Arithmetic Hyperbolic Manifolds

1

Alan W. Reid

University of Texas at Austin

Cortona, June 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Plan for the lectures

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

A basic example and some preliminary material on bilinear and quadratic forms, \mathbb{H}^n and $\text{Isom}(\mathbb{H}^n)$.

Arithmetic hyperbolic manifolds of simplest type.

Why you might care.

Geometric bounding

Dimensions 2 and 3 versus higher dimensions.

A basic example $PSL(2, \mathbb{Z})$

 $SL_2(\mathbb{R})$ acts on the set S of 2×2 real symmetric matrices.

Given
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$$
, and $S = \begin{pmatrix} x & y \\ y & z \end{pmatrix} \in S$ we have:

$$g \cdot S \mapsto gSg^t$$
.

Note that since $g \in SL_2(\mathbb{R})$,

$$\det(gSg^t) = \det(S) = xz - y^2.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

S is a 3-dimensional vector space, and using a basis for S we get a representation $\rho : SL_2(\mathbb{R}) \to GL_3(\mathbb{R})$:

$$\rho(g) = \begin{pmatrix} a^2 & 2ab & b^2 \\ ac & bc + ad & bd \\ c^2 & 2cd & d^2 \end{pmatrix}$$

 $det(\rho(g)) = 1$ so $\rho(g) \in SL_3(\mathbb{R})$.

Using $det(gSg^t) = det(S) = xz - y^2$, it follows that $\rho(g)$ preserves the quadratic form $xz - y^2$; i.e. Set

$$J = \left(egin{array}{ccc} 0 & 0 & rac{1}{2} \ 0 & -1 & 0 \ rac{1}{2} & 0 & 0 \end{array}
ight)
ight.$$
 $ho(g).J.
ho(g)^t = J.$

 $\ker(\rho) = \pm I$ and so this gives an isomorphism of $PSL_2(\mathbb{R})$ onto a subgroup of:

$$SO(xz-y^2,\mathbb{R})=\{X\in SL_3(\mathbb{R}): XJX^t=J\}.$$

In fact $PSL_2(\mathbb{R}) \cong$ a subgroup of index 2.

Moreover this maps $PSL_2(\mathbb{Z})$ onto a subgroup of

$$SO(xz-y^2,\mathbb{Z})=\{X\in SL_3(\mathbb{Z}): XJX^t=J\}.$$

Make a change of basis:
$$u = (x + z)/2$$
 and $v = (x - z)/2$.

$$xz - y^2 = u^2 - v^2 - y^2.$$

 $\begin{aligned} &\text{PSL}_2(\mathbb{R}) \text{ still maps isomorphically onto a subgroup of} \\ &\text{SO}(u^2 - v^2 - y^2, \mathbb{R}) \\ &= \{X \in \text{SL}_3(\mathbb{R}) : \text{Xdiag}\{1, -1, -1\} X^t = \text{diag}\{1, -1, -1\} \} \end{aligned}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

but:

 $PSL_2(\mathbb{Z})$ does not map into $SO(u^2 - v^2 - y^2, \mathbb{Z})$.

Another comment on this representation of $PSL(2, \mathbb{R})$:

Suppose n > 1 and let $\Gamma_0(n) < PSL(2, \mathbb{Z})$ denote the subgroup consisting of those elements congruent to $\pm \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \pmod{n}$.

Note that $\tau_n = \begin{pmatrix} 0 & -1/\sqrt{n} \\ \sqrt{n} & 0 \end{pmatrix}$ normalizes $\Gamma_0(n)$. Hence $\langle \Gamma_0(n), \tau_n \rangle \subset N_{\text{PSL}(2,\mathbb{R})}(\Gamma_0(n))$ is

commensurable with $PSL(2, \mathbb{Z})$, not a subgroup of $PSL(2, \mathbb{Z})$ or even $PSL(2, \mathbb{Q})$ if *n* is square-free. But under the representation ρ described above:

$$\rho(\tau_n) = \left(\begin{array}{rrrr} 0 & 0 & \frac{1}{n} \\ 0 & -1 & 0 \\ n & 0 & 0 \end{array}\right)$$

it is rational!

Whats so special about $xz - y^2$ or $u^2 - v^2 - y^2$ Take $ax^2 + by^2 - cy^2$, a, b, c integers and > 0Consider

$$= \{X \in SL_3(\mathbb{R}) : Xdiag\{a, b, -c\}X^t = diag\{a, b, -c\}\}$$

and the discrete subgroup:

$$= \{X \in SL_3(\mathbb{Z}) : Xdiag\{a, b, -c\}X^t = diag\{a, b, -c\}\}$$

(日)

What can we say about this discrete group?

They are infinite.

 $\{X \in SL_2(\mathbb{Z}) : Xdiag\{b, -c\}X^t = diag\{b, -c\}\}$ gives an infinite cyclic subgroup.

e.g Take
$$y^2 - 3z^2$$
, and $X = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$, then X diag $\{1, -3\}X^t =$ diag $\{1, -3\}$.

If $ax_0^2 + by_0^2 - cz_0^2 = 0$ then can build a unipotent element $(x_0, y_0, z_0$ not all 0).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bilinear and Quadratic Forms

Let *V* be a finite dimensional vector space over *k*, with characteristic of $k \neq 2$.

By a (symmetric) bilinear form *B* on *V*, we mean a map

$$B: V \times V \longrightarrow k$$

such that

Definition With V and B as above, we call (V, B) a bilinear space.

Associated to *B* is a quadratic map

$$q: V \longrightarrow k$$

defined by

$$q(v) = B(v, v).$$

We see that *q* satisfies

(i)

$$q(\alpha v) = \alpha^2 q(v),$$

for all $\alpha \in k$ and $v \in V$.

(ii)

$$q(u + v) - q(u) - q(v) = 2B(u, v),$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

for all $u, v \in V$.

By specifying a basis for V, $\mathcal{B} = \{e_i\}$, one can write B and q as follows:

Associated to *B* is the symmetric matrix

$$\left(B(e_i,e_j)\right)$$

and

$$q = q_{\mathcal{B}}(x) = x^T \left(B(e_i, e_j) \right) x.$$

is the associated quadratic form for the basis \mathcal{B} .

All bilinear forms (or quadratic forms) will be non-degenerate (i.e. B(x, y) = 0 for all $y \in V$ implies x = 0)

・ ロ ト ・ 目 ト ・ 目 ト ・ 目 ・ つ へ つ ト

Example:

Let $V = \mathbb{R}^{n+1}$ with the standard basis $\mathcal{B} = \{e_i\}$.

Define $B = \langle \cdot, \cdot \rangle$ by

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n - x_{n+1} y_{n+1},$$

where

$$x = (x_1, \ldots, x_{n+1})$$
 $y = (y_1, \ldots, y_{n+1}).$

and the quadratic form

$$q(x) = x_1^2 + \dots + x_n^2 - x_{n+1}^2.$$

Let V_1 and V_2 be *n*-dimensional vector spaces over *k* equipped with quadratic forms q_1 and q_2 (call the associated symmetric matrices Q_1 and Q_2).

Say (V_1, q_1) is equivalent over k to (V_2, q_2) if there exists $T \in GL_n(k)$ so that:

$$T^t Q_1 T = Q_2$$

イロト イポト イヨト イヨト ヨー シッペ

Write $q_1 \simeq_k q_2$.

Example Take $V_1 = V_2 = \mathbb{R}^3$ and

$$q_1 = x_1^2 + x_2^2 - x_3^2, \quad q_2 = x_1^2 + x_2^2 - 3x_3^2$$
$$q_3 = x_1^2 + x_2^2 - 4x_3^2, \quad q_4 = x_1x_2 + x_3^2$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

 $q_1 \simeq_{\mathbb{R}} q_2$ $q_1 \simeq_{\mathbb{Q}} q_3$ Is $q_1 \simeq_{\mathbb{Q}} q_2$? $q_1 \simeq_{\mathbb{Q}} q_4$.

Equivalence over \mathbb{R}

Let $V = \mathbb{R}^n$, *B* and *q* be bilinear and quadratic forms.

Sylvester's Law: There exists a basis $\{v_1, \ldots, v_n\}$ of *V* such that *q* has the description

$$Q = \left(B(v_i, v_j)\right) = \begin{cases} 0, & i \neq j \\ 1, & 1 \leq i \leq p \\ -1, & p < i \leq n \end{cases}$$

for some *p*.

So

$$Q = \text{diag}(1, 1, \dots, 1, -1, -1, \dots, -1),$$

with p 1's and s = (n - p) - 1's.

(p, s) is called the signature of the form.

If Q_1 and Q_2 are symmetric, invertible matrices over \mathbb{R} , then

$$Q_1 \simeq_{\mathbb{R}} Q_2,$$

if and only if the signature of Q_1 and Q_2 are the same.

Example

The forms

$$q = x_1^2 + \dots x_n^2 - x_{n+1}^2, \ q' = x_1^2 + \dots x_n^2 - \sqrt{2}x_{n+1}^2$$

have signature (n, 1) and so are equivalent over \mathbb{R} . The forms

$$q_1 = x_1^2 + \dots x_n^2 + x_{n+1}^2, \ q'_1 = x_1^2 + \dots x_n^2 + \sqrt{2}x_{n+1}^2$$

have signature (n + 1, 0) and so are equivalent over \mathbb{R} .

Hyperboloid Model

 $<\cdot,\cdot>$ will denote the bilinear form on \mathbb{R}^{n+1} described earlier. Let

$$\mathbb{H}^n = \{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : < x, x \ge -1, \ x_{n+1} \ge 0 \}.$$

We shall define a metric d on \mathbb{H}^n and (\mathbb{H}^n, d) will be the hyperboloid model of hyperbolic *n*-space.

Proposition

Let

$$d:\mathbb{H}^n\times\mathbb{H}^n\longrightarrow\mathbb{R}$$

be the function that assigns to each pair $(x, y) \in \mathbb{H}^n \times \mathbb{H}^n$ the unique number $d(x, y) \ge 0$ such that

$$\cosh d(x, y) = - \langle x, y \rangle \,.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Then d is a metric on \mathbb{H}^n .

20

Remarks: $\cosh d(x, y) = -\langle x, y \rangle$ is well-defined since

 $\langle x, y \rangle \leq -1$ for all $x, y \in \mathbb{H}^n$

(Cauchy Schwartz) Equality holds iff x = y since $\langle x, y \rangle = -1$ iff x = y. Symmetry follows from $\langle x, y \rangle = \langle y, x \rangle$. Triangle inequality requires work —uses the Hyperbolic Law of Cosines:

Let *A*, *B*, and *C* be distinct points in \mathbb{H}^n . Form the triangle with these points as the vertices: Let γ be the angle at the vertex of *C*: With a = d(B, C), b = d(A, C), and c = d(A, B), Then

 $\cosh c = \cosh a \cosh b - \sinh a \sinh b \cos \gamma.$

(日)

Isometries

$$O(n,1) = \{S \in GL_{n+1}(\mathbb{R}) \ : \ S^TJ_nS = J_n\},$$

where

$$J_n = \operatorname{diag}(1, 1, \ldots, 1, -1)$$

is called the Orthogonal group of the quadratic form

$$x_1^2 + \cdots + x_n^2 - x_{n+1}^2$$
.

This is equivalent to

 $O(n,1) = \{S \in GL_{n+1}(\mathbb{R}) \ : \ < Su, Sv > = < u, v >, \ u, v \in \mathbb{R}^{n+1}\},$

(日)

where $\langle \cdot, \cdot \rangle$ is as before.

Note that the matrix $diag(-1, 1, ..., 1) \in O(n, 1)$ has determinant -1.

Define: $SO(n, 1) = O(n, 1) \cap SL_{n+1}(\mathbb{R})$, called the Special Orthogonal Group.

This has index 2 in O(n, 1).

Define

$$O_0(n,1)=\{S\in O(n,1)\ :\ S \text{ preserves }\mathbb{H}^n\},$$

and

$$SO_0(n,1)=SO(n,1)\cap O_0(n,1).$$

 $diag(1, 1, ..., 1, -1) \in O(n, 1)$ flips x_{n+1} to $-x_{n+1}$ and so

 $[O(n, 1) : O_0(n, 1)] = 2.$

By construction of the metric d, $O_0(n, 1)$ preserves d. Thus

 $O_0(n,1)\subset Isom(\mathbb{H}^n).$

Theorem 1

 $O_0(n, 1) = Isom(\mathbb{H}^n)$ and $SO_0(n, 1) = Isom^+(\mathbb{H}^n)$.

Definition

By a hyperbolic n-manifold we mean a manifold (resp. orbifold) $M^n = \mathbb{H}^n / \Gamma$ where $\Gamma < O_0(n, 1)$ is torsion-free (otherwise).

If $\Gamma < SO_0(n, 1)$, M^n is orientable.

 $M^n = \mathbb{H}^n / \Gamma$ has finite volume if Γ admits a fundamental polyhedron of finite volume (say Γ has finite co-volume). Say Γ is cocompact if M^n is closed.

How do we construct examples closed or finite volume hyperbolic *n*-manifolds? Note: $O(n, 1, \mathbb{Z}) = O(n, 1) \cap GL_{n+1}(\mathbb{Z})$ is a discrete subgroup of O(n, 1)

Example: $O_0(2, 1, \mathbb{Z}) = (2, 4, \infty)$ reflection triangle group. In particular $O_0(2, 1, \mathbb{Z})$ has finite co-volume and is non-cocompact.

Reflection generators:

$$\tau_{e_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(reflection in the plane $\langle z, e_2 \rangle = 0$)

$$\tau_{\nu} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(reflection in the plane $\langle z, (-1/\sqrt{2}, 1/\sqrt{2}, 0) \rangle = 0$)

$$\tau_u = \begin{pmatrix} -1 & -2 & 2 \\ -2 & -1 & 2 \\ -2 & -2 & 3 \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(reflection in the plane $\langle z, (1, 1, 1) \rangle = 0$)

Arithmetic groups of simplest type

Let *k* be a totally real number field of degree *d* over \mathbb{Q} equipped with a fixed embedding into \mathbb{R} which we refer to as the identity embedding, and denote the ring of integers of *k* by R_k .

Let *V* be an (n + 1)-dimensional vector space over *k* equipped with a quadratic form f (with associated symmetric matrix *F*) defined over *k* which has signature (n, 1) at the identity embedding, and signature (n + 1, 0) at the remaining d - 1 embeddings.

Call such quadratic forms admissible.

Define the linear algebraic groups defined over k:

$$\begin{split} O(f) &= \{X \in GL_{n+1}(\mathbb{C}) : X^t F X = F\} \text{ and} \\ SO(f) &= \{X \in SL_{n+1}(\mathbb{C}) : X^t F X \underset{\scriptscriptstyle \square \ D \ A}{=} F\}_{\stackrel{\scriptstyle \square \ D \ A}{=}} \underset{\scriptscriptstyle \square \ D \ A \ C}{=} F \}_{\stackrel{\scriptstyle \square \ D \ A \ C}{=}}$$

For a subring $L \subset \mathbb{C}$, we denote the *L*-points of O(f) (resp. SO(f)) by O(f, L) (resp. SO(f, L)).

An *arithmetic lattice* in O(f) (resp. SO(f)) is a subgroup $\Gamma < O(f)$ commensurable with O(f, R_k) (resp. SO(f, R_k)).

Note that an arithmetic subgroup of SO(f) is an arithmetic subgroup of O(f), and an arithmetic subgroup $\Gamma < O(f)$ determines an arithmetic subgroup $\Gamma \cap SO(f)$ in SO(f).

Examples:

1. Let $q = a_1 x_1^2 + \cdots + a_n x_n^2 - a_{n+1} x_{n+1}^2$, where $a_i > 0$ and $a_i \in \mathbb{Z}$. This has signature (n, 1).

2. $f = x_1^2 + \dots + x_n^2 - \sqrt{2}x_{n+1}^2$.

Then for the two Galois embeddings

$$\sigma_1: \quad \sqrt{2} \mapsto \sqrt{2}$$
$$\sigma_2: \quad \sqrt{2} \mapsto -\sqrt{2}.$$

we see that *f* has signature (n, 1) and $f_2^{\sigma} = x_1^2 + \cdots + x_n^2 + \sqrt{2}x_{n+1}^2$, so has signature (n + 1, 0).

29

With q as in Example 1, SO(q, \mathbb{Z}) is clearly discrete.

What about Example 2?

What about co-compact or finite covolume? Will discuss this below. The form q may or may not represent 0 over \mathbb{Q} (equivalently \mathbb{Z}).

e.g.
$$x_1^2 + x_2^2 - x_3^2$$
 does, $x_1^2 + x_2^2 - 3x_3^2$ does not.
 $x_1^2 + x_2^2 + x_3^2 - 3x_3^2$ does, $x_1^2 + x_2^2 + x_3^2 - 7x_3^2$ does not.

Let *d* be any positive integer then $x_1^2 + x_2^2 + x_3^2 + x_4^2 - dx_5^2$ represents 0 (*d* is a sum of 4 squares).

More generally Meyer's Theorem shows that whenever $n \ge 4$, q as in Example 1 always represent 0 non-trivially.

In the second example there is no solution over $\mathbb{Q}(\sqrt{2})$ to the equation f(x) = 0.

Recap from Lecture 1

Arithmetic groups of simplest type

Let *k* be a totally real number field of degree *d* over \mathbb{Q} equipped with a fixed embedding into \mathbb{R} which we refer to as the identity embedding, and denote the ring of integers of *k* by R_k .

Let *V* be an (n + 1)-dimensional vector space over *k* equipped with a quadratic form f (with associated symmetric matrix *F*) defined over *k* which has signature (n, 1) at the identity embedding, and signature (n + 1, 0) at the remaining d - 1 embeddings.

Call such quadratic forms admissible.

Define the linear algebraic groups defined over k:

$$\begin{split} O(f) &= \{X \in GL_{n+1}(\mathbb{C}): X^tFX = F\}\\ SO(f) &= \{X \in SL_{n+1}(\mathbb{C}): X^tFX = F\}. \end{split}$$

For a subring $L \subset \mathbb{C}$, we denote the *L*-points of O(f) (resp. SO(f)) by:

$$O(f,L)=O(f)\cap GL_{n+1}(L),\quad SO(f,L)=SO(f)\cap O(f,L)$$

An arithmetic lattice in O(f) (resp. SO(f)) is a subgroup $\Gamma < O(f)$ commensurable with $O(f, R_k)$ (resp. $SO(f, R_k)$). 33

Two examples to keep in mind:

1. Let $q = a_1 x_1^2 + \cdots + a_n x_n^2 - a_{n+1} x_{n+1}^2$, where $a_i > 0$ and $a_i \in \mathbb{Z}$. This has signature (n, 1).

Meyer's Theorem says this represents 0 non-trivially over \mathbb{Z} whenever $n \ge 4$.

2.
$$f = x_1^2 + \dots + x_n^2 - \sqrt{2}x_{n+1}^2$$

f has signature (n, 1) and $f_2^{\sigma} = x_1^2 + \cdots + x_n^2 + \sqrt{2}x_{n+1}^2$, so has signature (n + 1, 0).

Theorem 2

Let q be an admissible quadratic form over the totally real field k. Then $SO(q, R_k)$ is a discrete subgroup of finite covolume in $SO(q, \mathbb{R})$. Moreover it is cocompact if and only if q is anisotropic.

Suppose that q is a quadratic form of signature (n, 1).

By Sylvester's Theorem, there exists $T \in GL_{n+1}(\mathbb{R})$ such that $T^tQT = J_n$.

This effects a conjugation:

$$T^{-1}O(Q, \mathbb{R})T = O(J_n, \mathbb{R}) = O(n, 1).$$

(日)

A subgroup $\Gamma < O_0(n, 1)$ is called *arithmetic of simplest type* if Γ is commensurable with the image in $O_0(n, 1)$ of an arithmetic subgroup of O(f) (under the conjugation map described above).

An arithmetic hyperbolic *n*-manifold $M = \mathbb{H}^n / \Gamma$ is called *arithmetic of simplest type* if Γ is.

The same set-up using special orthogonal groups constructs orientation-preserving arithmetic groups of simplest type (and orientable arithmetic hyperbolic *n*-manifolds of simplest type).

Discreteness

1. Assume that there is a sequence $\{A_m = (a_{ij}^m)\} \subset O(q, R_k)$ such that $A_m \to I$.

For sufficiently large *m*, we have $|a_{ij}^m| < 2$.

2. If σ is a non-identity embedding q^{σ} is equivalent over \mathbb{R} to $x_1^2 + x_2^2 + \ldots + x_{n+1}^2$. Hence $O(q^{\sigma}, \mathbb{R})$ is conjugate to O(n + 1) and so is a compact group. This implies that $|\sigma(a_{ij}^m)| < K_{\sigma}$ for some $K_{\sigma} \in \mathbb{R}$.

3. There are only finitely many algebraic integers *x* of bounded degree, such that *x* and all of its Galois conjugates are bounded.
Finite co-volume of these arithmetic groups follows from general results of Borel and Harish-Chandra.

Cocompactness

f be a diagonal, anisotropic (over \mathbb{Q}) quadratic form of signature (n, 1) and \mathbb{Z} -coefficients. Then $\Lambda = SO(f, \mathbb{Z})$ is cocompact in $G = SO(f, \mathbb{R})$.

Caution Meyer's theorem implies that this is only possible for $n \leq 3$.

We have a map

$$\pi: \mathrm{SL}_{n+1}(\mathbb{R}) \to \mathrm{SL}_{n+1}(\mathbb{R})/\mathrm{SL}_{n+1}(\mathbb{Z})$$

Key Claim: Using π , we can define a map

$$\phi: G/\Lambda \to \mathrm{SL}_{n+1}(\mathbb{R})/\mathrm{SL}_{n+1}(\mathbb{Z}).$$

The image of ϕ is compact.

This can be established using the Mahler Compactness Criterion

Theorem 3 (Mahler's Compactness Criterion)

Let $C \subset SL_m(\mathbb{R})$, then the image of C in $SL_m(\mathbb{R})/SL_m(\mathbb{Z})$ is precompact (i.e. compact closure) if and only if 0 is not an accumulation point of

$$C\mathbb{Z}^m = \{c \cdot v : c \in C, v \in \mathbb{Z}^m\}.$$

Use this to prove: The image of G in $SL_{n+1}(\mathbb{R})/SL_{n+1}(\mathbb{Z})$ is precompact

Uses anisotropic and defined over \mathbb{Z} to ensure you stay away from 0.

Associated to f is the bilinear form B, with

$$B(x, y) = \frac{1}{2}(f(x+y) - f(x) - f(y)).$$

This has \mathbb{Z} -coefficients (*f* is diagonal with \mathbb{Z} -coefficients). Note that

(i)
$$B(\mathbb{Z}^{n+1},\mathbb{Z}^{n+1}) \in \mathbb{Z}$$
.

(ii)
$$|B(v_m, v_m)| \ge 1$$
. (anisotropic)

You obtain a contradiction from a sequence of $g_m \in G$ and $v_m \in \mathbb{Z}^{n+1}$ such that

$$g_m v_m \to 0.$$

One can show the image is actually closed and this finishes the proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Comments on non-compact case

Theorem 4

TFAE

• $SO(f, R_k)$ is non-compact and finite volume.

- f is defined over \mathbb{Q} and is isotropic.
- SO(f, R_k) contains a unipotent element.

Finding unipotent elements

Main idea

Let $a, b, c \in \mathbb{Z}$ and $f = ax^2 + by^2 + cz^2$ represent 0 non-trivially over \mathbb{Z} ; e.g. $ax_0^2 + by_0^2 + cz_0^2 = 0$. Assume $x_0 \neq 0$.

This form is equivalent over \mathbb{Q} to the form $t(xz - y^2)$ for some $t \in \mathbb{Q}$. Note SO $(t(xz - y^2), \mathbb{Q}) = SO(xz - y^2, \mathbb{Q})$.

If (x_0, y_0, z_0) is as above, consider the matrix:

$$T = \begin{pmatrix} bcx_0 & 0 & 4x_0 \\ bcy_0 & -4cz_0 & -4y_0 \\ bcz_0 & 4by_0 & -4z_0 \end{pmatrix}$$

Then $T^t fT = \begin{pmatrix} 0 & 0 & t/2 \\ 0 & -t & -0 \\ t/2 & 0 & -0 \end{pmatrix}$ where $t = 16abcx_0^2$.

Already seen $SO(xz - y^2, \mathbb{Z})$ contains unipotent elements. This group up to finite index is the image of $PSL(2, \mathbb{Z})$. As we now discuss: Use the equivalence above to construct unipotents in $SO(f, \mathbb{Z})$ via commensurability.

Commensurability

Suppose q_1 and q_2 are admissable quadratic forms over k and $q_1 \simeq_k q_2$. So there exists $T \in GL_{n+1}(k)$ such that $T^tQ_1T = Q_2$. Claim:

$$T^{-1}\mathcal{O}(\mathcal{Q}_1, \mathbf{k})\mathcal{T} = \mathcal{O}(\mathcal{Q}_2, \mathbf{k})$$

The converse also holds.

However

$$T^{-1}O(Q_1, R_k)T \subset O(Q_2, k).$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

But need not preserve R_k -points

However, $T^{-1}O(Q_1, R_k)T$ is commensurable with $O(Q_2, R_k)$.

Idea By considering the entries of T and T^{-1} can choose a congruence subgroup $\Gamma < O(Q_1, R_k)$ such that $T^{-1}\Gamma T < O(Q_2, R_k)$. Example $f = xz - y^2$ and $f_n = nxz - y^2$. These are equivalent over \mathbb{Q} : Let $Y = \begin{pmatrix} n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $Y^{t} \begin{pmatrix} 0 & 0 & 1/2 \\ 0 & -1 & 0 \\ 1/2 & 0 & 0 \end{pmatrix} Y = \begin{pmatrix} 0 & 0 & n/2 \\ 0 & -1 & 0 \\ n/2 & 0 & 0 \end{pmatrix}$

Then if
$$X = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \in \mathcal{O}(\mathbf{f}, \mathbb{Z}),$$

$$Y^{-1}XY = \begin{pmatrix} a_1 & a_2/n & a_3/n \\ nb_1 & b_2 & b_3 \\ nc_1 & c_2 & c_3 \end{pmatrix}$$

which will lie in $O(f_n, \mathbb{Z})$ if we choose a_2 and a_3 divisible by n; so take Γ to be the principal congruence subgroup of level n in $O(f, \mathbb{Z})$.

Examples

The (2,4,6) triangle group arises from the form x² + y² - 3z².
The (2,3,7) triangle group arises from a form defined over Q(cos π/7).

Of course most Fuchsian groups are not arithmetic.

3. The Bianchi groups $PSL(2, O_d)$ represent the totality of commensurability classes of non-cocompact arithmetic Kleinian groups.

These arise from the quadratic forms $dx_1^2 + x_2^2 + x_3^2 - x_4^2$.

4. The minimal volume hyperbolic 3-orbifold arises from the quadratic form $x_1^2 + x_2^2 + x_3^2 + (3 - 2\sqrt{5})x_4^2$.

Most arithmetic hyperbolic 3-manifolds are not of simplest type.

48

5. The groups generated by reflections in the compact 120 cell in \mathbb{H}^4 and the ideal 24-cell in \mathbb{H}^4 are arithmetic of simplest type. The quadratic forms are:

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 - (\frac{1 + \sqrt{5}}{2})x_5^2$$
$$x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_5^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Some other remarks

There are volume formula for certain arithmetic groups of simplest type; e.g. maximal groups.

If *n* is even and *f* is an admissible quadratic form defined over *k*, then every arithmetic subgroup in SO(f) is contained in SO(f, k) (Borel). This is not true when *n* is odd.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Totally Geodesic Submanifolds

Consider the form $f = x_1^2 + x_2^2 + \ldots + x_n^2 - \sqrt{2}x_{n+1}$ and write as $f = x_1^2 + g$ where

$$g = x_2^2 + \ldots + x_n^2 - \sqrt{2}x_{n+1}^2$$

Hence the group $SO(f, \mathbb{Z}[\sqrt{2}])$ is cocompact and contains a subgroup $SO(g, R_k)$ which is a cocompact subgroup of $SO(g, \mathbb{R})$.

This allows us to construct arithmetic hyperbolic (n + 1)-manifolds that contains a hyperbolic *n*-manifold.

Indeed to construct arithmetic hyperbolic (n + 1)-manifolds that contains an immersed hyperbolic *m*-submanifold for all $1 \le m \le n$.

But we can get many many more....

The reason is this: If $T \in O(f, k)$ then $TO(f, R_k)T^{-1}$ is commensurable with $O(f, R_k)$.

Given this: we have a subgroup $U = TO(f, R_k)T^{-1} \cap O(f, R_k)$ of finite index in both $TO(f, R_k)T^{-1}$ and $O(f, R_k)$.

We can therefore build another co-dimension 1 totally geodesic submanifold by considering $H = TSO(g, R_k)T^{-1} \cap U < O(f, R_k)$.

Another way to say this is: Let $W \subset V$ be the subspace spanned by $\{e_2, \ldots e_{n+1}\}$ so that W equipped with g gives a copy of \mathbb{H}^{n-1} . Let $T \in O(f, k)$ as above, then T(W) is invariant by a cocompact subgroup H.

Theorem 5

Let M be an arithmetic hyperbolic n-manifold of simplest type. Then M contains infinitely many immersed totally geodesic co-dimension 1 submanifolds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

And more....

Again take $f = x_1^2 + x_2^2 + \ldots + x_n^2 - \sqrt{2}x_{n+1}$.

If we can find an admissible *n*-dimensional quadratic form *q* defined over $\mathbb{Q}(\sqrt{2})$ and an element $a > 0 \in \mathbb{Q}(\sqrt{2})$ such that:

$$f \simeq_{\mathbb{Q}(\sqrt{2})} ax_1^2 + q = q'$$

then commensurability of O(f, $\mathbb{Z}[\sqrt{2}]$) and $T^{-1}O(q', \mathbb{Z}[\sqrt{2}])T$ can be used to built a subgroup of finite index in $T^{-1}O(q, \mathbb{Z}[\sqrt{2}])T$ in O(f, $\mathbb{Z}[\sqrt{2}]$)

Recap from Lectures 1 and 2

Given an admissible quadratic form f over a totally real field k of signature (n, 1) we have an algebraic group O(f) and an equivalence over \mathbb{R} of f with J_n so that.

 $T^{t}FT = J_{n}$ implies a conjugation $T^{-1}O(f, \mathbb{R})T = O(n, 1)$.

Then $T^{-1}O(f, R_k)T \cap O_0(n, 1)$ determines a commensurability class of arithmetic hyperbolic n-manifolds of simplest type. Note if $f \simeq_k q$ then this provides further commensurabilities.

One striking fact about these arithmetic hyperbolic manifolds of simplest type is:

Theorem 6

Let M be an arithmetic hyperbolic n-manifold of simplest type. Then M contains infinitely many immersed totally geodesic co-dimension 1 submanifolds.

Does this characterize arithmeticity?

56

Embedding and Bounding

Theorem 7 (Millson, Bergeron-Haglund-Wise)

Let M be an arithmetic hyperbolic n-manifold of simplest type and N an immersed co-dimension 1 totally geodesic submanifold. Then N embeds in a finite sheeted cover of M.

Need to promote immersed to embedded.

LERF

Definition (*H*-separable)

Let *G* be a group, H < G. We say *G* is *H*-separable if for each $g \in G \setminus H$, there exists a subgroup K < G of finite index such that $H \subset K$ and $g \notin K$.

Example Let H = 1. Then G is H-separable is equivalent to saying G is Residually Finite.

Definition

Let G be a group. We say that G is subgroup separable or LERF if G is H-separable for all finitely generated subgroups H.

Thanks to work of Peter Scott this is what is needed to promote immersed to embedded!

Example

Take
$$f = x_1^2 + x_2^2 + \ldots + x_n^2 - \sqrt{2}x_{n+1}$$
, and write $f = x_1^2 + g$ with $g = x_2^2 + \ldots + x_n^2 - \sqrt{2}x_{n+1}^2$.

We can inject $O(g) \hookrightarrow O(f)$ as follows:

$$A \in \mathcal{O}(\mathfrak{g}) \mapsto \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & A \end{array} \right) \in \mathcal{O}(\mathfrak{f})$$

Let the image of $O(g, \mathbb{Z}[\sqrt{2}])$ under this map be denoted by *H*.

Claim: $O(f, \mathbb{Z}[\sqrt{2}])$ is *H*-separable. Let $\gamma \in O(f, \mathbb{Z}[\sqrt{2}]) \setminus H$.

Two cases to focus on: (1) $\gamma = \left(\begin{array}{c|c} -1 & 0 \\ \hline 0 & A \end{array}\right), A \in O(g, \mathbb{Z}[\sqrt{2}])$ and

(2) γ has a non-zero entry *x* in the first column or row (and not in the (1, 1)-entry).

In either case choose a prime ideal $P \subset \mathbb{Z}[\sqrt{2}]$ so that $P \neq <\sqrt{2} >$ and $x \notin P$.

Now let Γ be a torsion free subgroup of finite index in O(f, $\mathbb{Z}[\sqrt{2}]$), then Γ is $\Gamma \cap H$ -separable. This gives hyperbolic n-manifolds containing embedded totally geodesic submanifolds.

they may be non-orientable.

However, can always arrange (perhaps on a passage to a further finite sheeted cover) that everything is orientable.

So we can construct an orientable hyperbolic *n*-manifold *M* containing an embedded co-dimension 1 totally geodesic submanifold.

It either is separating or non-separating. Latter case gives a map $\pi_1(M) \to \mathbb{Z}$, the former *N* bounds a compact hyperbolic *n*-manifold.

Theorem 8 (Long, Bergeron)

M an arithmetic hyperbolic n-manifold of simplest type, and N an immersed co-dimension one totally geodesic submanifold for which N does not factor through a cover. Then $\pi_1(M)$ is $\pi_1(N)$ -separable.

Embedded vs Bounding

Geometrically bounding

Definition

A closed connected orientable, hyperbolic *n*-manifold *M* bounds geometrically if *M* is realized as the totally geodesic boundary of a compact orientable, hyperbolic (n + 1)-manifold *W*.

Definition

A closed connected flat *n*-manifold *M* bounds geometrically if *M* is realized as the cusp cross-section of a finite volume 1-cusped hyperbolic (n + 1)-manifold.

Can also make sense of just saying that complete orientable finite volume hyperbolic *n*-manifold bounds geometrically.

Theorem 9 (Long-R)

- 1. *There are closed hyperbolic 3-manifolds that do not bound geometrically.*
- 2. There are flat 3-manifolds that do not bound geometrically.
- 3. For every n there are closed orientable hyperbolic n-manifolds which are arithmetic of simplest type that bound geometrically.

64

Other results:

Theorem 10 (Kolpakov-Martelli-Tschantz)

There exist infinitely many closed hyperbolic 3-manifolds (whose volumes are known) which bound geometrically a compact hyperbolic 4-manifold (whose volumes are known).

This uses the tessellation of \mathbb{H}^4 coming from the 120-cell.

Theorem 11 (Slavich)

The figure-eight knot complement bounds geometrically.

Recent work:

Theorem 12 (Kolpakov-R-Slavich)

Let $M = \mathbb{H}^n/\Gamma$ ($n \ge 2$ and even) be an orientable arithmetic hyperbolic n-manifold of simplest type. Then M embeds as a totally geodesic submanifold of an orientable arithmetic hyperbolic (n + 1)-manifold W. If M double covers a non-orientable hyperbolic manifold, then Mbounds geometrically.

Moreover, when *M* is not defined over \mathbb{Q} (and is therefore closed), the manifold *W* can be taken to be closed.

Weaker statement can be made in odd dimensions.

Obstructions to bounding

Theorem 13 (Long-R)

If *M* is a closed hyperbolic 3-manifold or a flat 3-manifold that bounds geometrically then $\eta(M) \in \mathbb{Z}$.

Meyerhoff-Neumann: For surgeries on a hyperbolic knot in S^3 the η invariant takes on a dense set of values in \mathbb{R} . This allows us to build hyperbolic examples that don't bound

geometrically.

 $\eta(M) \in \mathbb{Z}$ is rare: from the SnapPy census of approx. 11,000 closed hyperbolic 3-manifolds 41 have this property.

For a flat 3-manifold M, it is known that $\eta(M)$ depends only on the topology of M and is independent of the flat metric.

Take the unique orientable flat 3-manifold with base for the Seifert fibration S^2 and Seifert invariants (2, 1), (3, -1), (6, -1). Then $\eta(M) = -4/3$

Theorem 14 (Long-R, McReynolds)

Every flat n-manifold arises as the cusp cross-section of some cusp of a multi-cusped non-compact arithmetic hyperbolic (n + 1)-manifold.

WARNING At the time when we proved these results it was unknown as to whether there were any 1-cusped finite volume hyperbolic 4-manifolds.

Theorem 15 (Kolpakov-Martelli)

There exist 1-*cusped arithmetic hyperbolic* 4-*manifolds of simplest type.*

These are built using the 24-cell, and are plentiful.

Still none known in any other dimension > 4.

Theorem 16 (Stover)

There are no 1-cusped arithmetic hyperbolic n-orbifolds whenever $n \ge 30$.

Non-arithmetic hyperbolic n-manifolds—after Gromov and Piatetski-Shapiro

Cut-and-paste arithmetic hyperbolic manifolds of simplest type along a common co-dimension 1 totally geodesic submanifold (not necessarily connected)

How to do this:

Take
$$f = x_1^2 + x_2^2 + \ldots + x_n^2 - \sqrt{2}x_{n+1}$$
, and write $f = x_1^2 + g$ with $g = x_2^2 + \ldots + x_n^2 - \sqrt{2}x_{n+1}^2$.

Plan: Find a form $q = ax_1^2 + g$ such that q is not $\simeq_{\mathbb{Q}(\sqrt{2})}$ to f.

If we can do this its a win: we cut and paste and glue. This produces a group Λ built from the pieces that can't be arithmetic.

Lemma 17

Let Γ_1 and Γ_2 be arithmetic lattices in $O_0(n, 1)$ such that $\Gamma_1 \cap \Gamma_2$ is Zariski dense in $O_0(n, 1)$. Then Γ_1 and Γ_2 are commensurable.

Take $\Gamma_1 = O(f, \mathbb{Z}[\sqrt{2}])$ and $\Gamma_2 = \Lambda$, and apply the lemma.

Do the same with $\Gamma_1=O(q,\mathbb{Z}[\sqrt{2}])$ and $\Gamma_2=\Lambda$ and apply the lemma.

The orthogonal groups are not commensurable. *a* can be constructed using the theory of quadratic forms Are there non-arithmetic hyperbolic n-manifolds $n \ge 4$ that are "not built from arithmetic pieces"?

GFERF

Theorem 18 (Bergeron-Haglund-Wise)

Let *M* be an arithmetic hyperbolic *n*-manifold of simplest type. Then $\pi_1(M)$ is virtually *C*-special; i.e. $\pi_1(M)$ contains a finite index subgroup contained in an abstract right angled Coxeter group. In particular $\pi_1(M)$ is separable on geometrically finite subgroups —it has the virtual retract property over geometrically finite subgroups.

Remark: The theorem with Kolpakov-Slavich uses this as a key ingredient.

Starting point: Co-dimension 1 totally geodesic submanifolds are abundant in the following sense:

Given $u, v \in \partial \mathbb{H}^n$ there exists codimension 1 geodesic submanifold Hwhose boundary $\partial H \subset \partial \mathbb{H}^n$ separates u and v, and there exists $\Gamma < \pi_1(M)$ leaving H invariant.

Wont say any more about this, but discuss an earlier special case of the Bergeron-Haglund-Wise result.
Theorem 19 (Agol-Long-R)

The Bianchi groups are virtually C-special.

Recent work of M. Chu improves the argument and controls the "virtual part":

Theorem 20 (Chu)

Let R_d be the subgroup of the Bianchi group $PSL_2(O_d)$ given by

$$R_d = \left\{ \gamma \in \mathrm{PSL}_2(\mathbb{Z}[\sqrt{-\mathrm{d}}]) : \gamma \equiv \mathrm{Id} \mod 2 \right\}.$$

(日)

Then R_d embeds in a RACG and has index $[PSL_2(O_d) : R_d] =$

- 1. 48 *if* $d \equiv 1, 2 \mod (4)$
- 2. 288 *if* $d \equiv 7 \mod (8)$
- 3. 480 *if* $d \equiv 3 \mod (8)$

Ideas in the proof of ALR

As mentioned in Lecture 2 PSL(2, O_d) can be realized up to commensurability as SO(p_d , \mathbb{Z}) where $p_d = dx_1^2 + x_2^2 + x_3^2 - x_4^2$. The form $du^2 + dv^2 + dw^2 + p_d$ is equivalent over \mathbb{Q} to the form J_6 (uses the 4-squares theorem).

(日)

 $O(6, 1, \mathbb{Z})$ contains an all right Coxeter group of finite index.

Hence $PSL(2, O_d)$ is virtually *C*-special.

Contrast with dimensions 2 and 3

M a hyperbolic 2,3-manifold. $\pi_1(M)$ is LERF.

Theorem 21 (Hongbin Sun)

Let *M* be an arithmetic hyperbolic *n*-manifold of simplest type with $n \ge 4$. Then $\pi_1(M)$ is not LERF.

Idea in the proof when M is non-compact

Exploit non-LERF non-geometric closed 3-manifolds

Comment: LERF for π_1 (closed 3-manifold) completely understood

now.

Theorem 22 (Hongbin Sun)

M a closed 3-manifold. $\pi_1(M)$ is LERF if and only *M* is geometric.

In fact following work of Yi Liu, Hongbin proves:

Theorem 23

Let M be a mixed non-geometric closed 3-manifold. Then $\pi_1(M)$ contains a non-separable surface group.

How to exploit this?

Here is the basic idea now given Hongbin's previous result.

Theorem 24 (Long-R)

Let *M* denote the exterior of the figure-eight knot complement, and DM its double. Then $\pi_1(DM)$ admits a faithful representation (with geometrically finite image) into an arithmetic group of simplest type commensurable with SO₀(4, 1, \mathbb{Z}).

Putting these together:

Corollary 25

 $SO_0(4, 1, \mathbb{Z})$ is not LERF.

Indeed one gets more:

Corollary 26

 $SO_0(n, 1, \mathbb{Z})$ is not LERF.

The general non-co-compact case is a generalization of this. The closed case uses amalgams of closed hyperbolic 3-manifold groups along infinite cyclic groups (n = 4 needs a different argument).

THE END

(日)