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Plan for the lectures

A basic example and some preliminary material on bilinear and

quadratic forms, Hn and Isom(Hn).

Arithmetic hyperbolic manifolds of simplest type.

Why you might care.

Geometric bounding

Dimensions 2 and 3 versus higher dimensions.
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A basic example PSL(2,Z)

SL2(R) acts on the set S of 2× 2 real symmetric matrices.

Given g =

(
a b
c d

)
∈ SL2(R), and S =

(
x y
y z

)
∈ S we have:

g · S 7→ gSgt.

Note that since g ∈ SL2(R),

det(gSgt) = det(S) = xz− y2.
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S is a 3-dimensional vector space, and using a basis for S we get a

representation ρ : SL2(R)→ GL3(R):

ρ(g) =

 a2 2ab b2

ac bc + ad bd
c2 2cd d2


det(ρ(g)) = 1 so ρ(g) ∈ SL3(R).

Using det(gSgt) = det(S) = xz− y2, it follows that ρ(g) preserves the

quadratic form xz− y2; i.e. Set

J =

 0 0 1
2

0 −1 0
1
2 0 0


ρ(g).J.ρ(g)t = J.
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ker(ρ) = ±I and so this gives an isomorphism of PSL2(R) onto a

subgroup of:

SO(xz− y2,R) = {X ∈ SL3(R) : XJXt = J}.

In fact PSL2(R) ∼= a subgroup of index 2.

Moreover this maps PSL2(Z) onto a subgroup of

SO(xz− y2,Z) = {X ∈ SL3(Z) : XJXt = J}.
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Make a change of basis: u = (x + z)/2 and v = (x− z)/2.

xz− y2 = u2 − v2 − y2.

PSL2(R) still maps isomorphically onto a subgroup of

SO(u2 − v2 − y2,R)

= {X ∈ SL3(R) : Xdiag{1,−1,−1}Xt = diag{1,−1,−1}}

but:

PSL2(Z) does not map into SO(u2 − v2 − y2,Z).
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Another comment on this representation of PSL(2,R):

Suppose n > 1 and let Γ0(n) < PSL(2,Z) denote the subgroup

consisting of those elements congruent to ±
(

a b
0 d

)
(mod n).

Note that τn =

(
0 −1/

√
n√

n 0

)
normalizes Γ0(n).

Hence 〈Γ0(n), τn〉 ⊂ NPSL(2,R)(Γ0(n)) is

commensurable with PSL(2,Z),

not a subgroup of PSL(2,Z) or even PSL(2,Q) if n is square-free.

But under the representation ρ described above:

ρ(τn) =

 0 0 1
n

0 −1 0
n 0 0


it is rational!
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Whats so special about xz− y2 or u2 − v2 − y2

Take ax2 + by2 − cy2, a, b, c integers and > 0

Consider

= {X ∈ SL3(R) : Xdiag{a, b,−c}Xt = diag{a, b,−c}}

and the discrete subgroup:

= {X ∈ SL3(Z) : Xdiag{a, b,−c}Xt = diag{a, b,−c}}

What can we say about this discrete group?



9

They are infinite.

{X ∈ SL2(Z) : Xdiag{b,−c}Xt = diag{b,−c}} gives an infinite

cyclic subgroup.

e.g Take y2 − 3z2, and X =

(
2 1
3 2

)
, then

Xdiag{1,−3}Xt = diag{1,−3}.

If ax2
0 + by2

0 − cz2
0 = 0 then can build a unipotent element (x0, y0, z0

not all 0).
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Bilinear and Quadratic Forms

Let V be a finite dimensional vector space over k, with characteristic

of k 6= 2.

By a (symmetric) bilinear form B on V , we mean a map

B : V × V −→ k

such that

(i) B(u, v) = B(v, u), for all u, v ∈ V .

(ii) B(u + u′, v) = B(u, v) + B(u′, v). for all u, u′, v ∈ V .

(iii) B(αu, v) = αB(u, v), for all α ∈ k and u, v ∈ V .
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Definition With V and B as above, we call (V,B) a bilinear space.

Associated to B is a quadratic map

q : V −→ k

defined by

q(v) = B(v, v).

We see that q satisfies

(i)

q(αv) = α2q(v),

for all α ∈ k and v ∈ V .

(ii)

q(u + v)− q(u)− q(v) = 2B(u, v),

for all u, v ∈ V .
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By specifying a basis for V , B = {ei}, one can write B and q as

follows:

Associated to B is the symmetric matrix(
B(ei, ej)

)
and

q = qB(x) = xT
(

B(ei, ej)

)
x.

is the associated quadratic form for the basis B.

All bilinear forms (or quadratic forms) will be non-degenerate (i.e.

B(x, y) = 0 for all y ∈ V implies x = 0)
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Example:

Let V = Rn+1 with the standard basis B = {ei}.

Define B =< ·, · > by

< x, y >= x1y1 + · · ·+ xnyn − xn+1yn+1,

where

x = (x1, . . . , xn+1) y = (y1, . . . , yn+1).

and the quadratic form

q(x) = x2
1 + · · ·+ x2

n − x2
n+1.



14

Let V1 and V2 be n-dimensional vector spaces over k equipped with

quadratic forms q1 and q2 (call the associated symmetric matrices Q1

and Q2).

Say (V1, q1) is equivalent over k to (V2, q2) if there exists T ∈ GLn(k)

so that:

T tQ1T = Q2

Write q1 'k q2.
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Example Take V1 = V2 = R3 and

q1 = x2
1 + x2

2 − x2
3, q2 = x2

1 + x2
2 − 3x2

3

q3 = x2
1 + x2

2 − 4x2
3, q4 = x1x2 + x2

3

q1 'R q2

q1 'Q q3

Is q1 'Q q2?

q1 'Q q4.
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Equivalence over R
Let V = Rn, B and q be bilinear and quadratic forms.

Sylvester’s Law: There exists a basis {v1, . . . , vn} of V such that q has

the description

Q =

(
B(vi, vj)

)
=


0, i 6= j
1, 1 ≤ i ≤ p
−1, p < i ≤ n

,

for some p.

So

Q = diag(1, 1, . . . , 1,−1,−1, . . . ,−1),

with p 1’s and s = (n− p) −1’s.

(p, s) is called the signature of the form.
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If Q1 and Q2 are symmetric, invertible matrices over R, then

Q1 'R Q2,

if and only if the signature of Q1 and Q2 are the same.

Example

The forms

q = x2
1 + . . . x2

n − x2
n+1, q′ = x2

1 + . . . x2
n −
√

2x2
n+1

have signature (n, 1) and so are equivalent over R.

The forms

q1 = x2
1 + . . . x2

n + x2
n+1, q′1 = x2

1 + . . . x2
n +
√

2x2
n+1

have signature (n + 1, 0) and so are equivalent over R.
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Hyperboloid Model

< ·, · > will denote the bilinear form on Rn+1 described earlier.

Let

Hn = {(x1, . . . , xn+1) ∈ Rn+1 : < x, x >= −1, xn+1 > 0}.

We shall define a metric d on Hn and (Hn, d) will be the hyperboloid

model of hyperbolic n-space.
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Proposition

Let

d : Hn ×Hn −→ R

be the function that assigns to each pair (x, y) ∈ Hn ×Hn the unique

number d(x, y) ≥ 0 such that

cosh d(x, y) = − < x, y > .

Then d is a metric on Hn.
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Remarks: cosh d(x, y) = − < x, y > is well-defined since

< x, y >≤ −1 for all x, y ∈ Hn

(Cauchy Schwartz)

Equality holds iff x = y since < x, y >= −1 iff x = y.

Symmetry follows from < x, y >=< y, x >.

Triangle inequality requires work —uses the Hyperbolic Law of

Cosines:

Let A, B, and C be distinct points in Hn. Form the triangle with these

points as the vertices: Let γ be the angle at the vertex of C: With

a = d(B,C), b = d(A,C), and c = d(A,B),

Then

cosh c = cosh a cosh b− sinh a sinh b cos γ.
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Isometries

O(n, 1) = {S ∈ GLn+1(R) : STJnS = Jn},

where

Jn = diag(1, 1, . . . , 1,−1)

is called the Orthogonal group of the quadratic form

x2
1 + · · ·+ x2

n − x2
n+1.

This is equivalent to

O(n, 1) = {S ∈ GLn+1(R) : < Su,Sv >=< u, v >, u, v ∈ Rn+1},

where < ·, · > is as before.
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Note that the matrix diag(−1, 1, . . . , 1) ∈ O(n, 1) has determinant

−1.

Define: SO(n, 1) = O(n, 1) ∩ SLn+1(R), called the Special

Orthogonal Group.

This has index 2 in O(n, 1).

Define

O0(n, 1) = {S ∈ O(n, 1) : S preserves Hn},

and

SO0(n, 1) = SO(n, 1) ∩ O0(n, 1).

diag(1, 1, . . . , 1,−1) ∈ O(n, 1) flips xn+1 to −xn+1 and so

[O(n, 1) : O0(n, 1)] = 2.
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By construction of the metric d, O0(n, 1) preserves d. Thus

O0(n, 1) ⊂ Isom(Hn).

Theorem 1

O0(n, 1) = Isom(Hn) and SO0(n, 1) = Isom+(Hn).

Definition

By a hyperbolic n-manifold we mean a manifold (resp. orbifold)

Mn = Hn/Γ where Γ < O0(n, 1) is torsion-free (otherwise).

If Γ < SO0(n, 1), Mn is orientable.

Mn = Hn/Γ has finite volume if Γ admits a fundamental polyhedron

of finite volume (say Γ has finite co-volume).

Say Γ is cocompact if Mn is closed.
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How do we construct examples closed or finite volume hyperbolic

n-manifolds?

Note: O(n, 1,Z) = O(n, 1) ∩ GLn+1(Z) is a discrete subgroup of

O(n, 1)

Example: O0(2, 1,Z) = (2, 4,∞) reflection triangle group.

In particular O0(2, 1,Z) has finite co-volume and is non-cocompact.
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Reflection generators:

τe2 =

1 0 0
0 −1 0
0 0 1


(reflection in the plane < z, e2 >= 0)

τv =

0 1 0
1 0 0
0 0 1


(reflection in the plane < z, (−1/

√
2, 1/
√

2, 0) >= 0)

τu =

−1 −2 2
−2 −1 2
−2 −2 3


(reflection in the plane < z, (1, 1, 1) >= 0)
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Arithmetic groups of simplest type

Let k be a totally real number field of degree d over Q equipped with

a fixed embedding into R which we refer to as the identity

embedding, and denote the ring of integers of k by Rk.

Let V be an (n + 1)-dimensional vector space over k equipped with a

quadratic form f (with associated symmetric matrix F) defined over k

which has signature (n, 1) at the identity embedding, and signature

(n + 1, 0) at the remaining d − 1 embeddings.

Call such quadratic forms admissible.

Define the linear algebraic groups defined over k:

O(f) = {X ∈ GLn+1(C) : XtFX = F} and

SO(f) = {X ∈ SLn+1(C) : XtFX = F}.
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For a subring L ⊂ C, we denote the L-points of O(f) (resp. SO(f)) by

O(f,L) (resp. SO(f,L)).

An arithmetic lattice in O(f) (resp. SO(f)) is a subgroup Γ < O(f)

commensurable with O(f,Rk) (resp. SO(f,Rk)).

Note that an arithmetic subgroup of SO(f) is an arithmetic subgroup

of O(f), and an arithmetic subgroup Γ < O(f) determines an

arithmetic subgroup Γ ∩ SO(f) in SO(f).
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Examples:

1. Let q = a1x2
1 + · · ·+ anx2

n − an+1x2
n+1, where ai > 0 and ai ∈ Z.

This has signature (n, 1).

2. f = x2
1 + · · ·+ x2

n −
√

2x2
n+1.

Then for the two Galois embeddings

σ1 :
√

2 7→
√

2

σ2 :
√

2 7→ −
√

2.

we see that f has signature (n, 1) and f σ2 = x2
1 + · · ·+ x2

n +
√

2x2
n+1,

so has signature (n + 1, 0).
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With q as in Example 1, SO(q,Z) is clearly discrete.

What about Example 2?

What about co-compact or finite covolume?

Will discuss this below.
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The form q may or may not represent 0 over Q (equivalently Z).

e.g. x2
1 + x2

2 − x2
3 does, x2

1 + x2
2 − 3x2

3 does not.

x2
1 + x2

2 + x2
3 − 3x2

3 does, x2
1 + x2

2 + x2
3 − 7x2

3 does not.

Let d be any positive integer then x2
1 + x2

2 + x2
3 + x2

4 − dx2
5 represents 0

(d is a sum of 4 squares).

More generally Meyer’s Theorem shows that whenever n ≥ 4, q as in

Example 1 always represent 0 non-trivially.

In the second example there is no solution over Q(
√

2) to the equation

f (x) = 0.



31

Recap from Lecture 1

Arithmetic groups of simplest type

Let k be a totally real number field of degree d over Q equipped with

a fixed embedding into R which we refer to as the identity

embedding, and denote the ring of integers of k by Rk.

Let V be an (n + 1)-dimensional vector space over k equipped with a

quadratic form f (with associated symmetric matrix F) defined over k

which has signature (n, 1) at the identity embedding, and signature

(n + 1, 0) at the remaining d − 1 embeddings.

Call such quadratic forms admissible.
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Define the linear algebraic groups defined over k:

O(f) = {X ∈ GLn+1(C) : XtFX = F}

SO(f) = {X ∈ SLn+1(C) : XtFX = F}.

For a subring L ⊂ C, we denote the L-points of O(f) (resp. SO(f)) by:

O(f,L) = O(f) ∩ GLn+1(L), SO(f,L) = SO(f) ∩ O(f,L)

An arithmetic lattice in O(f) (resp. SO(f)) is a subgroup Γ < O(f)

commensurable with O(f,Rk) (resp. SO(f,Rk)).
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Two examples to keep in mind:

1. Let q = a1x2
1 + · · ·+ anx2

n − an+1x2
n+1, where ai > 0 and ai ∈ Z.

This has signature (n, 1).

Meyer’s Theorem says this represents 0 non-trivially over Z whenever

n ≥ 4.

2. f = x2
1 + · · ·+ x2

n −
√

2x2
n+1.

f has signature (n, 1) and f σ2 = x2
1 + · · ·+ x2

n +
√

2x2
n+1, so has

signature (n + 1, 0).
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Theorem 2

Let q be an admissible quadratic form over the totally real field k.

Then SO(q,Rk) is a discrete subgroup of finite covolume in SO(q,R).

Moreover it is cocompact if and only if q is anisotropic.

Suppose that q is a quadratic form of signature (n, 1).

By Sylvester’s Theorem, there exists T ∈ GLn+1(R) such that

T tQT = Jn.

This effects a conjugation:

T−1O(Q,R)T = O(Jn,R) = O(n, 1).
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A subgroup Γ < O0(n, 1) is called arithmetic of simplest type if Γ is

commensurable with the image in O0(n, 1) of an arithmetic subgroup

of O(f) (under the conjugation map described above).

An arithmetic hyperbolic n-manifold M = Hn/Γ is called arithmetic

of simplest type if Γ is.

The same set-up using special orthogonal groups constructs

orientation-preserving arithmetic groups of simplest type (and

orientable arithmetic hyperbolic n-manifolds of simplest type).
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Discreteness

1. Assume that there is a sequence {Am = (am
ij )} ⊂ O(q,Rk) such that

Am → I.

For sufficiently large m, we have |am
ij | < 2.

2. If σ is a non-identity embedding qσ is equivalent over R to

x2
1 + x2

2 + . . .+ x2
n+1.

Hence O(qσ,R) is conjugate to O(n + 1) and so is a compact group.

This implies that |σ(am
ij )| < Kσ for some Kσ ∈ R.

3. There are only finitely many algebraic integers x of bounded

degree, such that x and all of its Galois conjugates are bounded.
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Finite co-volume of these arithmetic groups follows from general

results of Borel and Harish-Chandra.

Cocompactness

f be a diagonal, anisotropic (over Q) quadratic form of signature

(n, 1) and Z-coefficients. Then Λ = SO(f,Z) is cocompact in

G = SO(f,R).

Caution Meyer’s theorem implies that this is only possible for n ≤ 3.
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We have a map

π : SLn+1(R)→ SLn+1(R)/SLn+1(Z)

Key Claim: Using π , we can define a map

φ : G/Λ→ SLn+1(R)/SLn+1(Z).

The image of φ is compact.

This can be established using the Mahler Compactness Criterion
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Theorem 3 (Mahler’s Compactness Criterion)

Let C ⊂ SLm(R), then the image of C in SLm(R)/SLm(Z) is

precompact (i.e. compact closure) if and only if 0 is not an

accumulation point of

CZm = {c · v : c ∈ C, v ∈ Zm}.

Use this to prove: The image of G in SLn+1(R)/SLn+1(Z) is

precompact

Uses anisotropic and defined over Z to ensure you stay away from 0.
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Associated to f is the bilinear form B, with

B(x, y) =
1
2

(f (x + y)− f (x)− f (y)).

This has Z-coefficients (f is diagonal with Z-coefficients). Note that

(i) B(Zn+1,Zn+1) ∈ Z.

(ii) |B(vm, vm)| ≥ 1. (anisotropic)

You obtain a contradiction from a sequence of gm ∈ G and vm ∈ Zn+1

such that

gmvm → 0.

One can show the image is actually closed and this finishes the proof.
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Comments on non-compact case

Theorem 4

TFAE

• SO(f,Rk) is non-compact and finite volume.

• f is defined over Q and is isotropic.

• SO(f,Rk) contains a unipotent element.
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Finding unipotent elements

Main idea

Let a, b, c ∈ Z and f = ax2 + by2 + cz2 represent 0 non-trivially over

Z; e.g. ax2
0 + by2

0 + cz2
0 = 0. Assume x0 6= 0.

This form is equivalent over Q to the form t(xz− y2) for some t ∈ Q.

Note SO(t(xz− y2),Q) = SO(xz− y2,Q).

If (x0, y0, z0) is as above, consider the matrix:

T =

bcx0 0 4x0
bcy0 −4cz0 −4y0
bcz0 4by0 −4z0

 .

Then T tfT =

 0 0 t/2
0 −t −0

t/2 0 −0

 where t = 16abcx2
0.
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Already seen SO(xz− y2,Z) contains unipotent elements.

This group up to finite index is the image of PSL(2,Z).

As we now discuss: Use the equivalence above to construct

unipotents in SO(f,Z) via commensurability.
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Commensurability

Suppose q1 and q2 are admissable quadratic forms over k and

q1 'k q2.

So there exists T ∈ GLn+1(k) such that T tQ1T = Q2.

Claim:

T−1O(Q1, k)T = O(Q2, k)

The converse also holds.

However

T−1O(Q1,Rk)T ⊂ O(Q2, k).

But need not preserve Rk-points



45

However, T−1O(Q1,Rk)T is commensurable with O(Q2,Rk).

Idea By considering the entries of T and T−1 can choose a

congruence subgroup Γ < O(Q1,Rk) such that T−1ΓT < O(Q2,Rk).

Example f = xz− y2 and fn = nxz− y2.

These are equivalent over Q: Let Y =

n 0 0
0 1 0
0 0 1


Y t

 0 0 1/2
0 −1 0

1/2 0 0

Y =

 0 0 n/2
0 −1 0

n/2 0 0


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Then if X =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 ∈ O(f,Z),

Y−1XY =

 a1 a2/n a3/n
nb1 b2 b3
nc1 c2 c3


which will lie in O(fn,Z) if we choose a2 and a3 divisible by n; so

take Γ to be the principal congruence subgroup of level n in O(f,Z).
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Examples

1. The (2, 4, 6) triangle group arises from the form x2 + y2 − 3z2.

2. The (2, 3, 7) triangle group arises from a form defined over

Q(cosπ/7).

Of course most Fuchsian groups are not arithmetic.

3. The Bianchi groups PSL(2,Od) represent the totality of

commensurability classes of non-cocompact arithmetic Kleinian

groups.

These arise from the quadratic forms dx2
1 + x2

2 + x2
3 − x2

4.

4. The minimal volume hyperbolic 3-orbifold arises from the

quadratic form x2
1 + x2

2 + x2
3 + (3− 2

√
5)x2

4.

Most arithmetic hyperbolic 3-manifolds are not of simplest type.
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5. The groups generated by reflections in the compact 120 cell in H4

and the ideal 24-cell in H4 are arithmetic of simplest type. The

quadratic forms are:

x2
1 + x2

2 + x2
3 + x2

4 − (
1 +
√

5
2

)x2
5

x2
1 + x2

2 + x2
3 + x2

4 − x2
5
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Some other remarks

There are volume formula for certain arithmetic groups of simplest

type; e.g. maximal groups.

If n is even and f is an admissible quadratic form defined over k, then

every arithmetic subgroup in SO(f) is contained in SO(f, k) (Borel).

This is not true when n is odd.
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Totally Geodesic Submanifolds

Consider the form f = x2
1 + x2

2 + . . .+ x2
n −
√

2xn+1 and write as

f = x2
1 + g where

g = x2
2 + . . .+ x2

n −
√

2x2
n+1

Hence the group SO(f,Z[
√

2]) is cocompact and contains a subgroup

SO(g,Rk) which is a cocompact subgroup of SO(g,R).

This allows us to construct arithmetic hyperbolic (n + 1)-manifolds

that contains a hyperbolic n-manifold.

Indeed to construct arithmetic hyperbolic (n + 1)-manifolds that

contains an immersed hyperbolic m-submanifold for all 1 ≤ m ≤ n.
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But we can get many many more....

The reason is this: If T ∈ O(f, k) then TO(f,Rk)T−1 is

commensurable with O(f,Rk).

Given this: we have a subgroup U = TO(f,Rk)T−1 ∩ O(f,Rk) of

finite index in both TO(f,Rk)T−1 and O(f,Rk).

We can therefore build another co-dimension 1 totally geodesic

submanifold by considering H = TSO(g,Rk)T−1 ∩ U < O(f,Rk).

Another way to say this is: Let W ⊂ V be the subspace spanned by

{e2, . . . en+1} so that W equipped with g gives a copy of Hn−1.

Let T ∈ O(f, k) as above, then T(W) is invariant by a cocompact

subgroup H.
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Theorem 5

Let M be an arithmetic hyperbolic n-manifold of simplest type. Then

M contains infinitely many immersed totally geodesic co-dimension 1

submanifolds.
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And more....

Again take f = x2
1 + x2

2 + . . .+ x2
n −
√

2xn+1.

If we can find an admissible n-dimensional quadratic form q defined

over Q(
√

2) and an element a > 0 ∈ Q(
√

2) such that:

f 'Q(
√

2) ax2
1 + q = q′

then commensurability of O(f,Z[
√

2]) and T−1O(q′,Z[
√

2])T can be

used to built a subgroup of finite index in T−1O(q,Z[
√

2])T in

O(f,Z[
√

2])
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Recap from Lectures 1 and 2

Given an admissible quadratic form f over a totally real field k of

signature (n, 1) we have an algebraic group O(f) and an equivalence

over R of f with Jn so that.

T tFT = Jn implies a conjugation T−1O(f,R)T = O(n, 1).

Then T−1O(f,Rk)T ∩ O0(n, 1) determines a commensurability class

of arithmetic hyperbolic n-manifolds of simplest type.

Note if f 'k q then this provides further commensurabilities.
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One striking fact about these arithmetic hyperbolic manifolds of

simplest type is:

Theorem 6

Let M be an arithmetic hyperbolic n-manifold of simplest type. Then

M contains infinitely many immersed totally geodesic co-dimension 1

submanifolds.

Does this characterize arithmeticity?
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Embedding and Bounding

Theorem 7 (Millson, Bergeron-Haglund-Wise)

Let M be an arithmetic hyperbolic n-manifold of simplest type and N

an immersed co-dimension 1 totally geodesic submanifold. Then N

embeds in a finite sheeted cover of M.

Need to promote immersed to embedded.
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LERF

Definition (H-separable)

Let G be a group, H < G. We say G is H-separable if for each

g ∈ G \ H, there exists a subgroup K < G of finite index such that

H ⊂ K and g /∈ K.

Example Let H = 1. Then G is H-separable is equivalent to saying G

is Residually Finite.

Definition

Let G be a group. We say that G is subgroup separable or LERF if G

is H-separable for all finitely generated subgroups H.

Thanks to work of Peter Scott this is what is needed to promote

immersed to embedded!
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Example

Take f = x2
1 + x2

2 + . . .+ x2
n −
√

2xn+1, and write f = x2
1 + g with

g = x2
2 + . . .+ x2

n −
√

2x2
n+1.

We can inject O(g) ↪→ O(f) as follows:

A ∈ O(g) 7→
(

1 0
0 A

)
∈ O(f)

Let the image of O(g,Z[
√

2]) under this map be denoted by H.
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Claim: O(f,Z[
√

2]) is H-separable.

Let γ ∈ O(f,Z[
√

2]) \ H.

Two cases to focus on: (1) γ =

(
−1 0
0 A

)
, A ∈ O(g,Z[

√
2]) and

(2) γ has a non-zero entry x in the first column or row (and not in the

(1, 1)-entry).

In either case choose a prime ideal P ⊂ Z[
√

2] so that P 6=<
√

2 >

and x /∈ P.
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Now let Γ be a torsion free subgroup of finite index in O(f,Z[
√

2]),

then Γ is Γ ∩ H-separable.

This gives hyperbolic n-manifolds containing embedded totally

geodesic submanifolds.

they may be non-orientable.

However, can always arrange (perhaps on a passage to a further finite

sheeted cover) that everything is orientable.

So we can construct an orientable hyperbolic n-manifold M

containing an embedded co-dimension 1 totally geodesic

submanifold.

It either is separating or non-separating.

Latter case gives a map π1(M)→ Z, the former N bounds a compact

hyperbolic n-manifold.
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Theorem 8 (Long, Bergeron)

M an arithmetic hyperbolic n-manifold of simplest type, and N an

immersed co-dimension one totally geodesic submanifold for which N

does not factor through a cover. Then π1(M) is π1(N)-separable.

Embedded vs Bounding
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Geometrically bounding

Definition

A closed connected orientable, hyperbolic n-manifold M bounds

geometrically if M is realized as the totally geodesic boundary of a

compact orientable, hyperbolic (n + 1)-manifold W.

Definition

A closed connected flat n-manifold M bounds geometrically if M is

realized as the cusp cross-section of a finite volume 1-cusped

hyperbolic (n + 1)-manifold.

Can also make sense of just saying that complete orientable finite

volume hyperbolic n-manifold bounds geometrically.
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Theorem 9 (Long-R)

1. There are closed hyperbolic 3-manifolds that do not bound

geometrically.

2. There are flat 3-manifolds that do not bound geometrically.

3. For every n there are closed orientable hyperbolic n-manifolds

which are arithmetic of simplest type that bound geometrically.
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Other results:

Theorem 10 (Kolpakov-Martelli-Tschantz)

There exist infinitely many closed hyperbolic 3-manifolds (whose

volumes are known) which bound geometrically a compact hyperbolic

4-manifold (whose volumes are known).

This uses the tessellation of H4 coming from the 120-cell.

Theorem 11 (Slavich)

The figure-eight knot complement bounds geometrically.
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Recent work:

Theorem 12 (Kolpakov-R-Slavich)

Let M = Hn/Γ (n ≥ 2 and even) be an orientable arithmetic

hyperbolic n-manifold of simplest type.

Then M embeds as a totally geodesic submanifold of an orientable

arithmetic hyperbolic (n + 1)-manifold W.

If M double covers a non-orientable hyperbolic manifold, then M

bounds geometrically.

Moreover, when M is not defined over Q (and is therefore closed), the

manifold W can be taken to be closed.

Weaker statement can be made in odd dimensions.
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Obstructions to bounding

Theorem 13 (Long-R)

If M is a closed hyperbolic 3-manifold or a flat 3-manifold that

bounds geometrically then η(M) ∈ Z.

Meyerhoff-Neumann: For surgeries on a hyperbolic knot in S3 the η

invariant takes on a dense set of values in R.

This allows us to build hyperbolic examples that don’t bound

geometrically.

η(M) ∈ Z is rare: from the SnapPy census of approx. 11, 000 closed

hyperbolic 3-manifolds 41 have this property.
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For a flat 3-manifold M, it is known that η(M) depends only on the

topology of M and is independent of the flat metric.

Take the unique orientable flat 3-manifold with base for the Seifert

fibration S2 and Seifert invariants (2, 1), (3,−1), (6,−1). Then

η(M) = −4/3

Theorem 14 (Long-R, McReynolds)

Every flat n-manifold arises as the cusp cross-section of some cusp of

a multi-cusped non-compact arithmetic hyperbolic (n + 1)-manifold.
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WARNING At the time when we proved these results it was unknown

as to whether there were any 1-cusped finite volume hyperbolic

4-manifolds.

Theorem 15 (Kolpakov-Martelli)

There exist 1-cusped arithmetic hyperbolic 4-manifolds of simplest

type.

These are built using the 24-cell, and are plentiful.

Still none known in any other dimension > 4.

Theorem 16 (Stover)

There are no 1-cusped arithmetic hyperbolic n-orbifolds whenever

n ≥ 30.
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Non-arithmetic hyperbolic n-manifolds—after Gromov and

Piatetski-Shapiro

Cut-and-paste arithmetic hyperbolic manifolds of simplest type along

a common co-dimension 1 totally geodesic submanifold (not

necessarily connected)

How to do this:

Take f = x2
1 + x2

2 + . . .+ x2
n −
√

2xn+1, and write f = x2
1 + g with

g = x2
2 + . . .+ x2

n −
√

2x2
n+1.

Plan: Find a form q = ax2
1 + g such that q is not 'Q(

√
2) to f .

If we can do this its a win: we cut and paste and glue. This produces a

group Λ built from the pieces that can’t be arithmetic.
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Lemma 17

Let Γ1 and Γ2 be arithmetic lattices in O0(n, 1) such that Γ1 ∩ Γ2 is

Zariski dense in O0(n, 1). Then Γ1 and Γ2 are commensurable.

Take Γ1 = O(f,Z[
√

2]) and Γ2 = Λ, and apply the lemma.

Do the same with Γ1 = O(q,Z[
√

2]) and Γ2 = Λ and apply the

lemma.

The orthogonal groups are not commensurable.

a can be constructed using the theory of quadratic forms

Are there non-arithmetic hyperbolic n-manifolds n ≥ 4 that are ”not

built from arithmetic pieces”?
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GFERF

Theorem 18 (Bergeron-Haglund-Wise)

Let M be an arithmetic hyperbolic n-manifold of simplest type. Then

π1(M) is virtually C-special; i.e. π1(M) contains a finite index

subgroup contained in an abstract right angled Coxeter group.

In particular π1(M) is separable on geometrically finite subgroups

—it has the virtual retract property over geometrically finite

subgroups.

Remark: The theorem with Kolpakov-Slavich uses this as a key

ingredient.
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Starting point: Co-dimension 1 totally geodesic submanifolds are

abundant in the following sense:

Given u, v ∈ ∂Hn there exists codimension 1 geodesic submanifold H

whose boundary ∂H ⊂ ∂Hn separates u and v, and there exists

Γ < π1(M) leaving H invariant.

Wont say any more about this, but discuss an earlier special case of

the Bergeron-Haglund-Wise result.
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Theorem 19 (Agol-Long-R)

The Bianchi groups are virtually C-special.
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Recent work of M. Chu improves the argument and controls the

”virtual part”:

Theorem 20 (Chu)

Let Rd be the subgroup of the Bianchi group PSL2(Od) given by

Rd =
{
γ ∈ PSL2(Z[

√
−d]) : γ ≡ Id mod 2

}
.

Then Rd embeds in a RACG and has index [PSL2(Od) : Rd] =

1. 48 if d ≡ 1, 2 mod (4)

2. 288 if d ≡ 7 mod (8)

3. 480 if d ≡ 3 mod (8)
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Ideas in the proof of ALR

As mentioned in Lecture 2 PSL(2,Od) can be realized up to

commensurability as SO(pd,Z) where pd = dx2
1 + x2

2 + x2
3 − x2

4.

The form du2 + dv2 + dw2 + pd is equivalent over Q to the form J6

(uses the 4-squares theorem).

O(6, 1,Z) contains an all right Coxeter group of finite index.

Hence PSL(2,Od) is virtually C-special.
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Contrast with dimensions 2 and 3

M a hyperbolic 2,3-manifold. π1(M) is LERF.

Theorem 21 (Hongbin Sun)

Let M be an arithmetic hyperbolic n-manifold of simplest type with

n ≥ 4. Then π1(M) is not LERF.

Idea in the proof when M is non-compact

Exploit non-LERF non-geometric closed 3-manifolds

Comment: LERF for π1(closed 3-manifold) completely understood

now.

Theorem 22 (Hongbin Sun)

M a closed 3-manifold. π1(M) is LERF if and only M is geometric.
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In fact following work of Yi Liu, Hongbin proves:

Theorem 23

Let M be a mixed non-geometric closed 3-manifold. Then π1(M)

contains a non-separable surface group.

How to exploit this?

Here is the basic idea now given Hongbin’s previous result.

Theorem 24 (Long-R)

Let M denote the exterior of the figure-eight knot complement, and

DM its double. Then π1(DM) admits a faithful representation (with

geometrically finite image) into an arithmetic group of simplest type

commensurable with SO0(4, 1,Z).
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Putting these together:

Corollary 25

SO0(4, 1,Z) is not LERF.

Indeed one gets more:

Corollary 26

SO0(n, 1,Z) is not LERF.

The general non-co-compact case is a generalization of this.

The closed case uses amalgams of closed hyperbolic 3-manifold

groups along infinite cyclic groups (n = 4 needs a different

argument).

THE END


