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Abstract. We enumerate all the principal congruence link complements in S3, thereby answering

a question of W. Thurston.

1. Introduction

Let d be a square-free positive integer, let Od denote the ring of integers in Q(
√
−d), and hd

denote the class number of Q(
√
−d).

Setting Qd = H3/PSL(2, Od) to be the Bianchi orbifold, it is well-known that Qd is a finite volume
hyperbolic orbifold with hd cusps (see [MR03] Chapters 8 and 9 for example). A non-compact finite
volume hyperbolic 3-manifold X is called arithmetic if X and Qd are commensurable, that is to say
they share a common finite sheeted cover (see [MR03] Chapter 8 for more on this).

An important class of arithmetic 3-manifolds consists of the congruence manifolds. Recall that a
subgroup Γ < PSL(2, Od) is called a congruence subgroup if there exists an ideal I ⊂ Od so that Γ
contains the principal congruence group:

Γ(I) = ker{PSL(2, Od)→ PSL(2, Od/I)},

where PSL(2, Od/I) = SL(2, Od/I)/{±Id}. The largest ideal I for which Γ(I) < Γ is called the level
of Γ. A manifold M is called congruence (resp. principal congruence) if M is isometric to a manifold
H3/Γ where Γ(I) < Γ < PSL(2, Od) (resp. Γ = Γ(I)) for some ideal I.

In an email to the first and third authors in 2009, W. Thurston asked the following question about
principal congruence link complements:

“Although there are infinitely many arithmetic link complements, there are only finitely many that
come from principal congruence subgroups. Some of the examples known seem to be among the
most general (given their volume) for producing lots of exceptional manifolds by Dehn filling, so I’m
curious about the complete list.”

In this note, we enumerate all the principal congruence link complements in S3, together with their
levels. Our main result is the following:

Theorem 1.1. The following list of 48 pairs (d, I) describes all principal congruence subgroups
Γ(I) < PSL(2, Od) such that H3/Γ(I) is a link complement in S3:

(1) d = 1: I = 〈 2 〉, 〈 2± i 〉, 〈 (1± i)3 〉, 〈 3 〉, 〈 3± i 〉, 〈 3± 2i 〉, 〈 4± i 〉.
(2) d = 2: I = 〈 1±

√
−2 〉, 〈 2 〉, 〈 2±

√
−2 〉, 〈 1± 2

√
−2 〉, 〈 3±

√
−2 〉.

(3) d = 3: I = 〈 2 〉, 〈 3 〉, 〈 (5 ±
√
−3)/2 〉, 〈 3 ±

√
−3 〉, 〈 (7 ±

√
−3)/2 〉, 〈 4 ±

√
−3 〉,

〈 (9±
√
−3)/2 〉.

(4) d = 5: I = 〈 3, (1±
√
−5) 〉.
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(5) d = 7: I = 〈 (1±
√
−7)/2 〉, 〈 2 〉, 〈 (3±

√
−7)/2 〉, 〈 ±

√
−7 〉, 〈 1±

√
−7 〉, 〈 (5±

√
−7)/2 〉,

〈 2±
√
−7 〉, 〈 (7±

√
−7)/2 〉, 〈 (1± 3

√
−7)/2 〉.

(6) d = 11: I = 〈 (1±
√
−11)/2 〉, 〈 (3±

√
−11)/2 〉, 〈 (5±

√
−11)/2 〉.

(7) d = 15: I = 〈 2, (1±
√
−15)/2 〉, 〈 3, (3±

√
−15)/2 〉, 〈 (1±

√
−15)/2 〉, 〈 5, (5±

√
−15)/2 〉,

〈 (3±
√
−15)/2 〉.

(8) d = 19: I = 〈 (1±
√
−19)/2 〉.

(9) d = 23: I = 〈 2, (1±
√
−23)/2 〉, 〈 3, (1±

√
−23)/2 〉, 〈 4, (3±

√
−23)/2 〉.

(10) d = 31: I = 〈 2, (1±
√
−31)/2 〉, 〈 4, (1±

√
−31)/2 〉, 〈 5, (3±

√
−31)/2 〉.

(11) d = 47: I = 〈 2, (1±
√
−47)/2 〉, 〈 3, (1±

√
−47)/2 〉, 〈 4, (1±

√
−47)/2 〉.

(12) d = 71: I = 〈 2, (1±
√
−71)/2 〉.

As we will describe in §2 and 3, using previous work of the authors ([BR14], [BR17], [Goe15]),
the proof of Theorem 1.1 can be reduced to establishing the following theorem:

Theorem 1.2. When d ∈ {2, 7, 11} the following list of pairs (d, I) determine principal congruence
subgroups Γ(I) < PSL(2, Od) such that H3/Γ(I) is a link complement in S3:

(1) d = 2: I = 〈 1± 2
√
−2 〉, 〈 3±

√
−2 〉.

(2) d = 7: I = 〈 ±
√
−7 〉, 〈 (5±

√
−7)/2 〉, 〈 2±

√
−7 〉, 〈 (7±

√
−7)/2 〉, 〈 (1± 3

√
−7)/2 〉.

(3) d = 11: I = 〈 (5±
√
−11)/2 〉.

Furthermore, in the case when d = 2, Γ(〈 1 + 3
√
−2 〉) is not a link group.

Theorem 1.2 will be deduced by combining previous work of the authors, as well as further
applications of these techniques, together with Lemma 4.1, which deals with the case (2, 〈1+3

√
−2〉).

In contrast to the other cases, this final case required finding an automatic structure for a certain
group for which we used the program Monoid Automata Factory (MAF) [Wil17].

We finish the introduction with some commentary. Rather than a collaboration, this paper (and
the associated technical report [BGR19]) is the conclusion of overlapping efforts of the first and third
authors and independently the second author. It was suggested to the authors by Ian Agol that
since Theorem 1.1 was proved almost simultaneously, a collaborative effort should be undertaken
to describe the final solution. The main goal of this note is to provide a brief overview of previous
work and summary of techniques that lead to Theorem 1.2.

The proof of Theorem 1.2 is largely computational and builds upon (for the most part) the tech-
niques developed in our previous independent work to deal with earlier cases. This work work relied
heavily on Magma [BCP97], GAP [GAP18] and SnapPy [CDGW17]. In the light of this, we have
decided to present the work here essentially in “announcement form”, deferring the technical details
including the Magma routines and SnapPy computations of homology for congruence manifolds
to the technical report [BGR18] (for example see §14 of [BGR18] which summarizes the Magma
calculations). In particular, a complete proof of Theorem 1.2 (and Theorem 1.1) can be obtained
in two ways from [BGR18]: by combining Section 3 of [BGR18] with either Part 1 (the work of
the second author) or Part 2 (the work of the first and third authors) of [BGR18]. In addition, in
a companion preprint [BGR19] we describe several new principal congruence link diagrams, which
we intend to update when more link diagrams for the remaining principal congruence manifolds are
identified.

We refer the reader to [BR18] for further background, history and connections with other ques-
tions regarding the topology of congruence link complements.
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2. Preliminaries and techniques

In this section, we review some earlier work that was used in [BR14], [BR17], and [Goe15] to
produce a finite list of potential pairs (d, I).

Note that if I ⊂ Od is an ideal and I ⊂ Od the complex conjugate ideal, then Γ(I) is a link group
if and only if Γ(I) is a link group — since complex conjugation induces an orientation-reversing
involution of H3/Γ(I). Hence it suffices to consider only one of the ideals I and I as a candidate
level for a link group.

2.1. Reducing to finitely many cases. Suppose that L ⊂ S3 is a link with n components,
and M ∼= S3 \ L. Abusing notation and identifying M with the link exterior, set ι : ∂M → M
to be the inclusion map. Now H1(M ;Z) ∼= Zn and H1(M ;Z)/ι∗(H1(∂M ;Z)) is trivial (i.e. link
complements have trivial cuspidal cohomology). Hence the solution to the Cuspidal Cohomology
Problem (completed in [Vog85]) provides the following consequence for principal congruence link
complements:

Theorem 2.1. Suppose that M = H3/Γ(I) is homeomorphic to a link complement and M → Qd.
Then M , and hence Qd, has trivial cuspidal cohomology, and so

d ∈ {1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71}.

First, note that if Γ(I) is a link group, it must be a torsion-free subgroup of PSL(2, Od). We can
disregard the case when I = Od, since the groups PSL(2, Od) all contain elements of orders 2 and
3. It can then be easily checked that there are only 6 pairs (d, I), up to complex conjugation with
d as above, so that Γ(I) contains a non-trivial element of finite order.

To pass from finitely many values of d to finitely many possible pairs (d, I) the norm of the ideal
I needs to be bounded. To achieve this, we follow the arguments of [BR14] and [BR17]. We note
in passing that a different combinatorial method was used in [Goe15] in his analysis of the cases of
d = 1, 3. When the class number is 1, we can use the 6-Theorem of Agol [Ago00] and Lackenby
[Lac00] to control which peripheral curves can produce S3 by Dehn filling. When the class number is
greater than 1, an upper bound for the systole for a hyperbolic link complement in S3 from [AR00]
can be used. Since systole length grows with the norm of the ideal this provides the necessary
control. Moreover, when the class number is 1, all ideals are principal and the argument above
bounds the absolute value of a generator of the ideal, and when the class number is greater than 1,
this bounds the absolute value of some x ∈ I. Summarizing this discussion we obtain (see [BR14,
Section 4.1] and [BR17, Lemma 4.1]):

Theorem 2.2. If (d, I) determines a link complement, then there must be a non-trivial x ∈ I with
|x| < 6 (if hd = 1), respectively, |x|2 < 39 (if hd > 1). In particular there are only finitely many
pairs (d, I).

Theorem 2.2 reduces the classification of which principal congruence groups are link groups to
a finite list, indeed there are 302 cases (up to complex conjugation and excluding the 6 cases that
give groups containing elements of finite order).
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2.2. Proving a case is not a link complement. Assume that (d, I) is one of the finitely many
pairs provided by Theorems 2.1 and 2.2 for which we need to decide that M = H3/Γ(I) is, or is
not, homeomorphic to a link complement. We first discuss the case of proving that M is not a link
complement. Indeed, we will show something slightly stronger, namely that Γ is not generated by
parabolic elements (equivalently its peripheral subgroups).

To describe how this is achieved, fix a collection of PSL(2, Od)-inequivalent cusps ci for i =
1, . . . , hd, let Pi be the peripheral subgroup of PSL(2, Od) fixing the cusp ci, set Pi(I) = Pi∩Γ(I) to
be the peripheral subgroup of Γ(I) fixing ci, and let Nd(I) denote the normal closure in PSL(2, Od) of
{P1(I), . . . , Phd

(I)}. Note that Nd(I) < Γ(I) since Γ(I) is a normal subgroup of PSL(2, Od). Both
M and H3/Nd(I) are covering spaces of the Bianchi orbifold Qd with the covering groups given
by PSL(2, Od/I), and PSL(2, Od)/Nd(I) respectively. Now Γ(I) will be generated by parabolic
elements if and only if |PSL(2, Od)/Nd(I)| = |PSL(2, Od/I)|. Since |PSL(2, Od/I)| can easily be
computed from a factorization of I (see [BR17, Section 2.1]), this reduces the problem to determining
|PSL(2, Od)/Nd(I)|.

For many small values of d, finite presentations of the group PSL(2, Od) together with the matrices
corresponding to the generators were computed by Swan [Swa71]. More recently, for the remaining
values of d, Page [Pag15] computed such presentations (see [BR17]). If we add the words representing
the generators of each Pj(I) as relations to the finite presentation of PSL(2, Od), we have a finite
presentation for PSL(2, Od)/Nd(I). From this finite presentation, we can use various techniques
from computer algebra to compute (a lower bound for) the size of PSL(2, Od)/Nd(I).

Often, however, it is sufficient (but not always easier) to compute or estimate the homology of
M itself to prove that it is not a link complement. In fact, this suffices for all but the three cases
(1, 4 + 3

√
−1), (2, 1 + 3

√
−2), and (3, (11 +

√
−3)/2) where H1(M ;Z)/ι∗(H1(∂M ;Z)) is trivial.

More recently, the second author wrote a computer program to compute and triangulate a Dirichlet
domain for a Bianchi orbifold Qd and construct covers of Qd to generate a triangulation of the
principal congruence manifoldM , respectively, the congruence manifold associated to the upper unit-
triangular matrices in PSL(2, Od/I). Using this program and the fact that H1(M ;Z)/ι∗(H1(∂M ;Z))
cannot vanish for a cover M → N of degree less than |H1(N ;Z)/ι∗(H1(∂N ;Z))|, it is feasible to
compute integral homology for enough congruence manifolds to rule out all but the aforementioned
three cases. Further discussion of this program and the output of these computations is contained
in [BGR18].

2.3. Proving a case is a link complement. By Perelman’s resolution of the Geometrization
Conjecture, to prove that M = H3/Γ(I) is homeomorphic to a link complement in S3, it is sufficient
to find Dehn fillings of the manifold M trivializing the fundamental group. Thus the task is to find
a collection of slopes (essential simple closed curves), one from each cusp, so that killing these words
trivializes the fundamental group. The first and third author did this by exhibiting a set of parabolic
elements, one from each cusp subgroup of N(I), that generates Gamma(I). The second author used
the computer program mentioned above to generate a triangulation of M and then used SnapPy
to find the slopes (using techniques similar to those already described in [Goe15, Section 7.3.2]) for
which SnapPy could then prove that the fundamental group of the Dehn-filled manifold along those
slopes is trivial. Further details are in [BGR18].

3. The remaining cases

We now review how our previous work using the methods of §2 reduces the classification of
principal congruence link groups to the cases in Theorem 1.2.

In the case of hd > 1, the complete list of the 16 pairs (d, I) corresponding to principal congruence
link complements was determined in [BR17]. The possible values of d are 5, 15, 23, 31, 47, 71 with
the levels shown in Theorem 1.1.
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Concerning the case when hd = 1 (i.e. d ∈ {1, 2, 3, 7, 11, 19}), certain examples already existed
in the literature (see [BR14]), and using the 6-Theorem as described in §2 to restrict the possible
levels, we subsequently gave 9 new examples of principal congruence link groups in [BR14]. This
brought the total known when hd = 1 to 18:

(1) d = 1: I = 〈 2 〉, 〈 2± i 〉, 〈 (1± i)3 〉, 〈 3 〉.
(2) d = 2: I = 〈 1±

√
−2 〉, 〈 2 〉, 〈 2± 2

√
−2 〉.

(3) d = 3: I = 〈 2 〉, 〈 3 〉, 〈 (5±
√
−3)/2 〉, 〈 3±

√
−3 〉.

(4) d = 7: I = 〈 (1±
√
−7)/2 〉, 〈 2 〉, 〈 (3±

√
−7)/2 〉, 〈 1 +±

√
−7 〉.

(5) d = 11: I = 〈 (1±
√
−11)/2 〉, 〈 (3±

√
−11)/2 〉.

(6) d = 19: I = 〈 (1±
√
−19)/2 〉.

Moreover, in the cases d = 1, 3, as well as identifying the cases described above, in [Goe15] the
second author determined the complete list of pairs (d, I) that yield link groups; namely those above,
together with:

(1) d = 1: I = 〈 3± i 〉, 〈 3± 2i 〉, 〈 4± i 〉.
(2) d = 3: I = 〈 (7±

√
−3)/2 〉, 〈 4±

√
−3 〉, 〈 (9±

√
−3)/2 〉.

The upshot of these combined works is that 40 pairs (d, I) were determined that yield principal
congruence link groups, and using a combination of the techniques described in §2, all remaining
cases were eliminated except for the 8 pairs (d, I) stated in Theorem 1.2, and (2, 〈1 + 3

√
−2〉).

In Table 1 we provide some additional information associated to the 8 cases to be identified as
link groups: in the second, third, and fourth columns of Table 1, we list a generator x of the ideal
being considered, its norm and the order of PSL(2, Od)/Γ(I).

Table 1. The 8 cases where we must prove that Γ(〈 x 〉) is a link group

d x N(〈 x 〉) |PSL(2, Od/〈 x 〉)| Number of cusps

2 1 + 2
√
−2 9 324 36

2 3 +
√
−2 11 660 60

7
√
−7 7 168 24

7 (5 +
√
−7)/2 8 192 24

7 2 +
√
−7 11 660 60

7 (7 +
√
−7)/2 14 1008 72

7 (1 + 3
√
−7)/2 16 1536 96

11 (5 +
√
−11)/2 9 324 36

Details of the computations establishing that these do indeed give link groups are provided in
[BGR18].

4. The final case

As mentioned in the introduction, the final case required a technique different from the other
cases to prove the finitely presented group G = PSL(2, Od)/Nd(I) to be large enough. For the other
cases, this could be shown in Magma or GAP either by computing |G| itself or the abelianization
of G or a suitable subgroup of G. The necessary methods for this are based on Todd-Coxeter coset
enumeration, Reidemeister-Schreier rewriting, and Smith Normal form. However, the final case was
solved using the Monoid Automata Factory (MAF). We are very grateful to Alun Williams who
helped us with this.

Lemma 4.1. The principal congruence manifold H3/Γ(〈1 + 3
√
−2〉) is not homeomorphic to a link

complement in S3.
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Proof. From [Swa71], we have the following presentation for

PSL(2, O2) = 〈a, t, u|a2 = (ta)3 = (au−1au)2 = tut−1u−1 = 1〉

where

a =

(
0 1
−1 0

)
, t =

(
1 1
0 1

)
, and u =

(
1
√
−2

0 1

)
.

Following §2.2, we obtain t6u−1 and t19 as the two parabolic elements that normally generate
N2(〈1 + 3

√
−2〉), giving us the following presentation

G =
PSL(2, O2)

N2(〈1 + 3
√
−2〉)

= 〈a, t, u|a2 = (ta)3 = (au−1au)2 = tut−1u−1 = t6u−1 = t19 = 1〉.

We give this presentation of G to MAF [Wil17] which proved that G is infinite (see [BGR18, Lemma
3.2] for how this was coded). From the discussion in §2.2, we deduce that Γ(〈1 + 3

√
−2〉) is not a

link group. tu
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