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Profinite rigidity and surface bundles over the circle

Martin R. Bridson, Alan W. Reid and Henry Wilton

Abstract

If M is a compact 3-manifold whose first betti number is 1, and N is a compact 3-manifold such
that π1N and π1M have the same finite quotients, then M fibres over the circle if and only if
N does. We prove that groups of the form F2 � Z are distinguished from one another by their
profinite completions. Thus, regardless of betti number, if M and N are punctured-torus bundles
over the circle and M is not homeomorphic to N , then there is a finite group G such that one
of π1M and π1N maps onto G and the other does not.

1. Introduction

When one wants to understand a finitely presented group it is natural to explore its finite
quotients, and this is a well-trodden path in many contexts. For instance, one might try to
prove that a presentation does not represent the trivial group by exhibiting a map onto a non-
trivial finite group, or one might try to prove that two groups are not isomorphic by counting
maps to small finite groups. The potential of such techniques depends on the extent to which
the groups being studied are determined by the totality of their finite quotients. If the groups
Γ at hand are residually finite, that is, every finite subset injects into some finite quotient, then
it is reasonable to expect that one will be able to detect many properties of Γ from the totality
of its finite quotients.

Attempts to lend precision to this observation, and to test its limitations, have surfaced
repeatedly over the last 40 years. There has been a particular resurgence of interest in
recent years in the context of low-dimensional topology, where the central problem is that of
distinguishing between compact 3-manifolds M and N by finding a finite quotient of π1M that
is not a quotient of π1N . In more sophisticated terminology, one wants to develop a complete
understanding of the circumstances in which fundamental groups of non-homeomorphic
manifolds M and N can have isomorphic profinite completions π̂1M and π̂1N . (The profinite
completion Ĝ of a discrete group G is the inverse limit of the inverse system of finite quotients
of G.)

There has been a good deal of progress on this question recently: Boileau and Friedl [7]
proved, among other things, that for closed 3-manifolds with H1(M,Z) ∼= Z, being fibred is
an invariant of the profinite completion; using very different methods, Bridson and Reid [9]
proved that if M is a compact manifold with non-empty boundary that fibres and has first
betti number 1, and if N is a compact 3-manifold with π̂1N ∼= π̂1M , then N has non-empty
boundary and fibres; and if π1M has the form Fr � Z, with Fr free of rank r, then so does
π1N (but we do not know if the actions of Z on Fr can be different). It follows, for example,
that the complement of the figure-8 knot is distinguished from all other 3-manifolds by the
profinite completion of its fundamental group [7, 9].
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In the negative direction, Funar [13] pointed out that old results of Stebe [22] imply that
torus bundles over the circle with Sol geometry cannot, in general, be distinguished from
one another by the profinite completions of their fundamental groups Z2 � Z. By adapting
arguments of Baumslag [5], Hempel [15] exhibited a similar phenomenon among bundles with
higher genus fibres and finite monodromy (see also [23]).

In this paper we advance the understanding of profinite rigidity for surface bundles over the
circle in two ways. First, taking up the theme of [9], we show that in the case of punctured-torus
bundles over the circle, the monodromy of the bundle is determined by the profinite completion
of the fundamental group and, moreover, profinite rigidity persists if one drops the hypothesis
b1(M) = 1. Secondly, we extend the fibring theorems of Boileau–Friedl and Bridson–Reid to
the case of all bundles M with compact fibre and b1(M) = 1 (Theorem C).

To state the first of these results more precisely, we define Σ1,1 to be the once-punctured
torus, and for any φ in the extended mapping class group Mod±(Σ1,1) ∼= GL(2,Z) ∼= Out(F2),
let Mφ be the mapping torus of (a homeomorphism representing) φ. Let F2 denote the non-
abelian free group of rank 2.

Theorem A. Let φ1, φ2 ∈ Out(F2) and let Γi = F2 �φi
Z. If Γ̂1

∼= Γ̂2, then φ1 is conjugate
to φ2 in Out(F2) = GL(2,Z), hence Γ1

∼= Γ2 and Mφ1 is homeomorphic to Mφ2 .

Corollary B. Let M be a hyperbolic 3-manifold that fibres over the circle with fibre

a one-holed torus, and let N be a compact connected 3-manifold. If π̂1N ∼= π̂1M , then N is
homeomorphic to M .

To deduce this corollary, first observe that since M is hyperbolic, its first betti number is
1 and π1M has the form F2 �φ Z with φ ∈ GL(2,Z) a hyperbolic matrix. In [9], Theorem B
states that N has non-empty boundary, is a bundle with compact fibre of Euler characteristic
−1, and π1N ∼= F2 �ψ Z. Theorem A tells us that ψ, which describes the monodromy of N , is
conjugate to φ and therefore is hyperbolic. The one-holed torus is the only compact surface of
Euler characteristic −1 that supports a hyperbolic automorphism, so N is a one-holed torus
bundle with the same monodromy as M , and hence N ∼= M .

Although our results are concrete, the key facts that we exploit are abstract properties of
mapping class groups. For Theorem A we use the fact that Mod±(Σ1,1) is omnipotent and
enjoys the congruence subgroup property (see Section 2). Corresponding results for mapping
class groups of surfaces of higher complexity are beyond the reach of current techniques.
However, if one assumes those properties of mapping class groups, then one can obtain similar
results for bundles with higher genus fibre (see Theorem 2.4); our proof of Theorem A is
presented in a manner that emphasizes this general strategy.

Our other main result completes one step in the strategy by establishing that fibring is
a profinite invariant for manifolds with first betti number 1: this is achieved by combining
Theorem C with the corresponding result in the case of manifolds with boundary [9].

Theorem C. Let M be a closed orientable hyperbolic 3-manifold with first betti number
b1(M) = 1 that is a bundle with fibre a closed surface Σ of genus g. Let N be a compact

3-manifold with π̂1(N) ∼= π̂1(M). Then N is also a closed orientable hyperbolic 3-manifold
with b1(N) = 1 that is a bundle with fibre a closed surface of genus g.

In [7], this theorem was proved under the assumption that H1(M,Z) ∼= Z, using different
methods: we avoid their use of twisted Alexander polynomials, relying instead on topological
arguments.

Throughout, we assume that the reader is familiar with elementary facts about profinite
groups, as described in [20], for example.
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2. Congruence omnipotence

In this section we define the notion of congruence omnipotence in Out(G), for G a finitely
generated group. Our main theorem (Theorem 2.4) asserts that, when it holds, congruence
omnipotence enables one to deduce profinite rigidity results for mapping tori G � Z.

Definition 2.1. Let G be a finitely generated group and let H ⊆ Out(G) be a subgroup. A
finite quotient H → Q is a G-congruence quotient if it factors through π : H → P ⊂ Out(G/K),
where K is a characteristic subgroup of finite index in G and π is the restriction of the natural
map Out(G) → Out(G/K). We say that Out(G) has the congruence subgroup property if
every finite quotient of Out(G) is a G-congruence quotient. More generally, we say that a
subgroup H ⊆ Out(G) has the G-congruence subgroup property if every finite quotient of H
is a G-congruence quotient.

Remark. Care is needed in the above definition: there may be distinct groups G1 and
G2 with Out(G1) ∼= Out(G2) such that every finite quotient is congruence with respect to G1

but not with respect to G2. For instance, this phenomenon occurs with Out(F2) ∼= GL(2,Z) =
Out(Z2), which has the congruence subgroup property with respect to F2 but not Z2. Thus
‘Out(G) has the congruence subgroup property’ is a statement about G and not the abstract
group Out(G).

Omnipotence was first defined by Wise in the context of free and hyperbolic groups.

Definition 2.2. Let Γ be a group. Elements γ1, γ2 ∈ Γ of infinite order are said to be
independent if no non-zero power of γ1 is conjugate to a non-zero power of γ2 in Γ. An
m-tuple (γ1, . . . , γm) of elements is independent if γi and γj are independent whenever
1 � i < j � m. The group Γ is said to be omnipotent if, for every independent m-tuple
(γ1, . . . , γm) of elements in Γ, there exists a positive integer κ such that, for every m-tuple
of positive integers (e1, . . . , em) there is a homomorphism to a finite group

q : Γ → Q

such that o(q(γi)) = κei for i = 1, . . . ,m, where o(g) denotes the order of a group element g.
For a subgroup H of Γ, if we wish to emphasize that an m-tuple of elements is independent in
H, we will say that the tuple is H-independent.

We focus on a more restrictive form of omnipotence that is adapted to our purposes. Two
motivating examples that we have in mind are: (i) where G is a closed surface group or a free
group and H = Out(G); and (ii) where G is a free group and H ⊆ Out(G) is the mapping
class group of a punctured surface. In these contexts, there is usually a favoured class of
elements for which one expects omnipotence to hold, for example, pseudo-Anosovs in the case
of mapping class groups, or fully irreducible elements in the case of Out(Fn); we therefore work
with subsets S ⊆ H. We also insist that the finite quotients obtained should be G-congruence
quotients.

Definition 2.3. Let G be a finitely generated group, let H be a subgroup of Out(G) and
let S be a subset of H. We say† that S is (G,H)-congruence omnipotent if, for every m and
every H-independent m-tuple (φ1, . . . , φm) of elements of S, there is a constant κ such that,
for any m-tuple of positive integers (n1, . . . , nm), there is a G-congruence quotient q : H → Q
such that o(q(φi)) = κni for all i.

†If H = Out(G) we abbreviate this to ‘G-congruence omnipotent’.
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Remark. If Out(G) is omnipotent and has the congruence subgroup property, then the set
of infinite-order elements is G-congruence omnipotent in Out(G).

Our most general theorem shows how congruence omnipotence can be used as a tool for
establishing profinite rigidity for the mapping tori associated to automorphisms of a fixed
group G.

Theorem 2.4. Let G be a finitely generated group, let H ⊆ Out(G) be a subgroup and let
S be a (G,H)-congruence omnipotent subset. Let φ1, φ2 ∈ S, let Γi = G �φi

Z and suppose

that b1(Γi) = 1 for i = 1, 2. If Γ̂1 = Γ̂2 then there is an integer n such that φn
1 is conjugate in

H to φ±n
2 .

The key observation in the proof of Theorem 2.4 is contained in the following lemma.

Lemma 2.5. Let Γi = G �φi
Z for i = 1, 2. If Γ̂1

∼= Γ̂2 and b1(Γi) = 1 for i = 1, 2, then the
image of φ1 and φ2 generate the same cyclic subgroup in the outer automorphism group of any
characteristic quotient of G.

Proof. We fix an identification Γ̂1 = Γ̂2. The unique epimorphism Γi → Z defines a short
exact sequence

1 → Ĝ → Γ̂i → Ẑ → 1.

If K < G is a characteristic subgroup of finite index, then the canonical map G → G/K

defines an epimorphism Ĝ → G/K. Since K̂ is normal in Γ̂i, the action of Ẑ on Ĝ induced
by conjugation in Γ̂i descends to an action on Ĝ/K̂ = G/K, defining a cyclic subgroup
C < Out(G/K), of order m say. The right-hand factor of Γi = G �φi

Z is dense in Ẑ, so the
image of φi generates C for i = 1, 2. �

Proof of Theorem 2.4. Suppose first that φ1 and φ2 are H-independent. Since S is (G,H)-
congruence omnipotent, there exists a G-congruence quotient q : H → Q such that o(q(φ1)) �=
o(q(φ2)). By definition, q factors as

H → P → Q

with H → P the restriction of the natural map Out(G) → Out(G/K) for some characteristic
subgroup K of finite index in G. Since the images of φ1 and φ2 have distinct orders in Q, the
images of φ1 and φ2 cannot generate the same cyclic subgroup of Out(G/K), contradicting
Lemma 2.5.

Therefore, φ1 and φ2 are not H-independent, so there are positive integers n1 and n2

such that φn1
1 is conjugate to φ±n2

2 in H. It remains to prove that n1 = n2. By congruence
omnipotence applied to the 1-tuple (φ1), there is a characteristic subgroup K of finite index in G
such that n1n2 divides o(q(φ1)), where q : Out(G) → Out(G/K) is the natural homomorphism.
In particular, we have

o(q(φ1))/n1 = o(q(φn1
1 )) = o(q(φn2

2 )) = o(q(φ2))/n2

and so, since Lemma 2.5 implies that o(q(φ1)) = o(q(φ2)), we have n1 = n2 as claimed. �

2.1. Out(F2) is congruence omnipotent

The congruence subgroup property for Out(F2) was established by Asada [3]; alternative proofs
were given by Bux–Ershov–Rapinchuk [11] and Ellenberg–McReynolds [12].
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Theorem 2.6 (Asada [3]). For any finite quotient Out(F2) → Q there is a characteristic
finite-index subgroup K of F2 such that the quotient map factors as

Out(F2) → Out(F2/K) → Q.

Wise proved that finitely generated free groups are omnipotent and later extended his proof
to virtually special groups [25]. Bridson and Wilton gave a more direct proof that virtually
free groups are omnipotent [10]. As Out(F2) is virtually free, in the light of Theorem 2.6 we
have the following.

Proposition 2.7. The set of elements of infinite order in Out(F2) is F2-congruence
omnipotent.

3. Profinite rigidity for punctured-torus bundles

Our proof of Theorem A relies on a number of elementary calculations in GL(2,Z) ∼=
Out(F2); we have relegated these to an Appendix, so as not to disturb the flow of our
main argument. The reader may wish to read that Appendix before proceeding with this
section.

3.1. Reducing to the hyperbolic case

Theorem 3.1. Let φ1, φ2 ∈ Out(F2), let Γi = F2 �φi
Z and suppose that Γ̂1

∼= Γ̂2.

1. If φ1 is hyperbolic then φ2 is hyperbolic.
2. If φ1 is not hyperbolic, then φ2 is conjugate† to φ1.

Proof. Item (1) was proved in [9, Proposition 3.2] by arguing φ is hyperbolic if and only
if b1(Γφr ) = 1 for all r > 0. (The ‘only if’ implication follows easily from Lemma A.3.) We
therefore proceed to prove Item (2).

Proposition A.2 tells us that the list of abelianizations of Γφ calculated in Lemma A.3 covers
all non-hyperbolic φ. If all of these groups were non-isomorphic then we would be done, but
there remain two ambiguities for which we make special arguments.

First, to distinguish Γ̂−I from Γ̂−U(n) with n > 0 even, we can invoke Lemma 2.5:
since b1(Γ−I) = b1(Γ−U(n)) = 1, the automorphisms of H1(F2,Z/(n + 1)) induced by −I and
−U(n) would have the same order if Γ̂−I

∼= Γ̂−U(n), but the former has order 2 and the
latter is

B =

(
−1 1
0 −1

)
,

which has order n + 1.
Second, to distinguish Γ̂ε from Γ̂U(2), we note that t2 is central in Γε = F2 �ε 〈t〉 and has

infinite order in H1(Γε,Z), so if Q is any finite quotient of Γε then the abelianization of Q/Z(Q)
is a quotient of Z ⊕ Z/2 ⊕ Z/2. On the other hand, F2 �U(2) Z maps onto the mod-3 Heisenberg
group

(Z/3 ⊕ Z/3) �−B Z3,

and the quotient of this group by its centre is Z/3 ⊕ Z/3. �

†φ is always conjugate to φ−1 if φ is not hyperbolic.



836 MARTIN R. BRIDSON, ALAN W. REID AND HENRY WILTON

During the course of the proof of Theorem A, we will need to argue that Γ̂φ � Γ̂−φ. The
required calculation can be found in [9, Lemma 3.5], which we reproduce below for the reader’s
convenience.

Lemma 3.2. 1. b1(Γφ) = 1 if and only if 1 + detφ �= trφ.
2. If b1(Γφ) = 1 then H1(Γφ,Z) ∼= Z ⊕ T , where |T | = |1 + detφ− trφ|.

Proof. By choosing a representative φ∗ ∈ Aut(F2), we get a presentation for Γφ,

〈a, b, t | tat−1 = φ∗(a), tbt−1 = φ∗(b)〉.
By abelianizing, we see that H1(Γφ,Z) is the direct sum of Z (generated by the image of t) and
Z2 modulo the image of φ− I. The image of φ− I has finite index if and only if det(φ− I) is
non-zero, and a trivial calculation shows that this determinant is 1 − trφ + detφ. If the index
is finite, then the quotient has order |det(φ− I)|. �

3.2. End of the proof: the hyperbolic case

Proof of Theorem A. By Theorem 3.1, we may assume that both φ1 and φ2 are hyperbolic.
In particular, b1(Γ1) = b1(Γ2) = 1 and so, by Proposition 2.7, we may invoke Theorem 2.4 to
deduce that there is an n such that φn

1 = φ±n
2 . It then follows from Lemma A.1 that φ1 is

conjugate to ±φ±1
2 . To remove the possibility that φ1 is conjugate to −φ±1

2 we use Lemma 3.2
to compare the order of the torsion subgroup in H1(Γφ,Z) with that in H1(Γ−φ,Z), noting
that det(−φ) = detφ but tr (−φ) = −trφ. �

4. Closed hyperbolic bundles with b1(M) = 1

We now shift our attention to closed 3-manifolds. Our purpose in this section is to prove
Theorem C. We therefore assume that M is a closed, orientable, hyperbolic 3-manifold with
b1M = 1, fibring over the circle with fibre Σ, and that N is a closed, orientable 3-manifold with
π̂1M ∼= π̂1N . We have been informed by Boileau and Friedl that the methods of their paper
[7] can be used to give a different proof of Theorem C. Extending the result to bundles with
b1(M) > 1 lies beyond the present scope of both our techniques and theirs.

4.1. The main argument

By arguing as in [9, Theorem 4.1], we may assume that N is aspherical, closed and orientable.
Since the finite abelian quotients of π1N coincide with those of π1M , we also see that b1(N) = 1.
And by [24] we know that N is hyperbolic.

Set Δ = π1(N) and Γ = π1(M). There is a unique epimorphism Δ → Z, and dual to this
we can find a closed embedded non-separating incompressible surface S ⊂ N . If S is a fibre
we will be done, for exactly as in [9, Lemma 3.1], we get π̂1(S) ∼= π̂1(Σ), from which it easily
follows (by noting, for example, that H1(Σ,Z) is determined by π̂1Σ) that S is homeomorphic
to Σ.

Thus, in order to complete our proof of the theorem, it suffices to derive a contradiction from
the assumption that S is not a fibre. The well-known dichotomy of Bonahon and Thurston [8]
implies that if S is not a fibre then it is quasi-Fuchsian.

Let H = π1(S) < Δ, let G = π1Σ, let K < Δ be the kernel of the unique epimorphism
Δ → Z, let K denote the closure of K in Δ̂, and note that H < K. It is elementary to see that
Γ induces the full profinite topology on G (see [9, Lemma 2.2], for example), and it follows from
Agol’s virtually special theorem [1] that, since H is quasiconvex and hence a virtual retract,
the full profinite topology is induced on H (see, for example, [4, (L.16), p. 120]).
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The isomorphism Γ̂ ∼= Δ̂ identifies Ĝ with K (each being the kernel of the unique epimor-
phism Γ̂ → Ẑ). Thus Ĥ = H is a subgroup of Ĝ. To complete the proof of the theorem, we need
two lemmas. The first of these lemmas relies on Agol’s theorem [1], while the second is based
on a standard exercise about duality groups at a prime p that was drawn to our attention by
P. Zalesskii.

Lemma 4.1. There is a finite-index subgroup Δ0 < Δ such that

1. H < Δ0;
2. there exists an epimorphism f : Δ0 → F2 (a free group of rank 2) such that H < ker f).

Lemma 4.2. [Ĝ : Ĥ] < ∞.

We defer the proofs of these lemmas for a moment while we complete the proof of the
theorem.

Define Γ0 = Γ ∩ Δ̂0 and G0 = G ∩ Γ0. The surjection Δ0 → F2 of Lemma 4.1 induces an
epimorphism Γ̂0 = Δ̂0 → F̂2, the kernel of which contains Ĥ. It follows from Lemma 4.2 that
the image of Ĝ0 in F̂2 is finite. But F̂2 is torsion-free, so in fact the image of Ĝ0 must
be trivial, which means that Γ̂0 = Δ̂0 → F̂2 factors through the abelian group Γ̂0/Ĝ0

∼= Ẑ,
which is impossible. This contradiction completes the proof of Theorem C. �

4.2. Proofs of lemmas

Proof of Lemma 4.1. We first argue that there are infinitely many double cosets H\Δ/H.
The group Δ acts on the Bass–Serre tree T corresponding to the splitting of Δ obtained by
cutting N along S. Let e be the edge of T stabilized by H. The set of double cosets H\Δ/H
is in bijection with the orbits of the edges of T under the action of H on T . Since H acts on
T by isometries and there are edges of T at arbitrarily large distance from e, it follows that
H\Δ/H is infinite.

By [1], Δ is virtually special. Combining the results of [14] and [17], the double cosets in
H\Δ/H are separable. Hence there exists a subgroup Δ0 of finite index in Δ, containing H,
so that |Δ0\Δ/H| � 4. Let N0 be the covering space of N corresponding to Δ0. Then the
complete preimage S0 ⊆ N0 of the surface S is embedded, and the components of S1, . . . , Sk of
S0 naturally correspond to the double cosets Δ0\Δ/H. If S1 is the component corresponding
to the trivial double coset Δ0H = Δ0, then S1 is homeomorphic to S, since Δ0 contains H.
Choose three components S2, S3, S4 of S0, each distinct from S1. Let X be the dual graph
to the decomposition of N0 obtained by cutting along S2 ∪ S3 ∪ S4. Then X has three non-
separating edges, and hence the fundamental group F of X is free and non-abelian. Finally,
H is in the kernel of the natural epimorphism q : Δ0 → F , since q is induced by a continuous
map N0 → X that crushes S1 to a vertex. �

We now turn to Lemma 4.2. We are grateful to Pavel Zalesskii for drawing our attention to
[21, p. 44, Exercise 5(b)], which guides the proof.

Proof of Lemma 4.2. Suppose for a contradiction that [Ĝ0 : Ĥ] = ∞. Since Ĥ is closed, we
may choose nested finite-index subgroups Ui in G0 so that the intersection

⋂
i Ûi = Ĥ.

We fix a prime p, consider the map f : Δ0 → F2 provided by Lemma 4.1, and let f̂ : Δ̂0 →
F̂

(p)
2 be the composition of the induced map on profinite completions and the projection from

F̂2 to the pro-p completion of F2. Since F̂
(p)
2 is non-abelian, f̂ certainly does not factor through

the quotient map Δ̂0 → Δ̂0/Ĝ0
∼= Ẑ, so the closed subgroup L̂ := f̂(Ĝ0) is non-trivial. Choose
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an infinite nested sequence of open subgroups Vi ⊆ L̂ with trivial intersection and let Wi :=
Ûi ∩ f̂−1(Vi). Then

⋂
i Wi = Ĥ and p divides the index [Wi : Wi+1] for infinitely many i, so,

passing to a subsequence, we may assume that p divides [Wi : Wi+1] for all i.
The end of the argument is a standard exercise about duality groups at the prime p (cf.

[21, p. 44, Exercise 5(b)]). We consider continuous cohomology with coefficients in the finite
field Fp. As a finite-index subgroup of a surface group, each Wi ∩G0 is a surface group, hence
it is good in the sense of Serre, which means that each of the restriction maps H2(Wi,Fp) →
H2(Wj ,Fp) ∼= Fp is multiplication by [Wi : Wj ]. Since

H2(Ĥ,Fp) = H2

(⋂
i

Wi,Fp

)
= lim−→ H2(Wi,Fp)

and p divides [Wi : Wi+1], we conclude that H2(Ĥ,Fp) = 0, which is a contradiction, since H
is also a surface group. �

5. Surfaces of higher complexity and free groups of higher rank

As far as we know, the hypotheses of Theorem 2.4 may hold in very great generality. In the
general context of mapping class groups, the congruence subgroup property is open, as is
omnipotence for pseudo-Anosov elements. Likewise, in the context of outer automorphism
groups of free groups, the congruence subgroup property is open, as is omnipotence for
hyperbolic automorphisms.

Question 5.1. Let Σ be a surface of finite type. Might the set of pseudo-Anosovs in the
mapping class group Mod(Σ) be π1Σ-congruence omnipotent?

A positive answer to Question 5.1 would have significant ramifications. For example, it
would immediately imply that if M is a closed hyperbolic 3-manifold with b1(M) = 1 and N

is a compact 3-manifold with π̂1M ∼= π̂1N then M and N share a common finite cyclic cover
(of the same degree over N and M); in particular they are cyclically commensurable.

The closedness hypothesis assures that the manifolds have homeomorphic fibres. Less
obviously, if M and N are hyperbolic knot complements in S3 (or in an integral homology
sphere) with π̂1M ∼= π̂1N , then [9, Theorem 7.2] implies that the fibres are homeomorphic, so
again a positive answer to Question 5.1 would imply that then M and N share a common finite
cyclic cover. These observations gain further interest in the context of the following conjecture
of the second author and G. Walsh [19].

Conjecture 5.2. Let K ⊂ S3 be a hyperbolic knot. There are at most 3 distinct knot
complements in the commensurability class of S3 \K.

Conjecture 5.2 was proved in [6] in the ‘generic case’, namely when K has no hidden
symmetries (see [19] or [6] for the definition of hidden symmetry). At present the only knots
that are known to have hidden symmetries are the figure-eight knot and the two dodecahedral
knots of Aitchison and Rubinstein [2]. The dodecahedral knots are known to be the only knots
in their commensurability class [16], and their fundamental groups are distinguished by their
profinite completions using [9], since one is fibred and the other is not. Since the figure-eight
knot group is distinguished from all 3-manifold groups by its profinite completion, the proviso
concerning hidden symmetries in the following result may be unnecessary.
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Proposition 5.3. Let K ⊂ S3 be a fibred hyperbolic knot. If Question 5.1 has a positive
answer and K has no hidden symmetries, then there is no other hyperbolic knot K ′ such that
π1(S3 \K) and π1(S3 \K ′) have the same profinite completion.

Proof. If there were such a K ′, then by [9, Theorem 7.2] K ′ would be fibred with fibre
of the same genus. A positive answer to Question 5.1 would imply that the complements of
K and K ′ had a common finite cyclic cover of the same degree (in the light of Theorem 2.4).
In particular the knot groups would be commensurable and the complements would have the
same volume. But [6, Theorem 1.7] shows that the complements in the commensurability class
of a hyperbolic knot that has no hidden symmetries each have a different volume. �

Corollary 5.4. Let K ⊂ S3 be a hyperbolic knot that admits a Lens Space surgery. If
Question 5.1 has a positive answer and K has no hidden symmetries, then there is no other
hyperbolic knot K ′ such that π1(S3 \K) and π1(S3 \K ′) have the same profinite completion.

Proof. The result follows from Proposition 5.3 on noting that Y. Ni [18] proved that a
(hyperbolic) knot that admits a Lens Space surgery is fibred. �

Remark. (i) [6, Theorem 1.4] establishes that if the complements of knots without hidden
symmetries are commensurable, then they are actually cyclically commensurable (in line with
our results).

(ii) We regard Proposition 5.3 as giving further credence to the belief that hyperbolic knot
groups are profinitely rigid. This belief is in keeping with a theme that has recently emerged in
low-dimensional topology and Kleinian groups exploring the extent to which the fundamental
group of a finite volume hyperbolic 3-manifold is determined by the geometry and topology
of its finite covers. An aspect of this is the way that a ‘normalized’ version of |Tor(H1(M,Z))|
behaves in finite covers; it is conjectured that this should determine the volume of the manifold.
Since Tor(H1(M,Z)) is detected at the level of the profinite completion, the volume is thus
conjectured to be a profinite invariant.

Turning to the case of Out(Fn) we can ask:

Question 5.5. Let Fn be the non-abelian free group of rank n. Might the set of fully
irreducible automorphisms in Out(Fn) be Fn-congruence omnipotent? What about the set of
hyperbolic automorphisms?

As above, a positive answer to Question 5.5 would imply that hyperbolic mapping tori Fn � Z
with b1 = 1 and the same profinite genus are commensurable.

Appendix. Computations in GL(2,Z)

The action of Aut(F2) on H1(F2,Z) gives an epimorphism Aut(F2) → GL(2,Z) whose kernel is
the group of inner automorphisms. The isomorphism type of Γφ depends only on the conjugacy
class of the image of φ in Out(F2) = GL(2,Z), so we may regard φ as an element of GL(2,Z).
We remind the reader that finite-order elements of GL(2,Z) are termed elliptic, infinite-order
elements with an eigenvalue of absolute value bigger than 1 are hyperbolic, and the other
infinite-order elements are parabolic.

In this Appendix, we collect various standard facts about the algebra of GL(2,Z). Each can
be checked using elementary algebra (or more elegantly, in some cases, using the action of
PSL(2,Z) ∼= Z/2 ∗ Z/3 on the dual tree to the Farey tesselation of the hyperbolic plane). The
first such fact concerns the uniqueness of roots.
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Lemma A.1. If φ, ψ ∈ GL(2,Z) are elements of infinite order and φn = ψn for some n �= 0,
then φ = ±ψ.

We next recall the classification of non-hyperbolic elements of GL(2,Z), up to conjugacy.

Proposition A.2. Every non-hyperbolic element of GL(2,Z) is conjugate to exactly one
of the following elements:

1. ±I;
2. θ =

(−1 −1
1 0

)
, which has order 3;

3. −θ, which has order 6;
4. ε =

(−1 0
0 1

)
or τ =

(
0 1
1 0

)
, which have order 2 and are not conjugate to each other,

5. ετ , which has order 4;
6. U(n) =

(
1 n
0 1

)
with n > 0;

7. −U(n) with n > 0.

From the obvious presentation Γφ = 〈a, b, t | tat−1 = φ(a), tat−1 = φ(b)〉 we get the presen-
tation

H1(Γφ,Z) = 〈a, b, t | [a, b] = [a, t] = [b, t] = 1 = a−1φ(a) = b−1φ(b)〉
from which it is easy to calculate the following.

Lemma A.3. With the notation of Proposition A.2:

1. H1(ΓI ,Z) ∼= Z3 and H1(Γ−I ,Z) ∼= Z ⊕ Z/2 ⊕ Z/2;
2. H1(Γθ,Z) ∼= Z ⊕ Z/3;
3. H1(Γ−θ,Z) ∼= Z;
4. H1(Γε,Z) ∼= Z2 ⊕ Z/2 and H1(Γτ ,Z) ∼= Z2;
5. H1(Γετ ,Z) ∼= Z ⊕ Z/2;
6. H1(ΓU(n),Z) = Z2 ⊕ Z/n if n > 0;
7. H1(Γ−U(n),Z) = Z ⊕ Z/4 if n odd, and H1(Γ−U(n)) = Z ⊕ Z/2 ⊕ Z/2 if n even.
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