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We introduce and study the notion of filling links in 3-manifolds:
a link L is filling in M if for any 1-spine G of M which is disjoint
from L, π1(G) injects into π1(M ∖ L). A weaker “k-filling” version
concerns injectivity modulo k-th term of the lower central series.
For each k ≥ 2 we construct a k-filling link in the 3-torus. The
proof relies on an extension of the Stallings theorem which may
be of independent interest. We discuss notions related to “filling”
links in 3-manifolds, and formulate several open problems. The
appendix by C. Leininger and A. Reid establishes the existence of
a filling hyperbolic link in any closed orientable 3-manifold with
π1(M) of rank 2.

1. Introduction

There is an old theme in 3-manifold topology that links or even knots can
be built inside a general 3-manifold which in one sense or another are as
robust as an embedded 1-complex can be.1 Here are several examples (in
historical order):

1. Bing’s theorem [Bi58] that a closed 3-manifold M is diffeomorphic to
S3 if and only if every knot K in M is contained (“engulfed”) in a
3-ball.

2. “Disk busting curves”: Theorem [My82]: for any compact 3-manifold
M there is a knot K in M so that every essential sphere or disk meets
K.

3. Suppose X −→ B −→ V is a manifold (X)-bundle over a 3-manifold
V . Then there is a link L in V so that B restricted to V ∖ L admits
a flat topological connection, i.e. a foliation of class C1 transverse to
the fibers [Me18, Fr20].

1Links and 1-complexes will be assumed to be PL embedded in a 3-manifold.

2307



✐

✐

“1-Krushkal” — 2024/8/12 — 23:35 — page 2308 — #2
✐

✐

✐

✐

✐

✐

2308 Freedman, Krushkal, Leininger, Reid

In all three examples the theorem becomes trivial if instead of consider-
ing a knot or link, we replace those words in the statement with an embedded
1-complex, since the 1-complex may be chosen to be a spine of a Heegaard
handlebody. So the pattern seems to be that by knotting and linking one
can make 1-submanifolds nearly as “filling” as a 1-complex: hard to engulf,
hard to avoid, and hard to flatten over. Our first intent was to extend this
theme to higher dimensions, but the natural questions have proved difficult
and we just state a few of them for further thought:

Q1. If M is a smooth homotopy 4-sphere with the property that every
smoothly embedded surface (or perhaps just every 2-sphere?) lies in a
ball, is M invertible?

Q2. Is there an analog of (2) in high dimensions (being careful with respect
to homotopy spheres)?

Q3. In higher dimensions can such bundles be flattened over the comple-
ment of a codimension 2 link, or even of a Cantor set?

In this paper we consider only 3-manifolds and attempt to add a 4th
example of “filling” by a link or knot. To formulate the question, we start
by discussing the relevant versions of the notion of a spine of a 3-manifoldM .
We always consider 1-complexes up to I-H moves (also known as Whitehead

moves) ; considering their regular neighborhoods we also refer to

them as handlebodies.

(a) (The “rank” definition) A spine is a 1-complex inM of least first Betti
number, surjecting onto π1(M).

(b) A spine is a handlebody in M with the property that it is onto on
π1 but no smaller handlebody obtained from compression of a non-
separating disk is onto.

The following question may be formulated for each of the definitions
above.

Q4. Given a compact 3-manifoldM , is there a link L inM so that whenever
G is a spine inM and G is disjoint from L, then π1(G) −→ π1(M ∖ L)
is injective?

If there is such a link L, we call it filling in M . As we prove below any
1-spine for M , if allowed to play the role of L would have this injectivity
property. So as in the first three examples the question is whether a link can
“do the work of”, or “be as filling as” a 1-complex. This question and its
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relatives actually seem difficult to get hold of and we are only able establish
some partial results. We present them in the hope that others will find these
“filling” questions of interest.

We emphasize that that the term spine throughout the paper will refer
either to a specific PL embedding of a 1-complex into M , or to its regular
neighborhood in M . One may consider spines up to equivalence: I-H moves
and isotopy in case (a), and either isotopy or homotopy of handlebodies in
case (b). To check the filling condition using any of the definitions, it suffices
to consider one representative from each equivalence class, with respect to
the relevant equivalence relation (I-H moves, isotopy, homotopy). Consid-
ering spines up to isotopy or homotopy gives the same answer as to whether
a link (or more generally a 1-complex) is or is not filling. The reason is that
the difference between homotopy and isotopy is finger moves. And these fin-
ger moves can miss the link or 1-complex L (that we are trying to decide if
it is filling.) These finger moves in the complement of L do not change maps
on π1 so we get the same answers for isotopic and homotopic spines, when
it comes to deciding if L is filling.

We start with π1-injectivity in the complement of a 1-complex, the case
that is much easier than the complement of a link, similarly to examples 1 – 3
in the beginning of the introduction. In the following lemma, the 1-complex
that is shown to be filling is a spine of a Heegaard handlebody:

Lemma 1. Let M = H ∪H∗ be a Heegaard decomposition. Then for each
definition (a), (b), whenever G is a spine in M and G is disjoint from H∗,
the map π1(G) ↣ π1(M ∖H∗) induced by inclusion is injective.

Proof. Let π be the image of π1(G) in π1(M ∖H∗) ∼= π1(H). Being a sub-
group of a free group, π is free. Also rank(π) is less than or equal rank(π1(G))
since the map π1(G) −→ π is onto. If that map has a kernel, by the Hopfian
property of free groups rank(π) < rank(π1(G)), contradicting minimal rank
in the context of definition (a).

Now consider a spine satisfying definition (b). As in the previous para-
graph, π1(G) −→ π is onto, implying rank(π) < rank(π1(G)). By [MKS66,
Theorem 3.3], there is a basis B for π1(G) so that a subset of B generates
ker[π1(G) −→ π].

Proposition 2. Let G be a handlebody of genus g > 0 and assume that
b ∈ π1(G) is a free basis element. Then G contains a properly embedded disk
D so that

π1(G) = ⟨b⟩ ∗ π1(G∖D).
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Proof of Proposition 2. Stated geometrically, the hypothesis says that there
is a map f : G −→W to a wedge of g circles inducing an isomorphism on
π1 and taking b to the generator of the first S1 factor S of W . Let p ∈ S
be a point on S different from the basepoint, and P ⊂ G be the transverse
preimage, f−1(p), of p in G. By standard 3-manifold techniques, we may
assume that P is an incompressible surface in G. (If there is an essential loop
γ on P which is nullhomotopic in G, consider its null homotopy J . Choose
an innermost essential circle α in J ; α bounds a singular disk in G∖ P ,
which by Loop theorem/Dehn’s lemma may be replaced with an embedded
disk E ⊂ G∖ P with essential boundary in P . Compressing along E, and
considering a homotopy of f giving rise to this ambient surgery of the point
preimage, reduces the complexity of P . This process must eventually make
P incompressible.) Since f is an isomorphism on π1 and P is the preimage
of a point it follows that the map induced by inclusion: π1(P ) −→ π1(G) is
the trivial map. So incompressibility implies that P is a disjoint union of
disks. P is Poincaré dual to the homology class [b] so it follows that at least
one of these disks D is homologically essential, i.e. non-separating. This is
the D claimed in the proposition. □

By Proposition 2, a free generator in the kernel corresponds to a non sep-
arating reducing disk in G. Cutting along that disk gives a sub-handlebody
still generating π1(M), contradicting minimality. This concludes the proof
of Lemma 1. □

Now we turn to the main problem, the existence of filling links. While
the notion of “filling” is interesting for both definitions (a) and (b), in this
paper we will focus on the slightly simpler rank definition (a). Logically it is
harder to show that a link is filling with respect to (b), since this definition
allows more “spines” which need to all inject: a spine satisfying (b) might
not have the least first Betti number among all 1-complexes surjecting onto
π1(M). As we see below, the analysis in the easier case (a) is already quite
subtle.

One may find a knot K giving π1-injectivity for a fixed embedding
of a spine as follows. Consider a minimal genus Heegaard decomposition
M3 = H ∪H∗, and let K be a diskbusting curve in the handlebody H∗. If
π1(H) −→ π1(M ∖K) had kernel, by the loop theorem there would be a
compressing disk in H∗ disjoint from K, a contradiction.

The problem of finding a filling link L (so an arbitrary embedding of
a spine is π1-injective in M ∖ L) has a trivial solution for genus one 3-
manifolds. In this case, M3 = H ∪H∗ where H,H∗ are solid tori, and a
filling knot is given by the core circle of H∗.
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The appendix by C. Leininger and A. Reid establishes the existence of
a filling hyperbolic link in any closed orientable 3-manifold with π1(M) of
rank 2. In particular, it follows that a closed orientable 3-manifold with finite
fundamental group contains a filling link, see Corollary A.3.

In the main body of this paper we focus on the case of the 3-torus
T 3, although it seems likely that the approach (which involves equivariant
homological analysis in the universal cover ofM3) should work for hyperbolic
3-manifolds as well.

The problem of analyzing π1-injectivity of any embedding of a spine G
in the complement of a given link in the 3-torus T 3 turned out to be quite
subtle. The kernel of π1(G) −→ π1(T

3) is the commutator subgroup of the
free group π1(G) on 3 generators. A standard classical tool for showing in-
jectivity of maps of the free group is the Stallings theorem, see Section 2.1.
However the Stallings theorem does not directly apply in our context. Specif-
ically, it does not apply to the map π1(G) −→ π1(T

3 ∖ L) because it is not
surjective on second homology, and it is injective, rather than an isomor-
phism, on H1. The complexity of the problem reflects the fact that the image
of the map on π1 depends on the embedding of the handlebody G. One may
attempt to apply the Stallings theorem to the map [π1(G), π1(G)] −→ K,
where K is the kernel π1(T

3 ∖ L) −→ π1(T
3) for a suitable choice of L.

But injectivity of the infinitely generated first homology of the commutator
subgroup is hard to establish when the embedding G −→ T 3 ∖ L changes
by an arbitrary homotopy, as we discuss below. We are able to find links
with a weaker property. We call a link L ⊂M “k-filling” if the injectiv-
ity in Q4 above holds modulo the kth term of the lower central series,
π1(G)/(π1(G))k ↣ π1(M ∖ L)/π1(M ∖ L)k.

Theorem 3. For any k ≥ 2 there exists a k-filling link in T 3.

To prove this theorem we give an extension of the Stallings theorem using
powers of an augmentation ideal, which applies uniformly to all embeddings
G −→ T 3 ∖ L, where the conclusion holds modulo a given term of the lower
central series. Powers of the augmentation ideal of a group ring have been
classically studied in low-dimensional topology, cf. [CG83, St75], and are
related to the lower central series of the group. We analyze a different aspect
of the theory, focusing on the connection between the lower central series of
a group π and powers of the augmentation ideal of the group ring of H1(π).

It is interesting to note the similarity of Theorem 3 with the current
state of knowledge of the topological 4-dimensional surgery theorem for free
non-abelian groups (see [FQ90]). In the underlying technical statement, the
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disk embedding conjecture, one considers disks up to homotopy fixing the
boundary, and the question is whether the map on π1 can be made trivial.
One can solve the problem modulo any term of the lower central series, but
the question itself is open. (See [FK20] for recent developments.)

In an October 2021 arXiv posting [St21], William Stagner proved that 3-
manifolds of rank 3 have filling links. In particular, his work gives a genuine
filling link in the 3-torus, thus strengthening our Theorem 3. The result
of [St21] relies on methods of hyperbolic geometry, very different from our
approach.

The proof of Theorem 3 follows from Lemmas 5, 6, 8 given in the fol-
lowing sections. Section 2 and Lemma 5 set up the equivariant homological
framework for analyzing the effect of homotopies of a spine in terms of pow-
ers of the augmentation ideal. Lemma 6 and its analogue for T 3 in section 3
construct links satisfying the conditions of Lemma 5. Lemma 8 in section 4
gives an extension of the Stallings theorem, relating powers of the augmen-
tation ideal to the lower central series, needed to complete the proof of the
theorem.

2. The relative case: T 2
× I

2.1. Notation and background

The coefficients of homology groups are set to be Z throughout the paper. We
start by recalling the Stallings theorem. Given a group A, its lower central
series is defined inductively by A1 = A, Ak = [Ak−1, A]; Aω = ∩∞

k=1Ak.

Theorem 4 (Stallings’ theorem [St65]). Let f : A −→ B be a group
homomorphism inducing an isomorphism on H1 and an epimorphism on
H2. Then f induces an isomorphism A/Ak −→ B/Bk for all finite k, and
an injective map A/Aω −→ B/Bω.

Dwyer [Dw75] extended the theorem, relaxing the surjectivity to be onto
H2 modulo the k-th term of the Dwyer filtration:

ϕn(A) = ker[H2(A) −→ H2(A/An)]

Assuming that f : A −→ B is an isomorphism on H1, the result of
[Dw75] is that f induces an isomorphism A/Ak+1 −→ B/Bk+1 if and only
if it induces an epimorphism H2(A)/ϕk(A) −→ H2(B)/ϕk(B).
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2.2. Relative spine and equivariant homology in the universal
cover

In this section we consider the relative case where the construction of k-filling
links is easier to describe, M = T 2 × I. Fix the standard “relative spine”
G = ({∗} × I) ∪ (T 2 × ∂I), and the dual spine G∗ = S1 ∨ S1 ⊂ T 2 × {1/2}.
Their preimages in the universal cover are illustrated in figure 1.

Figure 1: The preimage G̃ in the universal cover R2 × I of the standard rela-
tive spine G = ({∗} × I) ∪ (T 2 × ∂I) consists of the top and bottom shaded
panels union the vertical line segments. The mid-level horizontal grid is the
preimage of the dual spine S1 ∨ S1 ⊂ T 2 × {1/2}.

An analogue of lemma 1 shows that for any proper embedding of the
line segment {∗} × I into ((T 2 × I)∖G∗, T 2 × ∂I) the fundamental group
Z2 ∗ Z2 of the resulting relative spine injects into π1(T

2 × I ∖G∗). This
may be seen using the Stallings theorem. Note that π1(G) ∼= Z2 ∗ Z2 is a
right-angled Artin group, and it is also a free product of surface groups;
these classes of groups are residually nilpotent [DK92], [CO98]. (Recall that
the Stallings theorem, under the assumptions stated in Theorem 4, gives
injectivity modulo the ω-term of the lower central series. As noted above,
π1(G) is residually nilpotent, thus (π1(G))ω is trivial, and therefore the
Stallings theorem implies injectivity of π1(G).)

The goal is to analyze the map on π1 induced by inclusion when G∗ is
replaced by a link. This is illustrated in figure 2 where the link L ⊂ T × (0, 1)
is obtained by “resolving” the dual spineG∗ into two disjoint essential circles.
Different embeddings of the vertical interval are related by homotopies that
may pass through link components and may be thought of as finger moves;
the equivariant lift of an elementary finger move is illustrated on the right
in figure 2.

We will continue denoting by G the standard embedding of the relative
spine into T 2 × I, and by G̃ its preimage in the universal cover. The notation
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G′, G̃′ will be used when the embedding of the vertical arc is arbitrary, i.e.
related to the standard embedding by finger moves. The fundamental group
of G̃, and also of G̃′ is

K := ker[Z2 ∗ Z2 −→ Z2].

Figure 2: An example of a link L ⊂ T 2 × (0, 1), and a finger move.

Let L be a link in T 2 × (0, 1) whose components are all essential in
π1(T

2), and let L̃ denote its preimage: a Z2-equivariant collection of lines in
the universal cover. In our examples the links will consist of geodesics in T 2

shifted to different levels in the interval (0, 1). In this case the preimage L̃
consists of a disjoint collection of straight lines. Considering a radial Morse
function, the complement R2 × I ∖ L̃ is seen to have a handle decomposi-
tion with infinitely many 1-handles (one for each line) and no 2-handles, so
π1(R2 × I ∖ L̃) is free. More general links would require an extension of the
group theoretic analysis developed in this paper. The starting point is to
analyze the injectivity of the map α in the commutative triangle

π1(G) π1(T
2 × I ∖ L)

π1(T
2 × I)

α

β
γ

where all maps are induced by inclusions. Here α is induced by the standard
embedding G ⊂ T 2 × I ∖ L; the general case of G′ is discussed in section 2.3.
It is clear that ker[α] equals the kernel of the map ker[β] −→ ker[γ]. Here
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ker[β] = K, and ker[γ] ∼= π1(R2 × I ∖ L̃). Therefore the focus is on the map

(1) K −→ π1(R
2 × I ∖ L̃).

Denote by J the first homology of G̃, J = K/[K,K], and let H denote
H1(R2 × I ∖ L̃). Since π1(R2 × I ∖ L̃) is a free group, if J −→ H were injec-
tive, the Stallings theorem would imply that the map (1) is injective (for the
standard spine G). We will give a construction of links L satisfying weaker
injectivity, modulo powers of the augmentation ideal (see below), for any
embedding G′ ⊂ T 2 × I ∖ L.

Denote the map J −→ H by Lk. The group H is generated by meridians
m(l), one for each line l in L̃. The map Lk is given by Z2-equivariant linking,
sending a 1-cycle c in G̃ to a linear combination of meridians

∑
i aim(li),

where the coefficient ai ∈ Z[Z2] is the linking “number” of c and li. Since
there is a single generator m(l) for each line l, when there is no risk of
confusion we will write

(2) Lk(c) =
∑

i

ai li.

An example calculating the linking map is given below.
As a module over Z[Z2], J is generated by the boundaries of two vertical

“plaquettes”, denoted Px and Py in figure 3a. We will think of elements of
J as linear combinations of these plaquettes, with coefficients in Z[Z2]. The
translations in the directions perpendicular to Px, Py are denoted respec-
tively by x, y. Note that the relation

(3) (1− x)Px + (1− y)Py = 0

holds in J.
Figure 3 illustrates the case when the link L has a single component,

the (1, 1)-curve in the torus T 2 × {1/2}. In this case the two translations
act the same way on L̃: for any line l, xl = yl. Figures 3 (b, c) show the
projection onto R2 of two elements of J : (1− y)Px, (1− x)Px. Denoting the
line intersecting the plaquette with boundary Px by l0, we have

(4) Lk((1− y)Px) = (1− y) l0, Lk((1− x)Px) = (1− x) l0.

(In the equation above, following (2) and the sentence preceding it, for
brevity of notation we use l0 also to denote the meridian to the line.) Since
(1− y) l0 = (1− x) l0 in this example, the map J −→ H is certainly not
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Figure 3: (a): Plaquettes Px, Py generating J over Z[Z2]. (b), (c): Projection
onto R2; dots represent the preimage of the edge {∗} × I of the relative
spine.

injective. Since the map Lk turned out to have kernel in this example, it is
no surprise to observe that the boundary curve of Px ∪ Py in Figure 3 (a) is

null homotopic in R2 × I ∖ L̃.

2.3. Finger moves and the kernel of the linking map

Next we extend this discussion to the case of an arbitrary embedding G′ ⊂
T 2 × I ∖ L. Consider the cellular chain complex of the preimage G̃ of the
standard spine G. Up to a homotopy equivalence where R2 × {0} and R2 ×
{1} are contracted to points, we will consider G̃ as a 1-complex. Since there
are no 2-cells in G̃, the first homology J will be identified with cellular 1-
cycles. Let j denote the inclusion of cellular 1-cycles into cellular 1-chains
of G̃, j : J →֒ C1. Here C1 is generated by a single vertical line segment as
a module over Z[Z2].

The linking map Lk′ : J ′ −→ H for any G′ is given by Lk + F ◦ j, where
F : C1 −→ H is the “finger move” map which measures the difference in H
between the standard embedding {∗} × I and its homotopic image in G′. It
follows that a 1-cycle c is in the kernel of Lk′ if and only if

(5) Lk(c) = −F (j(c))

It is convenient to represent this using diagram (6) of Z2-equivariant
maps. (Note that this diagram does not commute; the two maps are equal
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precisely on the kernel of Lk′.)

(6)

J H

C1

Lk

j
−F

2.4. Powers of the augmentation ideal

Consider elements of Z[Z2] as Laurent polynomials in two commuting vari-
ables x, y. Let I denote the augmentation ideal of Z[Z2]. The following lemma
provides a convenient tool for analyzing the injectivity of the linking map
for an arbitrary spine, modulo powers of the augmentation ideal.

Lemma 5. If

ik : I
kJ/Ik+1J −→ IkH/Ik+1H

is injective for some k, then for any relative spine G′ ⊂ T 3 ∖ L,

i′k : I
kJ ′/Ik+1J ′ −→ IkH/Ik+1H

is injective. Here ik, i
′
k are the maps induced by the inclusions of G,G′ into

T 3 ∖ L.

Proof. The maps in (6) are equivariant over Z[Z2]; consider

(7)

IkJ/Ik+1J IkH/Ik+1H

IkC1/I
k+1C1

Lkk

jk
−Fk

The module J is generated by the plaquette boundaries Px, Py, and their
images under j in C1 are

j(Px) = (1− y)Z, j(Py) = (1− x)Z,

where Z denotes a generator (vertical line segment) of the module C1. Sup-
pose c ∈ IkJ . Then c = aPx + bPy for some a, b ∈ Ik, and

jk(c) = (a(1− y) + b(1− x))Z ∈ Ik+1C1.
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It follows that jk(I
kJ) ⊂ Ik+1C1, so jk = 0, and therefore

ker[Lkk + Fk ◦ jk] = ker[Lkk].

It follows that the kernel is independent of the finger move map F ; thus it
is independent of the choice of G′. □

2.5. Construction of the links

Given k ≥ 0, in this section we construct links in T 2 × I used in the proof
of Theorem 3.

Lemma 6. For any k there exists a link Lk ⊂ T 2 × I such that
ij : I

jJ/Ij+1J −→ IjH/Ij+1H is injective for all 1 ≤ j ≤ k.

Figure 4: The preimage of the curves in T 2 × I, used in the proof of lemma 6,
in the universal cover: projection of R2 × I onto R2 is shown; as in figure 3
dots represent the preimage of the edge {∗} × I of the relative spine.

Proof. To illustrate the idea of the proof, consider small values of k. For
k = 0, let L0 be the 2-component link consisting of a symplectic basis
(1, 0), (0, 1) curves on the torus, shifted to disjoint levels in T 2 × I. Two
lines in their preimage in R2 × I are denoted lx, ly, figure 4. In this case
J/IJ is 2-dimensional, generated by the plaquettes Px, Py, figure 3. The
linking map i0 : J/IJ −→ H/IH is represented by the identity 2× 2 matrix
over the integers. (Here the linking numbers are elements of Z[Z2]/I ∼= Z.)

For k = 1, L1 is defined to be L0 union the (1,−1) curve on the torus,
shifted to a different level in T 2 × I; a line in its preimage is denoted lxy. (In
our convention the slopes are negative, as shown in Figures 3, 4.) In this case
IJ/I2J is 3-dimensional, spanned by (1− x)Px, (1− y)Px, (1− x)Py (recall
the relation (3) (1− x)Px + (1− y)Py = 0).
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IH/I2H is generated by (1− x), (1− y) times the meridians to the lines
lx, ly, lxy. As in equation (2), we continue abbreviating to l the notation m(l)
for the meridian. Note that

(1− x)lx = 0, (1− y)ly = 0, (1− x)lxy = (1− y)lxy.

Therefore IH/I2H is 3-dimensional. The 3× 3 matrix representing the link-
ing map i1 : IJ/I

2J −→ IH/I2H is

(1− x)ly (1− y)lx (1− x)lxy
(1− x)Py 1 0 1
(1− y)Px 0 1 1
(1− x)Px 0 0 1

The map i1 is seen to be injective. The final example we consider is
k = 2. Using relation (3), consider the generators

(1− x)2Px, (1− x)(1− y)Px, (1− y)2Px, (1− x)2Py

of I2J/I3J . Let L2 denote the 4-component link, obtained from L1 by adding
the (1,−2) curve on the torus; a line in its preimage is denoted lxy2 in figure
4. Like in the previous case, linking with lxy is defined modulo x = y.

The actions of x, y on the new line are related by xlxy2 = y2lxy2 . Note
the equality

(8) (1− y2) = (1− y)(1 + y) = 2(1− y) in I/I2

Using (8), for example the linking number of (1− x)2Px and lxy2 in I2/I3

equals (1− x)2 = (1− y2)2 = 4(1− y)2; so the linking number of (1− x)2Px
and (1− y)2lxy2 in the table below is 4.

(1− x)2ly (1− y)2lx (1− y)2lxy (1− y)2lxy2

(1− x)2Py 1 0 1 4
(1− y)2Px 0 1 1 1

(1− x)(1− y)Px 0 0 1 2
(1− x)2Px 0 0 1 4

The lower right 2× 2 block of the matrix is
(

1 2

1 4

)
, a non-singular

matrix. Thus i2 is injective.
Continuing the inductive construction, the link Lk ⊂ T 2 × I is defined to

be Lk−1 union the (1,−k) curve on the torus, shifted in the I coordinate to
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be disjoint from Lk−1. The group I
kJ/Ik+1J is generated by k + 2 elements:

{ (1− x)a(1− y)bPx, a+ b = k, a, b ≥ 0 } and (1− x)kPy.

Using the equality 1− yj = j(1− y) in I/I2, the linking number in
Ik/Ik+1 of (1− x)a(1− y)k−aPx, and lxyj equals

(1− x)a(1− y)k−a = (1− yj)a(1− y)k−a(9)

= ja(1− y)a(1− y)k−a = ja(1− y)k.

Therefore the linking matrix has an upper triangular block decomposition

with the diagonal 2× 2 block
(

1 0

0 1

)
and the k × k Vandermonde matrix V

whose (m,n)-th entry is Vm,n = mn−1. Its determinant is non-zero, showing
that ik : I

kJ/Ik+1J −→ IkH/Ik+1H is injective. This concludes the proof
of lemma 6. □

3. The 3-torus

This section extends the construction from the relative case T 2 × I above
to T 3. After setting up the notation and giving details of the construction,
we will outline the analogues of lemmas 5, 6.

Let T 3 = H ∪H∗ be the genus 3 Heegaard decomposition, and let G,G∗

denote the spines of the two handlebodies. Denote F := π1(G), the free group
on three generators. The fundamental group of the preimage G̃ in R3 is the
commutator subgroup F2. Denote by J the first homology of the cubical
lattice G̃ (the “jungle gym”), J = F2/[F2, F2]. As in the previous section,
we think of generators of J as plaquettes. As a module over Z[Z3], J is
generated by the boundaries of the plaquettes Px, Py, Pz, figure 5. Denoting
the three covering translations by x, y, z, observe the relation

(10) (1− x)Px + (1− y)Py + (1− z)Pz = 0,

in J , analogous to (3).
Consider a link L ⊂ T 3 ∖G whose components are homologically essen-

tial in T 3. Its preimage, a Z3-equivariant collection of lines in R3, will be
denoted L̃ ⊂ R3. Consider

K := ker [π1(T
3 ∖ L) −→ π1(T

3) ].

K ∼= π1(R3 ∖ L̃) is a free group. Denote by H the first homology of
R3 ∖ L̃, H = K/[K,K]. Consider the map Lk : J −→ H induced by the
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Figure 5: Lines and plaquettes.

inclusion G →֒ T 3 ∖ L. It is the Z[Z3]-equivariant linking map, or in other
words it is given by equivariant intersection between the plaquettes and the
lines L̃. Elements of R := Z[Z3] are represented as Laurent polynomials in
commuting variables x, y, z. Denote the augmentation ideal of R by I.

Let i′ : G′ −→ T 3 ∖ L be a spine homotopic to G. Such a homotopy
may be thought of as finger moves of the three edges of G, intersecting the
components of L during the homotopy. Lifting this to the universal cover,
we have a Z[Z3]-equivariant map F : C1(G̃) −→ H. Here the chain group C1

of G̃ is a free module over R of rank three. With this notation in place, the
statement and the proof of lemma 5 hold without any changes.

Next we adapt the construction of links Lk in lemma 6 to the setting
of T 3. For k = 0 it suffices to consider a 3-component link L0 obtained as a
“resolution” of the 1-spine G∗ of T 3. Its preimage in R3, the lines lx, ly, lz,
pair δi,j with the plaquette generators of J , and the map J/IJ −→ H/IH
is an isomorphism for L0.

Consider generators of Ik/Ik+1 of the form

(11) Cka,b,c := (1− x)a(1− y)b(1− z)c, a+ b+ c = k, a, b, c ≥ 0.

It follows from equation (10) that

(12) {Cka,b,c Px, C
k
a,b,c Py, C

k
a,b,0 Pz}

is a basis for IkJ/Ik+1J . Consider the (2k + 3)-component link Lk given by
L0 union (1, 0,−j) and (0, 1,−j) curves in T 3, j = 1, . . . , k}. Their preimages
are denoted lxzj , lyzj . The claim is that as in lemma 6, ij : I

jJ/Ij+1J −→
IjH/Ij+1H is injective for all 1 ≤ j ≤ k. The proof is an extension of the
analysis in section 2.5, which we outline next.
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The linking pairing over Ik/Ik+1 between the basis elements B0 of
IkJ/Ik+1J of the form {Ck0,b,c Px, C

k
a,0,c Py, C

k
a,b,0 Pz} and the lines lx, ly, lz is

non-degenerate. (For example, the linking number of Ck0,b,c Px with lx equals

(1− y)b(1− z)c and with ly, lz it is zero.) Since the linking pairing of lx, ly, lz
is trivial with all other basis elements (denote them B ̸=0) of I

kJ/Ik+1J , it
suffices to analyze the linking pairing between B ̸=0 and the lines {lxzj , lyzj}.
It decomposes as the direct sum of the linking matrix for

(13) {Cka ̸=0,b,c Px, a+ b+ c = k, a, b, c ≥ 0} and {lxzj , j = 1, . . . , k}

and the analogous pairing for {Cka,b ̸=0,c Py} and {lyzj}. Consider (13); the
analysis for y in place of x is directly analogous.

The linking number (element of Ik/Ik+1) of Cka,b,c Px with lxzj equals

(1− x)a(1− y)b(1− z)c = ja(1− y)b(1− z)a+c, see (9). For different values
of b, the linking numbers correspond to different basis elements of Ik/Ik+1.
For a given value of b, the linking matrix of {Cka,b,c Px, a = 1, . . . , k − c− b}

and {(1− y)b(1− z)a+clxzj , j = 1, . . . , k − c− b} is the Vandermond matrix,
as in the proof of lemma 6, showing that ik is injective as claimed.

Remark. If a link L is replaced with the dual spine G∗ (as in the setting
of lemma 1), the analysis above substantially simplifies. Recall the following
result, an instance of a more general statement in terms of the torsion-free
derived series from [CH08]:

Theorem 7 ([CH08, Corollary 2.2]). Suppose F is a free group, B is a
finitely-related group, ϕ : F −→ B induces a monomorphism on H1(−;Q),
and H2(B;Q) is spanned by B(n)-surfaces. Then ϕ induces a monomorphism
F/F (n+1) ⊂ B/B(n+1).

Here for a group B, its derived series is defined by B(0) = B, B(n+1) =
[B(n), B(n)]. The notion of B(n)-surfaces (maps of surfaces into K(B, 1)
where the image on π1 is in B(n) [CH08, Definition 1.5]) gives an analogue
of the Dwyer filtration in the derived setting.

Any embedding i : G −→ T 3 ∖G∗, induces an isomorphism on H1, be-
cause both ϕ, ψ in the diagram below are isomorphisms:

(14)

H1(G) H1(T
3)

H1(T
3 ∖G∗)

φ

i∗
ψ
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Theorem 7 applies to F = π1(G), B = π1(T
3 ∖G∗); the assumption on

H2 is satisfied trivially since H2(T
3 ∖G∗) = 0. It follows that the map J −→

H (where H now denotes the first homology of the preimage of G∗ in R3)
is injective, since J = F (1)/F (2), H = B(1)/B(2).

This approach does not work for links in place of the 1-complex G∗

because H2(T
3 ∖ L) is non-zero, and for a given link L it is a non-trivial

problem to determine what the second homology is of the image on π1 of an
arbitrary map G −→ T 3 ∖ L.

4. Powers of the augmentation ideal and the lower

central series

The result of this section, in conjunction with Lemmas 5, 6 and their ana-
logues for T 3 discussed in section 3, completes the proof of theorem 3. Let
i′ : G′ −→ T 3 ∖ L denote any spine homotopic to the standard spine G,
where L is a link whose components are all essential in π1(T

3), as in sec-
tion 3. The analysis below also applies to the relative case T 2 × I, considered
in section 2.

We start by recalling the notation and summarizing basic consequences
of the topological setup. F denotes π1(G

′), the free group on three genera-
tors, and

K := ker [π1(T
3 ∖ L) −→ π1(T

3) ]

is isomorphic to π1(R3 ∖ L̃), a free group. J ′ denotes the first homology of
the preimage G̃′ of G′ in R3 and H denotes H1(R3 ∖ L̃),

J ′ ∼= F2/[F2, F2], H ∼= K/[K,K].

J ′ and H are considered as modules over Z[Z3], and Ik denotes the k-th
power of the augmentation ideal I of Z[Z3]. The following statement is the
main result of this section, relating the filtrations of J ′, H in terms of powers
of the augmentation ideal and the lower central series of F , π1(T

3 ∖ L).

Lemma 8. Fix k ≥ 2, and suppose IjJ ′/Ij+1J ′ −→ IjH/Ij+1H is injective
for all 0 ≤ j ≤ k − 2. Then the map

F/Fk+1 −→ π1(T
3 ∖ L)/π1(T

3 ∖ L)k+1,

induced by the inclusion i′ : G′ −→ T 3 ∖ L, is injective.
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It is convenient to introduce the following notation, so that the proof
involves isomorphisms rather than injections. Consider

(15) π := image [F
i′
∗−→ π1(T

3 ∖ L) ].

Since the composition F −→ π −→ π1(T
3) is an isomorphism on H1,

H1F −→ H1π is an isomorphism. Note that for k > 1, πk is contained in K,
and so is a free group. Consider

H := image[ J ′ i′
∗−→ H ] ∼= (π ∩ K)/[π ∩ K,π ∩ K].

Observe that π ∩ K = π2. Indeed, as noted above π2 ⊂ K. To prove the
opposite inclusion, consider g ∈ π ∩K. Then g = i′∗(f) for some f ∈ F , see
diagram (16). Since f ∈ ker [F −→ π1(T

3) ] = F2, it follows that g ∈ π2.

(16)

1 π ∩ K π π1(T
3) 1

F

i′
∗

Therefore H could also be defined as H = π2/[π2, π2].

Proof of lemma 8. The proof is by induction on k. We add the base case
k = 1 where there is no assumption on the link, and H1F −→ H1π is an
isomorphism (the conclusion of the lemma when k is set to 1) as discussed
above. Suppose the statement of the lemma holds for k − 1, so the inductive
assumption is that F/Fk −→ π/πk is an isomorphism. The overall strategy
is motivated by the proof of the Stallings theorem [St65]; in particular we
use the isomorphism H2(F/Fk) ∼= H2(π/πk) which is a consequence of the
inductive assumption. It is worth noting again that both F2 and π2 are
free groups but the map F2 −→ π2 is not an isomorphism on H1. Being an
isomorphism on H1 is equivalent to J ′/IkJ ′ ∼= H/IkH for all k. Rather the
lemma has a weaker assumption, J ′/IkJ ′ ∼= H/IkH for some fixed k.

Therefore the main technical ingredient in the proof, the diagram of
exact sequences (21), is formulated with the goal of comparing the lower
central series to powers of the augmentation ideal and it differs from the one
used in the Stallings theorem in [St65].

We start by setting up the relevant short exact sequences. Let ϕk denote
the inclusion Fk ⊂ F2 composed with the quotient map F2 −→ F2/[F2, F2],
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and consider its kernel:

(17) 1 −→ Fk ∩ [F2, F2] −→ Fk
φk

−→ F2/[F2, F2]

Denote the generators of F by x, y, z; the same letters will denote the
covering translations of R3. To relate the map ϕk to the geometric discussion
of the “jungle gym” J in the previous section, consider a basic example,
the triple commutator [[x, y], z] ∈ F3. The map ϕk is implemented by first
expanding [[x, y], z] = [x, y] · ([x, y]−1)z. The first factor is mapped to the
boundary of the plaquette Pz, figure 5. The second factor is mapped to the
boundary of this plaquette with the opposite orientation and shifted one unit
up, −zPz. So ϕ3([[x, y], z]) = (1− z)Pz. An arbitrary element of F3 expands
as a product of conjugates of elements of the form [g1, g2]

g3 · ([g1, g2]
−1)g4 ,

where each gi ∈ F . The map ϕ3 takes [g1, g2] to a cycle c in G̃′, and

(18) ϕ3([g1, g2]
g3 · ([g1, g2]

−1)g4 = (g3 − g4) · c ∈ IJ ′.

It follows that the map ϕ3 surjects onto IJ ′. The analogous statements
hold for Fk: the map ϕk takes a basic commutator [. . . [[x1, x2], x3], . . . , xk],
where x1, . . . , xk ∈ {x, y, z}, x1 ̸= x2, to the plaquette determined by [x1, x2],
multiplied by (1− x3) . . . (1− xk) ∈ Ik−2. More generally, the image of ϕk
is in Ik−2J ′ ⊂ J ′, and moreover any element of Ik−2J ′ is in the image of ϕk.
Consider the exact sequence (17) for k, k + 1:

(19)

1 Fk ∩ [F2, F2] Fk Ik−2J ′ 1

1 Fk+1 ∩ [F2, F2] Fk+1 Ik−1J ′ 1

φk

φk+1

The quotients of the respective groups form the short exact sequence

(20) 1 −→
Fk ∩ [F2, F2]

Fk+1 ∩ [F2, F2]
−→

Fk
Fk+1

−→
Ik−2J ′

Ik−1J ′
−→ 1

Recall that for k > 1, πk is contained inK, and is a free group. We would
like to compare the short exact sequence (20) for F to the corresponding
one for π. The sequence for π is obtained by starting with the map πk −→
π2/[π2, π2] as in (17). The same analysis as above, for example equation (18)
with J ′ replaced with H, shows that πk surjects onto Ik−2H. The vertical
maps in the following diagram, relating the short exact sequences (20) for
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F, π, are induced by the inclusion G′ ⊂ T 3 ∖ L.

(21)

1
Fk ∩ [F

2
,F

2
]

Fk+1 ∩ [F
2
,F

2
]

Fk

Fk+1

Ik−2J ′

Ik−1J ′
1

1
πk ∩ [π

2
,π

2
]

π
k+1

∩ [π
2
,π

2
]

πk
π
k+1

Ik−2H

Ik−1H
1

α β
γ

The inductive assumption is that F/Fk −→ π/πk is an isomorphism, and
the goal is to show that the middle vertical map β is an isomorphism, to
propagate the inductive step. The assumption in the statement of the lemma,
based on the link L, implies that the map γ is an isomorphism. The goal is to
show that α is an isomorphism; then it will follow that β is an isomorphism
too, concluding the inductive step.

Recall that F −→ π is surjective and F/Fk −→ π/πk is assumed to be
an isomorphism. It follows that F2/Fk −→ π2/πk is an isomorphism, and so
is H2(F2/Fk) −→ H2(π2/πk). Consider Hopf’s characterization of H2 of a
group Free/R:

(22) H2(F/R)
∼=

R ∩ [F,F]

[F,R]

Apply this to H2(F2/Fk)
∼= H2(π2/πk) to get

(23)
Fk ∩ [F2, F2]

[Fk, F2]
∼=

πk ∩ [π2, π2]

[πk, π2]

In the Stallings’ proof of his theorem, the second homology groups are terms
in the 5-term exact sequence [St65, Theorem 2.1]; in our context the relation
is not as immediate: the map α in (21) and the isomorphism (23) are related
by the short exact sequences

(24)

1
Fk+1 ∩ [F2,F2]

[Fk,F2]
Fk ∩ [F2,F2]

[Fk,F2]
Fk ∩ [F2,F2]
Fk+1 ∩ [F2,F2]

1

1
π
k+1

∩ [π2,π2]

[πk,π2]
πk ∩ [π2,π2]

[πk,π2]
πk ∩ [π2,π2]
π
k+1

∩ [π
2
,π

2
]

1

∼= α

The middle vertical map is an isomorphism by (23). It follows that the
left vertical map is injective. Since F −→ π is surjective, the left map is in
fact an isomorphism. It follows that α is an isomorphism. □
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We are in a position to show how the statements established in Sec-
tions 2–4 imply the proof of Theorem 3.

Proof of Theorem 3. As discussed in the paragraph following equation (15),
any link (for example, the empty link) is 2-filling. Consider k ≥ 3. Accord-
ing to Lemma 6, there exists a link Lk−3 ⊂ T 2 × I such that the map in-
duced by the inclusion of the standard spine G into the link complement,
IjJ/Ij+1J −→ IjH/Ij+1H, is injective for all 1 ≤ j ≤ k − 3. Its analogue
for T 3 is established in section 3. Lemma 5 shows that then for any spine
G′ in the link complement, IjJ ′/Ij+1J ′ −→ IjH/Ij+1H is injective for all
1 ≤ j ≤ k − 3. Let M denote either T 2 × I or T 3. Now it follows from
Lemma 8 that the map of fundamental groups modulo the k-th term of
the lower central series F/Fk −→ π1(M ∖ L)/π1(M ∖ L)k, induced by the
inclusion G′ −→M ∖ L, is injective, thus completing the proof of the theo-
rem. □

4.1. Discussion and questions

For each k > 1, the combination of lemmas 5, 6 and 8 gives a k-filling link
Lk ⊂ T 3: for any 1-spine G′ of T 3 which is disjoint from Lk,

F/Fk −→ π1(T
3 ∖ Lk)/π1(T

3 ∖ Lk)k

is injective. (As above, F denotes π1(G
′).) Denoting by π the image of F as

in (15), this means F/Fk ∼= π/πk. It is interesting to note that by Dwyer’s
theorem (see section 2.1) this implies thatH2(π) is contained in the (k − 1)st
term of the Dwyer filtration ϕk−1(π). This is true for any map G′ ⊂ T 3 ∖ Lk,
a fact that seems quite non-trivial to prove directly since H2(T

3 ∖ Lk) ⊈
ϕ3(T

3 ∖ Lk).
The cardinality of the links Lk grows linearly with k. In this paper we

considered a special collection of links L in T 3, ensuring that the complement
in the universal cover has free fundamental group. Using this approach in
the general case would require a non-trivial extension of the group-theoretic
analysis developed above.

To illustrate the last point, we present a specific example, a “dense chain
mail link”, for which the property of being filling is not known to us. Consider
the unit cubical T 3, and take an ϵ-net of points in T 3 × S2, the Grassmanian
of all tangent 2-planes to T 3, for some small ϵ. Now define the link L to be
the link of circles of radius 1/10 in T 3 centered at and oriented by each point
of the net. By perturbing the net we may assume L is an embedded link.
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Now suppose G is a spine of T 3 embedded disjointly from L. Each compo-
nent of L bounds a disk in T 3; of course the disks for nearby components
intersect. Thin finger move homotopies can be used to push G off these disks,
ensuring trivial linking number with L. (Generically these finger moves will
acquire intersections with other disks, but the new intersections come in ±1
pairs and thus do not contribute to linking numbers.) The linking number
gives information about the induced map on homology but the question of
injectivity modulo the third and higher terms of the lower central series is
open.

Appendix A. Filling links in 3-manifolds of rank 2

by Christopher J. Leininger2 and Alan W. Reid3

In this appendix we prove the following result which provides the first exam-
ples of closed orientable 3-manifolds with Heegaard genus > 1 that contain
a filling link. To state this, recall that the rank of a finitely generated group
Γ is the minimal cardinality of a generating set for Γ. When Γ = π1(M) and
M is a compact 3-manifold, we define the rank of M to be the rank of Γ.

Theorem A.1. Let M be a closed orientable 3-manifold of rank 2. Then
M contains a filling hyperbolic link.

For convenience, we will discuss what lies behind the crucial feature that
we exploit to exhibit filling links using the assumption of rank 2; namely a
classical result from 3-manifold topology (see [JS79, Theorem VI.4.1]) which
affords a classification of 2-generator subgroups of the fundamental group
of a compact atoroidal, irreducible 3-manifold (see also §A.1 below). Very
briefly, let X be such a 3-manifold, H ⊂ π1(X) a 2-generator subgroup, and
YH → X the cover corresponding to H with compact core CH . As an il-
lustration of the main part of the argument, assume that π1(X) is freely
indecomposable and ∂CH is non-empty and contains no 2-sphere compo-
nents. Then the 2-generator assumption, together with the fact that the
first Betti number of a 3-manifold is at least half the first Betti number of
its boundary, implies that ∂CH (which may be disconnected) has genus 1 or
2. In the case when ∂CH is connected of genus 2, it follows that b1(CH) = 2,

2Supported in part by NSF grant DMS-2106419.
3Supported in part by NSF grant DMS-1812397.
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and a standard argument in 3-manifold topology now shows:

−1 = χ(∂CH)/2 = χ(CH) = b2(CH)− b1(CH) + b0(CH) = b2(CH)− 1.

It follows that b2(CH) = 0, and one can now deduce in this case that H is
free of rank 2, contradicting the assumption that H is indecomposable. The
remainder of the argument is completed by analyzing the case when ∂CH
consists of tori; either one or two incompressible tori, or when ∂CH contains
a compressible torus. The upshot is a limited set of possibilities for what
CH , and hence H can be, and these are listed in §A.1.

Before commencing with the proof of Theorem A.1 we list some corol-
laries. Closed orientable 3-manifolds of Heegaard genus 2 are examples of
manifolds covered by Theorem A.1, so an immediate corollary is:

Corollary A.2. Let M be a closed orientable 3-manifold such that M has
Heegaard genus 2. Then M contains a filling hyperbolic link.

Note that there there are closed orientable 3-manifolds M for which
π1(M) has rank 2, but the Heegaard genus is 3 (see [BZ84]). However, an
interesting case of Corollary A.2 is the following.

Using Perelman’s resolution of the Geometrization Conjecture [KL08])
it is known that all closed orientable 3-manifolds with non-trivial finite fun-
damental have Heegaard genus 1 or 2. To see this, the resolution of the
Geometrization Conjecture proves that a closed 3-manifold M with finite
fundamental is covered by S3, in which case M is a Seifert fibered space.
Assuming that M is not S3, or a Lens Space, then M is a Seifert fibered
space over S2 with three exceptional fibers (see [Ja80, VI.11]), from which a
genus 2 Heegaard splitting may be constructed directly (see [BZ84, Propo-
sition 1.3] for example). The existence of filling links in manifolds of genus
1 was noted after the proof of Proposition 2, so Theorem A.1 now shows.

Corollary A.3. Let M be a closed orientable 3-manifold such that π1(M)
is finite and non-trivial. Then M contains a filling link.

Remark A.4. An alternative proof of Corollary A.3 bypassing the use
of Heegaard genus is the following. Using [Mi57, Section 3], one obtains a
classification of finite groups that act freely on S3. Perelman’s resolution
of the Geometrization Conjecture eliminates the one class of finite groups
from [Mi57] that are not subgroups of SO(4). The five families of non-cyclic
subgroups of SO(4) can all be seen to have rank 2.
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A.1. Proof of Theorem A.1

We begin with a preliminary remark. The hypothesis that M is closed,
orientable and π1(M) has rank 2 implies that π1(M) is non-Abelian. The
reason is this: From [He76, Theorem 9.13] the only abelian groups occurring
as the fundamental group of a closed orientable 3-manifold are Z, Z/nZ,
and Z3, and these are all excluded by the rank hypothesis.

Let L ⊂M be a hyperbolic link with at least 3 components. To find such
a link, one may start with any link L′ inM with at least 2 components, then
appealing to [My82, Corollary 6.3] we may choose a knot K in M \ L′ with
hyperbolic complement, and set L = L′ ∪K.

As in the introduction G will be a spine of M , with G ∩ L = ∅. By def-
inition, π1(G) surjects onto π1(M). We need to prove that the induced ho-
momorphism π1(G) → π1(M \ L) is injective. Let H be be the image group
of this homomorphism. Recall that π1(G) is free of rank 2, and so the result
will follow from the Hopfian property for free groups once we establish that
H is free of rank 2. We remind the reader that the Hopfian property for a
free group F asserts that every epimorphism F → F is an isomorphism.

We argue as follows. Appealing to the classical 3–manifold result
sketched in the previous section, namely [JS79, Theorem VI.4.1], observe
that since M \ L is hyperbolic the possibilities for H are:

1) H is free of rank 2, or

2) H is free abelian of rank ≤ 2, or

3) H finite index in π1(M \ L).

If H is free abelian of rank 1 or 2, then the image in π1(M) via the
homomorphism induced by inclusion M \ L→M is the quotient of a free
abelian group of rank at most 2, and is in particular abelian. Since G is a
spine, H surjects onto π1(M), which contradicts the fact noted above that
π1(M) is non-abelian. Therefore, case (2) is impossible. Case (3) can also be
eliminated as follows. As noted above, the first Betti number of a 3-manifold
is at least half the first Betti number of its boundary, and so we deduce from
this that H3/H has at most two cusps. On the other hand, by construction,
M \ L has at least 3 cusps, and H3/H →M \ L is a finite sheeted cover, a
contradiction. We therefore conclude that the only possibility for H is that
it is free of rank 2 and the proof is complete. □
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