
THE DIRAC OPERATOR

ON CUSPED HYPERBOLIC MANIFOLDS

BRUNO MARTELLI AND ALAN W. REID

Abstract. We study how the spin structures on finite-volume hyperbolic n-

manifolds restrict to cusps. When a cusp cross-section is a (n−1)-torus, there

are essentially two possible behaviours: the spin structure is either bounding

or Lie. We show that in every dimension n there are examples where at least

one cusp is Lie, and in every dimension n ≤ 8 there are examples where all

the cusps are bounding.

By work of C. Bär, this implies that the spectrum of the Dirac operator is

R in the first case, and discrete in the second. We therefore deduce that there

are cusped hyperbolic manifolds whose spectrum of the Dirac operator is R in

all dimensions, and whose spectrum is discrete in all dimensions n ≤ 8.

Introduction

Let M be a finite-volume hyperbolic n-manifold all of whose cusp cross-sections

are Euclidean (n − 1)-tori. If M has a spin structure, it induces one on every

orientable codimension-1 submanifold, and hence in particular on every (n − 1)-

torus cusp cross-section. Recall that there are two spin structures on a (n−1)-torus

T up to automorphisms of T (see [2] for example), namely:

• the bounding spin structure, induced by the representation of T as the

boundary of D2 × S1 × · · · × S1 equipped with any spin structure,

• the Lie spin structure, induced by the representation of T as a Lie group.

These spin structures are sometimes called non-trivial and trivial, respectively.

Our interest in the possible restrictions of spin structures to cusp cross-sections is

motivated by the following theorem of Bär [2]:

Theorem 1 (Bär). Let M be a finite volume hyperbolic n-manifold equipped with

a spin structure all of whose cusp cross-sections are Euclidean (n − 1)-tori. Then

the spectrum of the Dirac operator of M is:

(1) R if at least one cusp cross-section inherits the Lie spin structure;

(2) discrete if all the cusp cross-sections inherit the bounding spin structure.

We will not define the Dirac operator here and refer the reader to [2]. By

explicit constructions, it is shown in [2] that both cases of Theorem 1 occur in

dimensions n = 2, 3. Although it is known in dimensions n ≥ 4, that there are
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many cusped hyperbolic n-manifolds admitting a spin structure (indeed every finite-

volume hyperbolic manifold is virtually spinnable [10, 15]), we are not aware of any

example where the spin structure is constructed explicitly and its restriction to the

cusp cross-sections determined. In particular it seems unknown whether cases (1)

or (2) of Theorem 1 occur in dimension n ≥ 4. The main purpose of this article is

to provide a partial answer.

Theorem 2. The following hold:

(1) For every integer n ≥ 2 there is a finite volume cusped orientable hyperbolic

n-manifold equipped with a spin structure, all of whose cusp cross-sections

are Euclidean (n− 1)-tori, and such that the spin structure restricts to the

Lie spin structure on at least one cusp cross-section;

(2) for every integer n ≤ 8 there is a finite volume cusped orientable hyperbolic

n-manifold equipped with a spin structure, all of whose cusp cross-sections

are Euclidean (n− 1)-tori, and such that the spin structure restricts to the

bounding structure on all cusp cross-sections.

Combining this result with Bär’s Theorem we get:

Corollary 3. The following hold:

(1) For every n there is a finite volume cusped orientable hyperbolic n-manifold

with a spin structure for which the spectrum of the Dirac operator is R;

(2) for every n ≤ 8 there is a finite volume cusped orientable hyperbolic n-

manifold with a spin structure for which the spectrum of the Dirac operator

is discrete.

The constructions of examples in (1) and (2) of Theorem 2 are very different in

nature, and neither is completely straightforward, relying on results that have been

proved recently.
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1. The Lie group case

1.1. Preliminaries. We recall that a spin structure on an oriented Riemannian

manifold M is a lift of the principal SO(n)-bundle of frames over M to a principal

Spin(n)-bundle along the double covering map Spin(n)→ SO(n). This structure is

independent of the chosen Riemannian structure, and in fact it can also be defined

in purely topological terms, provided one fixes a cell decomposition of M : in this

case we can say that a spin structure on M is a (homotopy class of a) trivialization

of the tangent bundle over the 1-skeleton that extends over the 2-skeleton.
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A manifold M is spinnable if it admits at least one spin structure, a fact that is

equivalent to the vanishing of the first two Stiefel – Whitney classes w1(M), w2(M)

of M . It is a classical fact that all compact 3-manifolds are spinnable, but many

4-manifolds are not, the first notable non spinnable example being the complex

projective plane. If M is spinnable, the set of inequivalent spin structures is an

affine set over H1(M,Z/2Z). That is, the group H1(M,Z/2Z) acts freely and

transitively on this set, which may in fact be identified with H1(M,Z/2Z) itself

only after that we fix a “base” spin structure corresponding to 0 ∈ H1(M,Z/2Z).

In general there is no canonical way to pinpoint a base spin structure on a

spinnable manifold M . The n-torus Tn is however a lucky exception: among the

2n spin structures of Tn, there is one that can be clearly distinguished from the

others: this is the spin structure that arises from the Lie group structure of Tn. In

general, a Lie group has a preferred trivialization of its tangent bundle, and this

gives a spin structure with the topological interpretation given above. We call it

the Lie spin structure on Tn.

Every codimension one orientable submanifold Nn−1 ⊂ Mn in a spin manifold

Mn inherits a spin structure from that of Mn. In particular, the boundary of a spin

manifold is itself naturally spin. What distinguishes the Lie spin structure of Tn

from all the other 2n − 1 spin structures is that the latter ones are precisely those

that are induced by some spin structure of Mn+1 = D2 × S1 × · · · × S1 by some

identification of Tn with ∂Mn+1. These 2n− 1 spin structures are called bounding.

We recall some standard notions in hyperbolic geometry. It will be convenient for

this part of the discussion to identify hyperbolic n-space Hn, with the hyperboloid

model, defined using the quadratic form jn := x20 + x21 + . . . x2n−1 − x2n; i.e.

Hn = {x = (x0, x1, . . . , xn) ∈ Rn+1 : jn(x) = −1, xn > 0}

equipped with the Riemannian metric induced from the Lorentzian inner product

associated to jn. The full group of isometries of Hn is then identified with O+(n, 1),

the subgroup of

O(n, 1) = {A ∈ GL(n+ 1,R) : AtJnA = Jn},

preserving the upper sheet of the hyperboloid jn(x) = −1, and where Jn is the

symmetric matrix associated to the quadratic form jn. The full group of orientation-

preserving isometries is given by SO+(n, 1) = {A ∈ O+(n, 1) : det(A) = 1}.
We will make use of the following lemma (c.f. [2, Lemma 3]).

Lemma 4. Let M be a finite volume hyperbolic n-manifold admitting a spin struc-

ture, all of whose cusp cross-sections are Euclidean (n − 1)-tori, and assume that

for some cusp cross-section T , the inclusion map T ↪→ M induces a direct sum

decomposition, H1(M,Z) = H1(T,Z)⊕A for some finitely generated Abelian group

A. Then given any spin structure σ on T , there exists a spin structure sσ on M
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such that sσ restricts to σ on T . In particular this holds for the Lie spin structure

on T .

Proof. SinceH1(T,Z) is a direct summand ofH1(M,Z), it follows thatH1(M,Z/2Z)

surjects on H1(T,Z/2Z). So given any spin structure σ on T we can find a spin

structure sσ on M such that sσ restricts to σ on T . �

1.2. Cusped arithmetic hyperbolic manifolds. The proof of Theorem 2(1)

will make use of cusped arithmetic, hyperbolic n-manifolds whose definition we

now recall (see [16] for further details). Suppose that X = Hn/Γ is a finite volume

cusped hyperbolic n-manifold. Then X is arithmetic if Γ is commensurable with a

group Λ < SO+(n, 1) as described below.

Let f be a non-degenerate quadratic form defined over Q of signature (n, 1),

which we can assume is diagonal and has integer coefficients. Then f is equivalent

over R to the form jn defined above; i.e. there exists T ∈ GL(n + 1,R) such that

T tFT = Jn, where F and Jn denote the symmetric matrices associated to f and

jn respectively. Then T−1SO(f,Z)T ∩ SO+(n, 1) defines the arithmetic subgroup

Λ < SO+(n, 1).

Note that the form f is anisotropic (ie does not represent 0 non-trivially over Q)

if and only if the group Γ is cocompact, otherwise the group Γ is non-cocompact (see

[4]). By Meyer’s Theorem [14, §IV.3.2, Corollary 2], the case that f is anisotropic

can only occur when n = 2, 3.

The main result we will need from the theory of cusped arithmetic hyperbolic

manifolds is that their fundamental groups are virtually special [3]. We will not

define this here, but we will prove a result which is a consequence of being virtually

special.

Theorem 5. Let Hn/Λ be a cusped arithmetic hyperbolic n-manifold. Then Λ

has a finite index subgroup Γ for which Hn/Γ has all cusp cross-sections being

Euclidean (n−1)-tori and for one such cusp cross-section T , there exists a retraction

Γ→ π1(T ).

Proof. We indicate how this follows from [3]. By [12] for example, we can first pass

to a finite cover M1 of Hn/Λ so that all cusp cross-sections are Euclidean (n− 1)-

tori. Next, we use [3, Theorem 1.4] together with the last sentence of [3] which

states:

“In fact, the proof of Theorem 1.4 extends to show that non-cocompact arithmetic

lattices virtually retract onto their geometrically finite subgroups.”

in the following way (note that [3, Theorem 1.4] deals with certain closed arithmetic

hyperbolic manifolds).

Let T1 ⊂M1 be a cusp cross-section, since π1(T1) is geometrically finite, we can

use the previous paragraph to arrange finite covers M = Hn/Γ→M1 and T → T1

(and π1(T ) geometrically finite) together with a retraction from Γ→ π1(T ). �
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1.3. The proof of Theorem 2(1). Let X be a cusped arithmetic hyperbolic

manifold of dimension n (which we can assume is at least 4 by the results of [2]).

Using Sullivan’s result [15] we can pass to a finite cover that admits a spin structure

and also (as noted in the proof of Theorem 5), so that all cusp cross-sections are

Euclidean (n − 1)-tori. From Theorem 5, we can pass to a further finite sheeted

cover M → X, that admits a spin structure and for which π1(M) retracts onto

π1(T ). This retraction determines a decomposition H1(M,Z) = H1(T,Z)⊕ A, for

some finitely generated Abelian group A, and the result now follows from Lemma

4. �

We conclude §1 with some remarks on arranging the Lie spin structure on multiple

cusp cross-sections. As above, M will be a cusped arithmetic hyperbolic manifold of

dimension n (of dimension at least 4) admitting a spin structure with all cusp cross-

sections T1, T2, . . . , Ts being Euclidean (n− 1)-tori. For d a positive integer, let Gdj
be the characteristic subgroup of π1(Tj) arising as the kernel of the homomorphism

π1(Tj) → (Z/dZ)n−1. Standard combination techniques can be used to show that

for d sufficiently large, the group G = Gd1 ∗ Gd2 ∗ . . . ∗ Gds is a geometrically finite

subgroup of π1(M), and so we can apply [3] (see above), to obtain finite index

subgroups Γ < π1(M) and L < G with Γ admitting a retraction onto L.

Note that since [G : L] < ∞, L contains a finite index subgroup of each of Gdj
for j = 1, . . . s, and each such will be isomorphic to Zn−1 and conjugate into a

peripheral subgroup of Γ. Furthermore, by the Kurosh subgroup theorem (see [11,

Chapter IV Theorem 1.10] for example), L has the form F ∗ (∗αAα) where F is

a free group and Aα is the intersection of L with a conjugate of some Gdj . Since

[G : L] <∞ it follows that Aα ∼= Zn−1 for each α. Putting this together we deduce

that there is a retraction Γ → (Zn−1)K where each Zn−1 is a peripheral subgroup

of Γ and K some large positive integer.

We can now use an extension of Lemma 4 to get a direct sum decomposition,

H1(Γ,Z) = (Zn−1)K ⊕A for some finitely generated Abelian group A, and we can

follow the proof of Lemma 4 to obtain the Lie spin structure on a large number of

cusp cross-sections of Hn/Γ.

2. The bounding case

In this section we prove Theorem 2(2), the method of proof being very different

from that in §1. The core of the argument is a Dehn filling trick.

2.1. The Dehn filling trick. Let M be a finite-volume hyperbolic n-manifold, all

of whose cross-sections are (n − 1)-tori. We say that a closed smooth n-manifold

N is a Dehn filling of M if N contains some disjoint (n − 2)-tori with trivial

normal bundles whose complement is diffeomorphic to M . Given M , it is possible

to construct a Dehn filling N by attaching a copy of D2 × S1 × · · · × S1 to each
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truncated cusp along some diffeomorphism. The resulting N of course depends on

the chosen diffeomorphisms.

Here is a crucial observation: if a Dehn filling N has a spin structure, it induces

one in M that is of bounding type on every cusp cross-section, because it extends by

construction to the adjacent D2 × S1 × · · · × S1. The existence of a spin structure

on M that restricts to bounding spin structures on every cross-section is in fact

equivalent to the existence of a spinnable Dehn filling N of M .

To prove Theorem 2(2) it therefore suffices to exhibit a hyperbolic n-manifold

that can be Dehn-filled to a spinnable closed n-manifold. We are able to do this

for every n ≤ 8 using right-angled polytopes and a vanishing theorem for Stiefel-

Whitney classes of moment-angled manifolds recently discovered in [8].

2.2. Right-angled polytopes. Let P 3, . . . , P 8 be the notable sequence of finite-

volume right-angled polytopes Pn ⊂ Hn already considered by various authors

[1, 5, 9, 13]. These polytopes are combinatorially dual to the Euclidean Gosset

polytopes [7] discovered by Gosset in 1900. The only information that we need here

is that Pn ⊂ Hn is right-angled and has at least one ideal vertex, its combinatorics

will not be important.

Let Γ be the reflection group of Pn. It follows easily from the standard Coxeter

presentation of Γ that its abelianisation is isomorphic to the finite group (Z/2Z)f

where f is the number of facets of Pn. It is also a standard fact that the kernel

Γ′ = [Γ,Γ] of the abelianization contains no torsion and hence Mn = Hn/Γ′ is a

cusped finite-volume hyperbolic manifold tessellated by 2f copies of Pn. If we use

the colouring language as in [9], this is the manifold that we get by colouring all

the facets of Pn with distinct colours. It also follows from [9, Proposition 7] that

all the cusps of Mn are (n−1)-dimensional tori. The number of cusps may be very

big.1 Note that the manifolds M3, . . . ,M8 defined here are much larger than the

manifolds considered in [9], that are some quotients of these.

We will prove the following.

Theorem 6. The hyperbolic cusped n-manifold Mn has a spinnable Dehn filling.

Therefore it has a spin structure where every cusp cross-section inherits a bounding

spin structure. This holds for every 3 ≤ n ≤ 8.

To prove this theorem we need to introduce some tools. We start by describing

the Dehn fillings of Mn.

2.3. Dehn fillings of polytopes with ideal vertices. The following procedure

works with every right-angled hyperbolic polytope containing some ideal vertex,

but we focus on the poyhedra P 3, . . . , P 8 for simplicity.

1The polytope P 8 has 2160 ideal vertices and 240 facets. The discussion in [9, Section 1.2]

implies that M8 has 2160 · 2240−14 ∼ 1071 cusps. This is still below the number of atoms in the

observable universe, that is around 1080.
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Figure 1. We Dehn fill Pn by replacing every ideal vertex with

a (n− 2)-cube. Here n = 3. The resulting (abstract) polytope P̄n

is simple.

Consider Pn as a Euclidean polytope, using the Klein model for Hn. We now

Dehn fill Pn to produce a new abstract compact polytope P̄n, by substituting each

ideal vertex of Pn with a (n− 2)-cube.

This operation goes as follows. At each ideal vertex v of Pn, we first truncate

it, thus producing a new small (n− 1)-cubic facet C; then we choose two opposite

facets F1, F2 of C, we foliate C with (n − 2)-cubes parallel to F1 and F2, and we

identify all the leaves to a single (n− 2)-cube F . See Figure 1.

If we perform this operation at every ideal vertex v of Pn we get a topological

disc P̄n that has the structure of an abstract simple polytope, that is its boundary is

stratified into faces which intersect minimally, i.e. exactly k of them at each (n−k)-

stratum (this is a consequence of Remark 8 below). Very often P̄n may itself be

realized as a polytope in Rn, but we will not need that. Note that Pn is not simple

precisely at the ideal vertices: therefore P̄n may be seen as a perturbation of Pn

that transforms it into a simple polytope.

The strata of P̄n are the same of Pn, except that every ideal vertex v is replaced

with a (n − 2)-cube F . The facets of P̄n are those of Pn, with some additional

adjacencies: at every ideal vertex v, the two facets of Pn that were opposite with

respect to v and contained F1 and F2 are now adjacent in P̄n, since they intersect

in the new (n− 2)-cube F .

Note that at every ideal vertex v there are n− 1 different Dehn fillings to choose

from, one for every pair of opposite facets F1, F2 in the small (n− 1)-cube C.

Example 7. The polytope P 3 is the bipyramid shown in Figure 2, with 3 ideal

vertices and 2 real ones. The Dehn filling P̄ 3 is obtained by replacing every ideal

vertex with an edge as in Figure 1. At every ideal vertex there are two possible

choices, so there are 23 = 8 choices overall. In all cases we get an abstract simple

polytope with 6 faces. It is possible to get a P̄ 3 that is combinatorially a cube as

in Figure 2.

Remark 8. We may also describe P̄n using dual polytopes. The Gosset polytope

dual to Pn is a Euclidean polytope Gn ⊂ Rn with two types of facets: some
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Figure 2. The polytope P 3 is a right-angled bipyramid with three

ideal vertices along the horizontal plane and two real ones (top and

bottom in the figure). By Dehn filling P 3 we may obtain a cube:

the three ideal vertices have been substituted with three edges (red

in the figure).

simplexes, dual to the real vertices of Pn, and some cross-polytopes (also called

hyper-octahedra), dual to the ideal vertices of Pn. (Every ideal vertex of Pn has a

cubical link, hence the dual facet is a cross-polytope, that is dual to that cube.)

Let Kn−1 be the simplicial complex obtained from the boundary of the Gosset

polytopeGn by subdividing each cross-polytope facet into 2n−1 simplexes as follows.

A cross-polytope in Rn−1 is the convex hull of ±e1, . . .±en−1. Choose two opposite

vertices, say ±e1 for simplicity, and subdivide the cross-polytope into the simplexes

with vertices e1,−e1,±e2, . . . ,±en. There are 2n−1 possible signs, hence 2n−1

simplexes. When n = 2, 3 this is the standard decomposition of a square into

two triangles and of an octahedron into four simplexes. It depends on the choice

of two opposite vertices, that is of a diagonal of the cross-polytope.

The stratification of ∂P̄n is dual of the simplicial complex Kn−1. The choice

of two opposite facets F1, F2 at each ideal vertex v for Pn corresponds to the

choice of a diagonal in each cross-polytope of Gn, and the additional (n− 2)-cube

F in P̄n corresponds to the additional diagonal in Kn−1. Perturbing Pn to the

simple polyhedron P̄n corresponds dually to subdividing the complex ∂Gn into the

simplicial complex Kn−1.

We think of P̄n as an abstract right-angled compact polytope, that is a topo-

logical disc with right-angled corners. In some fortunate cases as in Figure 2 the

polyhedron P̄n may indeed be interpreted as a right-angled polyhedron in some

geometry (P̄ 3 is a Euclidean cube in the figure), but this does not hold in general,

and we do not need it.

We may assign distinct colours to all the facets of P̄n and apply the colouring

construction to P̄n as in [9]. The result is a closed topological manifold M̄n.

The manifold M̄n is naturally a Dehn filling of Mn. Using the techniques of [9]

we see that M̄n decomposes into 2f identical copies of P̄n, and that the pre-image
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of every additional (n− 2)-cube F of P̄n in M̄n consists of many (n− 2)-tori, each

tessellated into 22n−4 copies of F . Since P̄n is obtained from Pn by substituting

ideal vertices with (n − 2)-cubes, the manifold Mn is naturally homeomorphic to

M̄n minus all the (n−2)-tori that are the pre-images of these (n−2)-cubes F . The

closed manifold M̄n also inherits a smooth structure from Mn.

Example 9. We Dehn fill the polyhedron P 3 to a cube P̄ 3. The filled manifold

M̄3 is a 3-torus tessellated into 26 copies of the cube P̄ 3. Therefore M3 is the

complement of a 12-components link in the 3-torus M̄3. The link consists of the

pre-images of the red edges in the cube shown in Figure 2. In fact the containment

of M3 in the 3-cube is a 8-fold covering of the usual description of the Borromean

ring complement as a link complement in the 3-torus. So in particular M3 is an

8-fold cover of the Borromean ring complement, and in fact P 3 is commensurable

with the ideal regular right-angled octahedron.

2.4. Dehn fillings are spinnable. To conclude the proof of Theorem 6, and hence

of Theorem 2(2), it remains to show that the Dehn filling M̄n constructed above is

spinnable. This is an instance of a more general theorem proved recently by Hasui

– Kishimoto – Kizu in [8] in the context of moment angle manifolds. This theorem

shows in fact that all the Stiefel-Whitney classes of M̄n vanish.

We briefly recall this setting. Let K be a simplicial complex with vertices

{1, . . . ,m}. The real moment-angle complex determined by K is

RZK =
⋃
σ∈K

RZσ ⊂ [−1, 1]m

where

RZσ = X1 × · · · ×Xm

such that Xi equals [−1, 1] if i ∈ σ and {−1, 1} if i 6∈ σ. The symbol R is used only

to distinguish the real moment-angle complex from its complex version ZK , that

we will not use here.

By construction RZK is a cube subcomplex of [−1, 1]m that is symmetric with

respect to the m reflections along the hyperplanes xi = 1/2, i = 1, . . . ,m. These

symmetries act transitively on the 2m vertices of the cube complex. It is quite easy

to check that the link of a vertex in RZK is isomorphic to the simplicial complex

K itself. In particular, if K is homeomorphic to a (n − 1)-sphere then M = RZk
is a topological n-manifold. The manifold M is only topological, but it is noted in

[6, 8] that Stiefel – Whitney classes need no smooth structure to be defined, and

moreover the following holds.

Theorem 10 (Hasui – Kishimoto – Kizu). If K is a topological sphere, the Stiefel-

Whitney classes of the real moment-angle manifold RZK all vanish.

This theorem applies to our Dehn fillings M̄n because of the following.
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Proposition 11. Let K = Kn−1 be the simplicial complex constructed by subdi-

viding the Gosset polytope in Remark 8. The real moment-angle manifold RZK is

homeomorphic to M̄n, for every 3 ≤ n ≤ 8.

Proof. Recall that Kn−1 is dual to ∂P̄n and that M̄n is obtained from P̄n by

colouring its facets with all distinct colours. The decomposition of M̄n into identical

copies of P̄n is dual to a cube complex C described in [9, Section 2]. The cube

complexes RZK and C are in fact isomorphic by construction. �

By combining these two results we get that the Stiefel – Whitney classes of M̄n

vanish, so in particular M̄n is spinnable and Theorem 2(2) is proved. �

3. Final remarks and questions

Motivated by Bär’s result Theorem 1, the most interesting question about the

nature of the spectrum of the Dirac operator that remains after out work is captured

by the following.

Question 1: For n ≥ 9, does there exist examples of cusped orientable hyperbolic

n-manifolds that have all cusp cross-sections being (n−1)-tori, which admits a spin

structure that restricts to each cusp cross-section as the bounding spin structure?

As noted in §2, this is equivalent to the existence of a spinnable Dehn filling N of

the cusped hyperbolic manifold. Thus we pose:

Question 2: For each n ≥ 9, does there exist a cusped orientable hyperbolic n-

manifold M having all cusp cross-sections being (n− 1)-tori which admits a Dehn

filling N (in the sense of §2) a closed n-manifold that is spinnable?
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