank 2.

Proof. Every finitely-generated residually free group Γ is a subgroup of a direct

product of finitely many limit groups [8]. By projecting away from factors that

it intersects trivially, we may assume that Γ intersects each of the factors. Limit

groups are torsion-free, so if Γ intersects two factors then it contains a copy of

Z2. Otherwise, it is a subgroup of a limit group. Finitely-generated subgroups

of limit groups are themselves limit groups, and non-hyperbolic limit groups

contain Z2.

Wilton [55] proved that if Γ is a limit group and H is a finitely-generated

subgroup of Γ, then there is a subgroup Γ0 < Γ of finite index that contains

H and retracts onto it. If one assumes only that Γ is finitely-generated and

residually free, then the analogous statement is false in general. However, it is

shown in [13] that, in this generality, Γ does virtually retract onto any subgroup

that has a finite classifying space. Thus we obtain the following:

Theorem 4.16: If Γ is finitely-generated and residually free, then either Γ has

a subgroup of finite index that retracts onto a surface group (of genus g ≥ 1)

or else Γ is a hyperbolic limit group that does not contain a surface subgroup.

Theorem 4.17: Let Γ be a residually-free group and let F be a free group. If

Γ̂ ∼= F̂ , then either Γ ∼= F or else Γ is a hyperbolic limit group that does not

contain a surface subgroup.

Proof. It is easy to see that if S < Γ is a virtual retract then the natural map

Ŝ → S < Γ̂ is an isomorphism onto its image, so in the light of Theorem 4.16

we can apply Proposition 4.9.

Remark 4.18: It is believed by many that the second possibility stated in the

above theorem does not arise, but this remains unknown for the moment. Using

the hierarchical structure of limit groups described above, one sees that the

crucial case to consider is one where Γ is the fundamental group of a graph of

free groups with cyclic edge groups. There has been much recent work on the

existence of surface subgroups in such groups; see [14], [22], [30], and [29] for

example.
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Remark 4.19: In the preceding proof, we exploited the fact that free groups

and surface groups are good. The direct product of two good groups is again

good (see [23] Proposition 3.4), so Fk × Fk is good. Now consider the fibre

product P = {(x, y) | p(x) = p(y)} < Fk × Fk associated with an epimorphism

p : Fk → Q, where Q is a finitely-presented group with H2(Q,Z) = 0 that has

no non-trivial finite quotients. The inclusion u : P → Γ := Fk × Fk induces

an isomorphism û : P̂ → Γ̂ (see [11]). Taking coefficients in a finite module

M with trivial action, we find that H2(Γ̂,M) will be finitely-generated, since Γ

is good. But a simple spectral sequence calculation shows that in many cases

H2(P,M) is not finitely-generated (cf. [7]), and so P is not good. Thus we have

an example of a finitely-generated residually free group that is not good. In

contrast, all limit groups are good; see [23].

It follows that goodness is definitely a property of Γ and not of Γ̂: we have

P < Γ with P̂ ∼= Γ̂, but Γ is good while P is not.

5. Torsion in the profinite completions of Fuchsian groups

In this section we will consider the case of a non-elementary Fuchsian group Γ.

In the cocompact case, any such group Γ has a presentation of the form:

〈a1, b1, . . . , ag, bg, x1, . . . , xr | xmi

i = 1 (i = 1, . . . , r),

r∏
1

xi

g∏
1

[ak, bk] = 1〉.

The parameters appearing in the presentation (g;m1, . . . ,mr) constitute the

signature of Γ. The integers mi are the periods of Γ, and g is its genus.

Groups with signature (0; p, q, r) are generally referred to as (p, q, r)-triangle

groups. If the Fuchsian group is not cocompact, then it is a free product of

cyclic groups.

We write cf(Γ) to denote the set of conjugacy classes of maximal finite sub-

groups of a group Γ. Recall that a group Γ is called conjugacy separable if it

has the property that if the images of two elements of Γ are conjugate in every

finite quotient of G (equivalently, are conjugate in Γ̂), then those two elements

are conjugate in Γ.

Theorem 5.1: If Γ is a finitely-generated Fuchsian group, then the natural

inclusion Γ → Γ̂ induces a bijection cf(Γ) → cf(Γ̂). More precisely, every fi-

nite subgroup of Γ̂ is conjugate to a subgroup of Γ, and if two maximal finite

subgroups of Γ are conjugate in Γ̂ then they are already conjugate in Γ.
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Proof. The finite subgroups of Fuchsian groups are cyclic, so the injectivity of

cf(Γ) → cf(Γ̂) is a special case of the fact that finitely-generated Fuchsian groups

are conjugacy separable [53].

In order to prove surjectivity, we first suppose that Γ is not a triangle group.

In this case, Γ splits as an amalgamated free product Γ = A∗CB, where the non-

trivial groups A and B are free products of cyclic groups. By Bass–Serre theory,

the finite free factors of A and B are in bijection with the conjugacy classes of

maximal finite subgroups in Γ. Now by Corollary 2.20, we have Γ̂ ∼= Â �
̂C B̂

and by Theorem 2.18, every finite subgroup of Γ̂ is conjugate to a subgroup of

Â or B̂. Repeating this argument with A and B in place of Γ, we deduce that

every finite subgroup of Γ̂ is conjugate to a subgroup of the profinite completion

of one of the free factors of A or B. But each free factor Zi is cyclic, so Ẑi is

torsion-free (∼= Ẑ) if Zi is infinite, while Ẑi = Zi if Zi is finite. Thus every

maximal finite subgroup of Γ̂ is conjugate to one of the Zi.

It remains to prove surjectivity in the case where Γ is a hyperbolic triangle

group, say the (p, q, r)-triangle group. Let H be a maximal finite subgroup of

Γ̂. Since Γ̂ is residually finite, we can pass to a subgroup of arbitrarily large

index that contains H ; in particular, we can make the index greater than pqr.

Let Λ ⊂ Γ be the intersection of Γ with this subgroup. Then the index of Λ

in Γ is greater than pqr, so the rational Euler characteristic of Λ is less than

−2, which means that Λ is not a hyperbolic triangle group. Hence our previous

argument applies, and H is conjugate in Λ̂ to a finite subgroup H ′ of Λ. Since
H is maximal in Γ̂, it follows that this H ′ is maximal in Γ.

We can now use Theorem 5.1 to eliminate the latter case of Theorem 3.6.

Corollary 5.2: Let Γ be a finitely generated Fuchsian group. Then Γ̂ does

not contain a non-trivial finite normal subgroup.

Proof. Suppose N is a non-trivial finite normal subgroup of Γ̂. By Theorem

5.1, since every finite subgroup of Γ̂ is conjugate to a subgroup of Γ, N is a

subgroup of Γ. However, non-elementary Fuchsian groups do not contain finite,

non-trivial normal subgroups.

Also, note that Theorem 5.1 provides another proof of the following special

case of Corollary 2.16.

Corollary 5.3: If Γ is a torsion-free Fuchsian group, then Γ̂ is torsion-free.
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6. The Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1, re-stated below for con-

venience.

Theorem: Let Γ1 be a finitely-generated Fuchsian group and let Γ2 be a lattice

in a connected Lie group. If C(Γ1) = C(Γ2), then Γ1
∼= Γ2.

Proof of Theorem 1.1. By Theorem 3.6 and Corollary 5.2, we can now assume

that both Γ1 and Γ2 are Fuchsian.

Now suppose that Γ1 and Γ2 are torsion-free. In this case, each of Γ1 and Γ2 is

either a free group or a surface group — that is, isomorphic to the fundamental

group of a closed orientable surface of genus at least 2. We proved (three times)

in Section 4 that if Γ̂1
∼= Γ̂2 then both of Γ1 and Γ2 are free groups, or both are

surface groups. But the isomorphism type of a free group or a surface group Γ

is determined by the rank of its abelianisation, which by Corollary 2.11 is an

invariant of Γ̂. Hence the theorem holds in this case.

Next, we note that it cannot be true that Γ1 is cocompact and Γ2 is not. For if

this were the case, then we could pass to torsion-free subgroups of common finite

index that would still have isomorphic profinite completions (see Corollary 2.9),

which is impossible by the previous argument.

If neither Γ1 nor Γ2 is cocompact, then each is a free product of cyclic groups.

We know that b1(Γ1) = b1(Γ2), by Corollary 2.11, and so the number of infinite

cyclic factors in each product is the same. And by Theorem 5.1, the finite

cyclic factors, being in bijection with the conjugacy classes of maximal finite

subgroups, are also the same. Hence the theorem holds in this case too.

It only remains to consider the case where both Γ1 and Γ2 are cocompact

groups with torsion (by Corollary 5.3). The genus of Γi is determined by b1(Γi),

so Corollary 2.11 tells us that Γ1 and Γ2 are of the same genus. The periods of

Γi are the orders of representatives of the conjugacy classes of maximal finite

subgroups of Γi, and so by Proposition 5.1 these must also be the same for Γ1

and Γ2. Thus Γ1 and Γ2 have the same signature, and are therefore isomorphic.

This completes the proof of Theorem 1.1.

Remark 6.1: It is interesting to compare Theorem 1.1 with some of the findings

in [24]. Among other things, it is shown in [24, Theorem 4.1] that if Γ = A∗B is a

free product of finite groupsA and B, then among all finitely-generated virtually

free groups, Γ is determined by its profinite completion. Our Theorem 1.1 covers
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free products of finite cyclic groups with arbitrarily many factors. On the other

hand, examples are provided in [24] of finitely-generated virtually free groups

that are not determined by their profinite completions.

7. Distinguishing non-uniform arithmetic Kleinian groups

A non-uniform arithmetic lattice in PSL(2,C) is a discrete group commensu-

rable (up to conjugacy) with a Bianchi group PSL(2, Od), where Od is the ring

of integers in the quadratic imaginary number field Q(
√−d); see [38]. In this

section we prove Theorem 1.3, re-stated below for convenience:

Theorem: Let Γ1 be a non-uniform lattice in PSL(2,C), and let Γ2 be a non-

uniform irreducible arithmetic lattice in a semisimple Lie group G having trivial

centre and no compact factors. If C(Γ1) = C(Γ2) then G ∼= PSL(2,C). More-

over, if Γ1 is arithmetic then the family of all Γ2 with C(Γ1) = C(Γ2) divides

into finitely many commensurability classes.

After a series of reductions, we shall arrive at the case where Γ2 is a torsion-free

lattice in SO0(n, 1) or SU(m, 1). The peripheral subgroups of Γ2 are the

maximal subgroups consisting entirely of parabolic elements; they are the fun-

damental groups of the cusps of the locally symmetric space with fundamental

group Γ2. If Γ2 < SO0(n, 1) then these subgroups are virtually Zn−1, while

if Γ2 < SU(n, 1) they are commensurable with the integral Heisenberg group

H2m−1, which is a central extension of Z2m−2 by Z. We shall make use of the

following:

Lemma 7.1: Let Γ be a non-uniform arithmetic lattice in SO0(n, 1) or SU(m, 1)

and let D be a peripheral subgroup of Γ. Then every subgroup of D is separable

in Γ2, and D is good.

Proof. The first part of the lemma is due to McReynolds; see [40, Theorem 1.3

and Corollaries 4.1 and 4.2]. For the second part, it suffices to show that the

groups Zk andHk are good, because goodness is preserved by commensurability;

see [23, Lemma 10]. As noted above, both of these groups are extensions of a

free abelian group by Z, and so they are good by Lemma 2.12.

We will also use this theorem, which was proved in [16, Corollary 1.2]:
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Theorem 7.2: Let N be any positive integer. There are only finitely many

commensurability classes of non-uniform arithmetic lattices in PSL(2,C) that

contain a lattice Γ with the property that H3/Γ has at most N cusps.

Proof of Theorem 1.3. As before, Theorem 2.5 implies that Γ̂1
∼= Γ̂2. First note

that if necessary we can replace Γ1 and Γ2 by subgroups of finite index so as

to assume that they are torsion-free. Indeed, if we first pass to a finite index

subgroup of Γ1 (which we will continue to refer to as Γ1) to arrange that Γ1 is

torsion-free, then Corollary 2.9 will provide us with a subgroup of finite index

in Γ2 (which again we will continue to refer to as Γ2) so that Γ̂1
∼= Γ̂2. At

this point, if Γ2 is not torsion-free, then we can pass to a further subgroup of

finite index in Γ2 that is torsion-free, and use Corollary 2.9 again to pass to the

corresponding subgroup of Γ1.

A standard Alexander–Lefschetz duality argument implies that b1(Γ1) is pos-

itive, so b1(Γ2) is positive too, by Corollary 2.11. Given this, it follows that Γ2

cannot be a lattice in a group of real rank at least 2, because the Margulis nor-

mal subgroup theorem [39] implies that such groups have finite abelianisation

(note that this is where irreducibility is invoked). Similarly, Γ2 cannot be a lat-

tice in a rank 1 Lie group with property (T), and this rules out Sp(n, 1) (n ≥ 2)

and the isometry group of the Cayley hyperbolic plane. The only remaining

possibilities (up to finite index) are (P)SO0(n, 1) and (P)SU(n, 1).

We dealt with SO0(2, 1) = PSL(2,R) in Theorem 1.1. Hence it remains to

rule out SO0(n, 1) for n ≥ 4 and SU(m, 1) form ≥ 2. In these cases, as discussed

above, we have a peripheral subgroup D < Γ2 that is good, with the property

that the closure of its image in Γ̂2 is isomorphic to D̂. But D = Zn−1 or

H2m−1 is the fundamental group of a closed, orientable manifold, of dimension

n − 1 ≥ 3 in the former case, and dimension 2m − 1 ≥ 3 in the latter. As

such, D satisfies Poincaré duality with coefficients in an arbitrary finite field.

It therefore follows from Corollary 2.17 that Γ̂2 cannot be isomorphic to the

profinite completion of a good group of cohomological dimension less than 3. On

the other hand, Γ1 is such a group: it has cohomological dimension 2 because it

is the fundamental group of an aspherical 3-manifold with non-empty boundary,

and it is good by Theorem 2.13. At this point, we have proved that Γ2 is a

lattice in SO0(3, 1) ∼= PSL(2,C).

To complete the proof of Theorem 1.3, we suppose now that Γ1 and Γ2

are non-uniform arithmetic lattices in PSL(2,C) and that b1(Γ1) = n. Then
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b1(Γ2) = n by Corollary 2.11, and so by a standard fact about 3-manifold groups

with torus boundary components, the number of cusps of H3/Γ2 is at most n.

Application of Theorem 7.2 now completes the proof of Theorem 1.3.

If we drop the assumption of irreducibility of the lattice Γ2 in Theorem 1.3,

then some observations can be made, but at this stage we are unable to reach

the same conclusion. For instance, at present we are unable to answer the

following question.

Question 7.3: Let Γ1 be a non-uniform lattice in PSL(2,C), and let Γ2 = F ×Δ

where F is a free group of rank r > 1 and Δ is a cocompact lattice in SU(n, 1).

Is it possible that Γ̂1
∼= Γ̂2?

8. Finite quotients of triangle groups

In this section we give a more direct proof of the fact that triangle groups are

distinguished among themselves by their finite quotients, and give some explicit

quotients that distinguish non-triangle groups from triangle groups.

Theorem 8.1: If Γ and Σ are triangle groups for which C(Γ) = C(Σ), then
Γ ∼= Σ.

We will use the notation Δ(r, s, t) = 〈x, y, z |xyz = xr = ys = zt = 1 〉 for

the (r, s, t) triangle group. Each triangle group is called spherical, Euclidean

or hyperbolic according to whether the quantity 1/r + 1/s + 1/t is greater

than, equal to or less than 1, respectively. Note that Δ(r, s, t) is isomorphic to

Δ(u, v, w) whenever the triple (u, v, w) is a permutation of the triple (r, s, t),

and hence up to isomorphism we may assume that r ≤ s ≤ t.

The spherical triangle groups are Δ(1, n, n), Δ(2, 2, n), Δ(2, 3, 3), Δ(2, 3, 4)

and Δ(2, 3, 5), which are isomorphic to Cn (cyclic), Dn (dihedral of order 2n),

A4, S4 and A5, respectively. The Euclidean triangle groups are Δ(2, 3, 6),

Δ(2, 4, 4) and Δ(3, 3, 3), each of which is an extension of a free abelian group

of rank 2 by a cyclic group Ct (with t = 6, 4 and 3, respectively). In particular,

the spherical triangle groups are finite, while the Euclidean triangle groups are

infinite but soluble. In contrast, all hyperbolic triangle groups are infinite but

insoluble. See [18] for further details.

The latter categorisation makes the spherical and Euclidean triangle groups

easy to distinguish from others by their finite quotients, and so we will restrict
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our attention to the hyperbolic ones, which are the Fuchsian groups with signa-

ture (0; r, s, t) where 1/r+1/s+1/t < 1. The most famous of these is Δ(2, 3, 7),

as it gives the largest value of 1/r + 1/s + 1/t less than 1, and its non-trivial

quotients are the Hurwitz groups (see [17]).

We will define a finite group G to be (r, s, t)-generated if G can be generated

by elements a, b and c of (precise) orders r, s and t such that abc = 1. For

any hyperbolic triple (r, s, t), the set of (r, s, t)-generated groups is non-empty,

by residual finiteness of Δ(r, s, t), but in most cases Δ(r, s, t) can also have

‘non-smooth’ quotients, in which the orders of the generators are not preserved.

The following theorem is a direct consequence of observations made by

Macbeath [37] on (r, s, t)-generation of the groups PSL(2, q), and will be critical

to our proof of Theorem 8.1:

Theorem 8.2: Let (r, s, t) be any hyperbolic triple other than (2, 5, 5), (3, 4, 4),

(3, 3, 5), (3, 5, 5) or (5, 5, 5), and let p be any prime. If pf is the smallest

power of p for which PSL(2, pf) contains elements of orders r, s and t, then

either PSL(2, pf) is (r, s, t)-generated, or f is even and PGL(2, pf/2) is (r, s, t)-

generated. In particular, PSL(2, p) itself is (r, s, t)-generated whenever it con-

tains elements of orders r, s and t.

The triples (2, 5, 5), (3, 4, 4), (3, 3, 5), (3, 5, 5) and (5, 5, 5), together with the

spherical triples and the triple (3, 3, 3), were called exceptional by Macbeath.

Note that the group A5
∼= PSL(2, 5) is (2, 5, 5)-, (3, 3, 5)-, (3, 5, 5)- and (5, 5, 5)-

generated, while the group S4 is (3, 4, 4)-generated.

We will also make use of the fact that if the finite groupG is (r, s, t)-generated,

then G is a group of conformal automorphisms of a compact Riemann surface

S of genus g, where

2− 2g = |G|
(
1

r
+

1

s
+

1

t
− 1

)

as a consequence of the Riemann–Hurwitz formula. The kernel K of the cor-

responding smooth homomorphism from Δ(r, s, t) onto G is the fundamental

group of S, and is itself a Fuchsian group, with signature (2g;−). In particu-

lar, K is generated by 2g elements a1, b1, . . . , ag, bg subject to a single defining

relation [a1, b1] . . . [ag, bg] = 1. Now for any positive integer n, the subgroup

K ′K(n) generated by the derived subgroup K ′ and the nth powers of all ele-

ments ofK is characteristic inK and hence normal in Δ(r, s, t), and the quotient
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Δ(r, s, t)/K ′K(n) is then isomorphic to an extension by G of an abelian sub-

group K/K ′K(n) of rank 2g and exponent n (and order n2g). Thus for any such

G, we can construct an infinite family of smooth quotients of Δ(r, s, t), to help

distinguish Δ(r, s, t) from other triangle groups.

We can now proceed to prove Theorem 8.1. To do that, we will suppose that

Γ = Δ(r, s, t) and Σ = Δ(u, v, w), where (r, s, t) and (u, v, w) are hyperbolic

triples with r ≤ s ≤ t and u ≤ v ≤ w, and that C(Γ) = C(Σ). We will prove in

steps that (r, s, t) = (u, v, w).

Lemma 8.3:

(a) gcd(r, s, t) = gcd(u, v, w), and (b)
rst

lcm(r, s, t)
=

uvw

lcm(u, v, w)
, and also

(c) lcm(gcd(r, s), gcd(r, t), gcd(s, t)) = lcm(gcd(u, v), gcd(u,w), gcd(v, w)).

Proof. The abelianisation of Γ = Δ(r, s, t) is Cd×Ce, where d = gcd(r, s, t) and

de = rst/lcm(r, s, t) and e = lcm(gcd(r, s), gcd(r, t), gcd(s, t)), and similarly for

Σ = Δ(u, v, w). Since Γ and Σ have the same finite abelian quotients, the

results follow.

Lemma 8.4: Γ and Σ have the same set of (r, s, t)-generated quotients, and the

same set of (u, v, w)-generated quotients. Moreover, 1
r + 1

s + 1
t = 1

u + 1
v + 1

w .

Proof. The first two assertions are easy, since Γ and Σ have exactly the same

finite quotients. For the last part, without loss of generality we may suppose
1
r + 1

s + 1
t ≤ 1

u + 1
v + 1

w . Now let G be any (r, s, t)-generated quotient of

Γ. Then G is also a finite quotient of Σ. Next let u′, v′ and w′ be divisors

of u, v and w (respectively) such that G is (u′, v′, w′)-generated, and such that
1
u′ +

1
v′+

1
w′ is as small as possible subject to those conditions. Then in particular,

1
u′ +

1
v′ +

1
w′ ≥ 1

u + 1
v + 1

w ≥ 1
r + 1

s + 1
t .

For any n coprime to |G|, the largest quotient of Γ that is an extension of an

abelian group of exponent n by G has order n2g|G|, where 2− 2g = |G|(1r + 1
s +

1
t − 1). On the other hand, the largest quotient of Σ that is an extension of an

abelian group of exponent n by G must be a smooth quotient of the (u′, v′, w′)
triangle group and hence has order n2g′ |G|, where 2−2g′ = |G|( 1

u′ +
1
v′ +

1
w′ −1).

Since Γ and Σ have the same quotients, it follows that g′ = g, and so 1
u′ +

1
v′ +

1
w′ =

1
r +

1
s +

1
t . The inequality obtained at the end of the first paragraph

now gives 1
u + 1

v + 1
w = 1

r + 1
s + 1

t . It also gives 1
u′ +

1
v′ +

1
w′ =

1
u + 1

v + 1
w , so

(u′, v′, w′) = (u, v, w), and hence G is (u, v, w)-generated.
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In particular, every (r, s, t)-generated finite group is also (u, v, w)-generated.

The converse holds by the same argument, with the roles of (r, s, t) and (u, v, w)

reversed.

Lemma 8.5: rst = uvw, and lcm(r, s, t) = lcm(u, v, w), and rs + rt + st =

uv + uw + vw.

Proof. For any prime divisor p of rst, let pα, pβ and pγ be the largest powers

of p dividing r, s and t, ordered in such a way that α ≤ β ≤ γ. Then pα

must be the largest power of p dividing gcd(r, s, t), while pβ is the largest power

of p dividing lcm(gcd(r, s), gcd(r, t), gcd(s, t)), and pγ is the largest power of p

dividing lcm(r, s, t). Also pα+β+γ is the largest power of p dividing rst, and so

pα+β is the largest power of p dividing rst
lcm(r,s,t) . Furthermore, either β = γ, or

pγ is the largest power of p dividing the denominator of 1
r + 1

s + 1
t = rs+rt+st

rst

when the latter is expressed in reduced form. (To see the last part, note that

rs+ rt + st is divisible by pα+β but not pα+β+1 when β < γ.)

Hence the largest powers of p dividing r,s and t are determined by the quan-

tities gcd(r, s, t), rst
lcm(r,s,t) and 1

r + 1
s + 1

t . By Lemmas 8.3 and 8.4, these three

quantities are the same for the triple (u, v, w), and hence the largest powers of

p dividing u, v and w are equal to those for r,s and t, in some order. As this

holds for every prime p, the stated equalities follow easily.

We now deal with many special cases of Theorem 8.1.

Proposition 8.6: The conclusion of Theorem 8.1 holds whenever

(a) (r, s, t) is one of the exceptional triples (2, 5, 5), (3, 4, 4), (3, 3, 5), (3, 5, 5)

or (5, 5, 5), or

(b) the triples (r, s, t) and (u, v, w) have an entry in common, or

(c) two or more of r, s and t are even.

Proof. (a) This follows from Lemma 8.5, since (2, 5, 5) is the only hyperbolic

triple with rst = 50, and (3, 4, 4) is the only hyperbolic triple with rst = 48,

lcm(r, s, t) = 12 and gcd(r, s, t) = 1, and (3, 3, 5) is the only hyperbolic triple

with rst = 45, and (3, 5, 5) is the only hyperbolic triple with rst = 75, and

finally, (5, 5, 5) is the only hyperbolic triple with rst = 125.

(b) Suppose for example that t = w. Then rs = rst
t = uvw

w = uv, and then

since rs + (r + s)t = rs + rt + st = rst(1r + 1
s + 1

t ) = uvw( 1u + 1
v + 1

w ) =

uv + uw + vw = uv + (u + v)w, we find that r + s = u + v. It is now an
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easy exercise to deduce from rs = uv and r + s = u + v that {r, s} = {u, v},
and hence (r, s, t) = (u, v, w). The same argument works for all other possible

coincidences between entries of (r, s, t) and (u, v, w).

(c) Suppose two or more of r, s and t are even. Then lcm(gcd(r, s), gcd(r, t),

gcd(s, t)) is even, and therefore so is lcm(gcd(u, v), gcd(u,w), gcd(v, w)), and

hence two or more of u, v and w are even. Also if all three of r, s and t are

even, then gcd(r, s, t) is even, hence so is gcd(u, v, w), and therefore all three of

u, v and w are even. Now let m = max(t, w) if all three of r, s and t are even,

or otherwise let m be the largest odd integer among r, s, t, u, v and w. Then the

dihedral group Dm of order 2m, which is (2, 2,m)-generated, is a quotient of

Γ or Σ, and hence must also be a quotient of the other. By definition of m, it

follows that m appears in both triples (r, s, t) and (u, v, w), and hence by part

(b), we have (r, s, t) = (u, v, w).

To continue with the proof, we require some information about the groups

PSL(2, p), for p prime. When p is odd, the orders of the elements of PSL(2, p)

are precisely the divisors of p, p−1
2 and p+1

2 (see [54, Chapter 3.6] for example).

Note that the integers p, p−1
2 and p+1

2 are pairwise coprime, so the order of any

non-trivial element of PSL(2, p) divides exactly one of them.

Now define the L2-set of a triple (k, l,m) to be the (unique) set of pairwise

coprime positive integers whose least common multiple is the same as that of

{k, l,m} and which has the property that each of k, l and m divides exactly one

member of that set. For example, if k, l and m are themselves pairwise coprime,

then the L2-set of the triple (k, l,m) is just {k, l,m}, while if gcd(k, lm) = 1

but gcd(l,m) > 1 then its L2-set is {k, lcm(l,m))}, and if gcd(k, l) > 1 and

gcd(l,m) > 1 then its L2-set is {lcm(k, l,m))}. Note that every maximal prime-

power divisor of lcm(k, l,m) divides exactly one member of the L2-set.

It follows from Macbeath’s theorem (Theorem 8.2) that if the triple (k, l,m)

is non-exceptional, then the group PSL(2, p) is (k, l,m)-generated if and only

if each member of the L2-set of the triple (k, l,m) is equal to p or a divisor of
p±1
2 . This enables us to prove the following:

Lemma 8.7: If the triples (r, s, t) and (u, v, w) are non-exceptional, then they

have the same L2-set.
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Proof. Suppose that the L2-sets of (r, s, t) and (u, v, w) are distinct. Then, by

swapping (r, s, t) and (u, v, w) if necessary, we see that there must exist maxi-

mal prime-power divisors q1 and q2 of lcm(r, s, t) = lcm(u, v, w) such that q1q2

divides one member of the L2-set of (u, v, w), but q1 and q2 divide different

members of the L2-set of (r, s, t), say m1 and m2. Now by the Chinese Remain-

der Theorem and Dirichlet’s theorem on primes in arithmetic progression, there

are infinitely many (odd) primes p such that p ≡ 1 mod 2m1 while p ≡ −1 mod

2m2 and p ≡ −1 mod 2n for any other member n of the L2-set of (r, s, t). For

any such prime p, the group PSL(2, p) is (r, s, t)-generated, since p ≡ ±1 mod

2m for every member m of the L2-set of (r, s, t). On the other hand, PSL(2, p)

has no element of order q1q2, since q1 divides p−1
2 while q2 divides p+1

2 , and

therefore PSL(2, p) cannot be (u, v, w)-generated, contradiction.

Corollary 8.8: If one of r, s, t is coprime to each of the other two, then

(r, s, t) = (u, v, w). In particular, if r, s and t are pairwise coprime, or equiva-

lently, if the (r, s, t) triangle group Γ is perfect, then (r, s, t) = (u, v, w).

Proof. Clearly we need only prove the first assertion, and then the rest follows.

So suppose that (r, s, t) �= (u, v, w), and also, say, that gcd(r, st) = 1. (The

other two cases are similar.) Now uvw = rst by Lemma 8.5, and each of u, v

and w is distinct from r, s and t, by Proposition 8.6(b). Hence at least one of

u, v and w divides neither r nor st, and so must be of the form cd, where c and

d are non-trivial divisors of r and st respectively. It follows that the L2-sets of

(r, s, t) and (u, v, w) are distinct, contradiction.

The next step requires a further general observation about L2-sets.

Lemma 8.9: For every triple (k, l,m) such that k, l,m > 1 and at most one

of k, l,m is even, and for every integer q > 3 that does not divide any of the

members of the L2-set of (k, l,m), there exists a finite quotient G of the (k, l,m)

triangle group such that G has no element of order q.

Proof. This is easy to see for the exceptional triples: we can take G = A4

for (k, l,m) = (2, 3, 3), or G = S4 for (k, l,m) = (2, 3, 4), or G = A5 for

(k, l,m) = (2, 3, 5), (2, 5, 5), (3, 3, 5), (3, 5, 5) or (5, 5, 5) (and also G = C3 × C3

for (k, l,m) = (3, 3, 3)). For any non-exceptional triple (k, l,m), we can take

G = PSL(2, p), where p is a prime such that p ≡ ±1 modulo twice each of the

members of the L2-set of (k, l,m), but p �≡ ±1 modulo 2q.
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Corollary 8.10: The integers u, v and w do not have non-trivial divisors u′, v′

and w′ such that one of r, s and t is coprime to each of 6, u′, v′ and w′.

Proof. Suppose to the contrary that q ∈ {r, s, t} is coprime to 6, u′, v′ and w′.
Then there exists a finite quotient G of the triangle group Δ(u′, v′, w′) such

that G has no non-trivial element of order dividing q. But then this group G is

a quotient of Σ = Δ(u, v, w) but not of Γ = Δ(r, s, t), contradiction.

(As an illustration, consider the triples (13, 15, 117) and (9, 39, 65), which

satisfy the conclusions of Lemmas 8.3, 8.4 and 8.5. We can ‘suppress’ q = 13

by taking (u′, v′, w′) = (9, 3, 5), and then find that PSL(2, 19) is a quotient of

Δ(9, 39, 65) but not of Δ(13, 15, 117).)

The observations we have made so far are sufficient to distinguish most tri-

angle groups from each other, using just abelian, dihedral and 2-dimensional

projective quotients. But these are not completely sufficient. For example,

consider the triples (15, 42, 63) and (21, 21, 90), which satisfy the conclusions of

Lemmas 8.3, 8.4 and 8.5, but do not satisfy the hypothesis of Corollary 8.8 and

do not admit the kinds of divisors met in Corollary 8.10. For such triples, we

need to consider further types of quotients, and it turns out that direct prod-

ucts give us almost all we need to complete a proof of the theorem. We will

use the easily proved fact that if G and H are finite groups that are (r1, s1, t1)-

and (r2, s2, t2)-generated, say by element triples (x1, y1, z1) and (x2, y2, z2) re-

spectively, and we let r = lcm(r1, r2), s = lcm(s1, s2) and t = lcm(t1, t2), then

some subgroup of the direct product G ×H is (r, s, t)-generated, by the triple

((x1, x2), (y1, y2), (z1, z2)).

Lemma 8.11: If q1 and q2 are coprime positive integers, each greater than 3,

such that q1q2 divides at least one of u, v and w, then either q1q2 divides at

least one of r, s and t, or otherwise one of r, s and t is prime and equal to q1 or

q2.

Proof. Suppose q1q2 divides at least one of u, v and w, but divides none of r, s

and t. Choose non-trivial divisors r1 and r2 of r, and non-trivial divisors s1 and

s2 of s, and non-trivial divisors t1 and t2 of t, as large as possible, such that

(i) r = lcm(r1, r2), s = lcm(s1, s2), and t = lcm(t1, t2),

(ii) each of r1, s1 and t1 is coprime to q1 to q2, with at least one being

coprime to q1 and at least one being coprime to q2, and
(iii) no member of the L2-set of (r2, s2, t2) is divisible by q1 or q2.
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It is an easy exercise to see that such a choice is always possible. For example,

write lcm(r, s, t) as m1m2, where gcd(m1,m2) = 1 and q1 divides m1 while q2

divides m2. If q1 divides r, then take r1 = gcd(r,m1), and take r2 as gcd(r,m2)

if the latter is positive, or the largest divisor of r not divisible by q1 if r divides

m1. Alternatively, if q2 divides r, then take r1 = gcd(r,m2), and take r2 as

gcd(r,m1) if the latter is positive, or the largest divisor of r not divisible by q2 if

r divides m2. If neither q1 nor q2 divides r, then take r1 and r2 to be gcd(r,m1)

and gcd(r,m2) (in either order) if these are both positive, or r1 = r2 = r if r

divides m1 or m2. Then make the analogous choices for s1 and s2, and similarly

for t1 and t2.

With ri, si and ti chosen this way, it is not difficult to see that (r1, s1, t1)

is non-exceptional, and more importantly, there exists some prime p for which

PSL(2, p) is (r1, s1, t1)-generated but has no element of order q1c with

gcd(c, q2) > 1 or order q2d with gcd(d, q1) > 1. (Hence in particular, PSL(2, p)

has no element of order q1q2.)

Now if the triple (r2, s2, t2) consists of integers greater than 1, let G be any

finite group that is (r2, s2, t2)-generated but has no element of order divisible by

q1 or q2. Then some subgroup of the direct product PSL(2, p1) ×G is (r, s, t)-

generated, but has no element of order q1q2, and hence cannot be (u, v, w)-

generated, contradiction. Consequently, at least one of r2, s2 or t2 is 1, and so

(by our choice of ri, si and ti) at least one of r, s and t must be equal to q1 or

q2, and be prime.

We now have enough to prove the main theorem.

Proof of Theorem 8.1. Assume the theorem is false, so that Γ = Δ(r, s, t) and

Σ = Δ(u, v, w) have the same finite quotients, but (r, s, t) �= (u, v, w).

Consider the largest of the six integers r, s, t, u, v and w. By swapping the roles

of (r, s, t) and (u, v, w) if necessary, we may assume thatw = max{r, s, t, u, v, w}.
Then by Proposition 8.6(b), we know that w is greater than each of r, s and t

(and in particular, w cannot divide r, s or t).

If w is a prime-power, then w must divide lcm(r, s, t) = lcm(u, v, w) and

so divides at least one of r, s or t, contradiction. Thus w is composite, say

w = q1q2, with gcd(q1, q2) = 1 and 1 < q1 < q2 < w. Moreover, q1q2 = w

divides none of r, s and t. Hence by Lemma 8.11 and some elementary number

theory, we find that one of the following must hold:
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(a) q1 = 2 and q2 is an odd prime-power,

(b) q1 = 3 and q2 is a prime-power (not divisible by 3),

(c) one of q1 and q2 is prime and equal to one (or more) of r, s and t, and

the other is a prime-power, or
(d) w = 6p where p is a prime greater than 3, and p is equal to one (or

more) of r, s and t.

We will eliminate each of these four cases in turn.

Case (a): Here we can write q2 = pk where p is an odd prime. Then since pk

divides lcm(u, v, w) = lcm(r, s, t), we know that pk divides at least one of r, s

and t, and then since max{r, s, t} < w = 2pk, it follows that pk is equal to at

least one of r, s and t. Similarly, another one of r, s and t is even. Next, by the

argument used in the proof of Lemma 8.5, we can write {r, s, t} = {2bpi, cpj, pk}
and {u, v, w} = {dpi, epj, 2pk}, where b, c, d and e are positive integers coprime

to p. Note also that bc = de since rst = uvw, and that i < k and j ≤ k since

max{r, s, t} < w = 2pk.

Now rs + rt + st = 2bcpi+j + 2bpi+k + cpj+k while uv + uw + vw =

depi+j +2dpi+k+2epj+k, and since these are equal by Lemma 8.5, we find that

2bc + 2bpk−j + cpk−i = de + 2dpk−j + 2epk−i. Hence if j < k then p divides

2bc − de = 2bc − bc = bc, which is impossible, and therefore j = k. In turn,

this forces c = 1 (because cpk = cpj ≤ max{r, s, t} < w = 2pk) and then e = 2

(because pk cannot lie in both {r, s, t} and {u, v, w}, by Proposition 8.6(b)), but

that is impossible, because at most one of u, v, w is even (by Proposition 8.6(c)).

Case (b): As in case (a), we can write q2 = pk where p is prime, and this time

we deduce that at least one of r, s and t is equal to pk or 2pk.

First, suppose that pk ∈ {r, s, t}. Then p �= 2, for otherwise the fact that at

most one of r, s and t is even would imply that pk is coprime to the other two

entries of the triple (r, s, t), which is impossible by Corollary 8.8. Thus p ≥ 5.

Next, as in case (a), we can write {r, s, t} = {3bpi, cpj, pk} and {u, v, w} =

{dpi, epj , 3pk}, where b, c, d and e are positive integers coprime to p, with bc =

de, and i < k while j ≤ k. Equating rs + rt+ st with uv + uw + vw and then

dividing by pi+j gives 3bc+ 3bpk−j + cpk−i = de+ 3dpk−j + 3epk−i.

If j < k, then p divides 3bc− de = 2bc, which is impossible, so j = k. This

further implies that c = 1 or 2 and e = 2 or 3 and c �= e, by Proposition 8.6(b)

and the maximality of w = 3pk. Also d = 1, or else we could divide through by

powers of p and apply Corollary 8.10. Hence in particular, bc = e. Now if c = 2
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then e = 2 = c, contradiction, so c = 1, and b = e ∈ {2, 3}. If b = 2, however,

then comparison of rs+ rt+ st with uv+ uw+ vw gives 12+ pk−i = 5+ 6pk−i

and so 5pk−i = 7, which is impossible, and on the other hand, if b = 3, then

lcm(r, s, t) = lcm(9pi, pk, pk) = 9pk while lcm(u, v, w) = lcm(pi, 3pk, 3pk) =

3pk, another contradiction.

Thus pk �∈ {r, s, t}, and it follows that one of r, s, t is equal to 2pk. This time

we can write {r, s, t} = {3bpi, cpj , 2pk} and {u, v, w} = {dpi, epj, 3pk}, where
b, c, d and e are positive integers coprime to p, with 2bc = de, and again i < k

while j ≤ k. Equating rs+ rt+st with uv+uw+vw and dividing by pi+j gives

3bc+ 6bpk−j + 2cpk−i = de+ 3dpk−j + 3epk−i, and hence if j < k we find that

p divides 3bc− de = 3bc− 2bc = bc, contradiction. Thus j = k. Now c ≤ 2 (by

maximality of w = 3pk), but on the other hand, c �= 1 since pk �∈ {r, s, t}, and
c �= 2 since at most one of r, s, t can be even, so again we reach a contradiction.

Case (c): Here each qi is greater than 3, for otherwise case (a) or (b) applies,

and so each qi is coprime to 6.

If qi is prime and lies in {r, s, t}, then divide each of u, v, w by the highest

power of qi possible, to obtain a triple (u′, v′, w′) of integers each of which is

coprime to qi. Then by Corollary 8.10, at least one of these integers must be 1,

so at least one of u, v and w is a power of qi. By Proposition 8.6(b), however,

none of them can equal qi, so at least one is divisible by qi
2. On the other hand,

none of them is divisible by q2
2, since q2

2 > q1q2 = w = max{r, s, t, u, v, w},
and therefore i = 1. Thus q1 is prime and lies in {r, s, t}, and at least one of

u, v, w is divisible by q1
2.

Let q γ
1 be the largest power of q1 that equals one or more of u, v, w. Then

γ > 1, and q γ
1 divides one or more of r, s, t, since lcm(r, s, t) = lcm(u, v, w).

Similarly q2 divides one or more of r, s, t, but none of r, s, t is divisible by

q γ
1 q2 since q γ

1 q2 ≥ q1q2 = w. Thus we can write {r, s, t} = {q1, bq γ
1 , cq2} and

{u, v, w} = {q γ
1 , d, q1q2}, where b, c and d are positive integers with b coprime

to q1, and 1 < b < q2 and c < q1 (by Proposition 8.6(b) and maximality of w),

and d = bc (since rst = uvw). In particular, each of b, c and d is coprime to q1.

Now if b > 3, then since γ > 1 we find that bq γ
1 divides none of {q γ

1 , d, q1q2} =

{u, v, w}, and then Lemma 8.11 gives a contradiction. Hence b = 2 or 3. On the

other hand, comparing rs+rt+st with uv+uw+vw gives bq γ
1 +cq2+bcq γ−1

1 q2 =

dq γ−1
1 +q γ

1 q2+dq2, from which it follows that q1 divides dq2−cq2 = bcq2−cq2 =

(b − 1)cq2, which is impossible (since q1 > 3 ≥ b).
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Case (d): In this final case, we can divide each of u, v, w by the highest power

of p possible, to obtain a triple (u′, v′, w′) of integers each of which is coprime

to p. By Corollary 8.10, at least one of u′, v′, w′ must be 1, so at least one

of u, v, w is a power of p. On the other hand, by Proposition 8.6(b), none of

u, v, w can equal p, so at least one of u, v, w is divisible by p2. Therefore p2

must divide at least one of r, s, t (since lcm(r, s, t) = lcm(u, v, w)), and again by

Proposition 8.6(b), it follows that at least one of r, s, t, u, v, w is divisible by kp2

for some k ≥ 2. This, however, is impossible because kp3 ≥ 2p2 > 6p = w.

We acknowledge the use of Magma [9] in helping us find a way to this

proof. Just as a matter of of interest, we would like to point out that there

are 3581 pairs of distinct triples {(r, s, t), (u, v, w)} with 2 ≤ r ≤ s ≤ t and

2 ≤ u ≤ v ≤ w and rst = uvw ≤ 12,000,000, satisfying the conclusions of

Lemmas 8.3 and 8.5, with at most one of r, s, t being even. About half of these

3581 pairs can be eliminated using Corollary 8.8 (the ‘coprime’ test), and then

most of the remaining pairs can be ruled out by Lemma 8.11 (using direct

products). Just one such small pair cannot be ruled out in this way, namely

{(17, 162, 459), (27, 34, 1377)}), but this can be eliminated by Corollary 8.10

(since r = 17 is coprime to 6, 27, 34/17 and 1377/17).
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