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Abstract

We prove that any Coxeter group that is not virtually free contains a surface group. In particu-
lar if the Coxeter group is word hyperbolic and not virtually free this establishes the existence of
a hyperbolic surface group, and answers in the a7rmative a question of Gromov in this setting.
We also discuss when Artin groups contain hyperbolic surface groups.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 20F55; 20F67

1. Introduction

Throughout this paper by a surface group we shall mean the fundamental group
of a closed orientable surface of genus at least 1; if the genus is at least 2 we shall
use the term hyperbolic surface group. An intriguing question, due to Gromov [3],
asks whether every 1-ended word hyperbolic group contains a surface group. In the
present paper we answer this question a7rmatively for word hyperbolic Coxeter groups.
This follows immediately from our main result, which gives a characterization of those
Coxeter groups that do not contain surface groups: they are precisely the Coxeter groups
that can be built up from the Bnite Coxeter groups by a sequence of successive free
products with amalgamation along Bnite Coxeter subgroups. More formally, let F be
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the set of all Bnite Coxeter groups (including the trivial group); these are well-known
(see [6,14]). Let G be the smallest class of Coxeter groups such that

(1) F ⊂ G and
(2) if G1; G2 ∈G and G0 ∈F, and G =G1 ∗G0 G2, where the inclusion of G0 in Gi is

as a special subgroup, i = 1; 2, then G ∈G.

Recall that a group is called virtually free if it contains a free subgroup of Bnite
index. (We note that Bnite groups are virtually free.) If A and B are virtually free and
C is Bnite then A ∗C B is also virtually free [26, pp. 191–192]. It follows easily that
if G ∈G then G is virtually free. In particular, if G ∈G then G does not contain a
surface group. Our main result is that G is precisely the class of Coxeter groups that
do not contain surface groups.

Theorem 1.1. Let G be a Coxeter group. Then the following are equivalent:

(1) G is virtually free,
(2) G ∈G,
(3) G does not contain a surface group.

Since a word hyperbolic group cannot contain Z⊕ Z, we get

Corollary 1.2. Let G be a word hyperbolic Coxeter group. Then either G is virtually
free, or G contains a hyperbolic surface group.

We remark that Moussong [24] has shown that for Coxeter groups, being word
hyperbolic is equivalent to not having a Z⊕ Z subgroup.

If a group G is virtually free, then the number of ends of G is either 0, 2 or ∞,
according as the free subgroup of Bnite index has rank 0, 1 or ¿ 2. Hence we can
answer Gromov’s question for Coxeter groups.

Corollary 1.3. Let G be a 1-ended word hyperbolic Coxeter group. Then G contains
a hyperbolic surface group.

These results further strengthen the similarities between the theory of Coxeter groups
and 3-manifold groups (see [9,13,22]).

A class of groups closely related to Coxeter groups are Artin groups (see Section
3 for a deBnition). Except in the trivial case when it is a free group, an Artin group
always contains a Z ⊕ Z. However, we can ask when an Artin group contains a
hyperbolic surface group. We give some results on this question in Section 3.

In Theorem 1.1, clearly (1) implies (3), and, as noted earlier (2) implies (1); hence
it remains to prove that (3) implies (2). The proof of this uses a fact about Bnite graphs
due to Dirac [12]. We include a proof below (see Section 2.6) for completeness. To
state this, we consider the class of graphs that can be built up from complete graphs by
successive amalgamations along complete subgraphs. We Bx some notation. All graphs
will be Bnite, without loops and without multiple edges. The vertex set of the graph
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� will be denoted V (�). Given a subset V ⊂ V (�), set Sp(V ) to be the span of V ,
that is to say the subgraph of � consisting of all edges of � with both vertices in
V . A subgraph �0 ⊂ � is full if Sp(V (�0)) = �0, that is to say, any edge of � with
both endpoints in �0 is contained in �0. For n¿ 3, we deBne an n-cycle, to be the
graph Pn with vertices {v1; v2; : : : ; vn} and edge set E given by: vi and vj are connected
if and only j = i ± 1mod n. Let Kn be the complete graph on n vertices, n¿ 0. (By
convention K0 is the empty graph.) Let C be the smallest class of Bnite graphs such
that:

(1) Kn ∈C ∀n¿ 0 and
(2) if � = �1 ∪�0 �2 where �0

∼= Kn for some n¿ 0, and �1; �2 ∈C, then �∈C.

It is easy to see that if �∈C then � does not contain a full n-cycle for any n¿ 4. In
fact the converse also holds, as is proved in [12] (see Section 2.6 for a proof):

Theorem 1.4 (Dirac). Let � be a 8nite graph. Then either �∈C or � contains a full
n-cycle for some n¿ 4.

The plan of the proof (3) implies (2) in Theorem 1.1 is the following. As is recalled
in Section 2, associated to a Coxeter group G is a labelled Bnite graph � (not the
Coxeter diagram for the group), where all labels are Bnite. By Theorem 1.4, it is
enough to analyze the cases when � contains a full n-cycle, n¿ 4, and when � is
a complete graph. In the Brst case we show directly that the corresponding special
subgroup contains a surface group. In the second case, we use standard results from
the theory of Coxeter groups to show that G is either Bnite or contains a surface group.

2. Coxeter groups

Good references for the material on Coxeter groups covered here are [5,6,14,10].

2.1. Let � be a graph (as in Section 1) with vertex set V (�) = {s1; s2; : : : ; sn}, and
edge set E(�). A labelling of � is a function m :E(�) → {2; 3; : : :}. If e∈E(�) has
endpoints si and sj, we write m(e) = mij, and by convention we set mii = 1. Then
the Coxeter group C(�;m) associated to the labelled graph (�;m) is the group with
presentation

〈s1; s2; : : : ; sn | (sisj)mij = 1〉:
Thus there is a relation for every pair {si; sj} such that there is an edge e∈E(�) with
endpoints si and sj, together with the relations s2i = 1, 16 i6 n.

Caution: The associated labelled graph we have deBned is not what is usually called
the Coxeter diagram associated to the Coxeter group. In the case of the Coxeter dia-
gram, vertices are left unconnected if the product has order 2, and vertices that are not
connected in our graph are connected by edges labelled ∞. The convention we use
follows [10] and is more convenient for our purposes.
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2.2. That the notation used is convenient for us is illustrated in the following theorem.
We denote by 2 the labelling m such that m(e) = 2 for all e∈E(�).

Theorem 2.1. Let G = C(Pn;m) be the Coxeter group associated to some labelling
m of an n-cycle Pn. If n¿ 4, then G contains a surface group of 8nite index, which
is hyperbolic unless n = 4 and m = 2.

Proof. We construct an n-gon in E2 or H2 such that the group generated by reJections
in the faces of this n-gon is isomorphic to the Coxeter group. The result will then
follow, for then a surface group is obtained from a torsion-free subgroup of Bnite
index. Let m(si; si+1) = pi ¡∞. Assume Brst that n¿ 4 and if n = 4, not all the
pi =2. In this case we can construct a hyperbolic polygon P whose interior angles are
consecutively �=pi (see [2] p. 155 for example). The group generated by reJections
in the sides of P is discrete by PoincarLe’s polygon theorem, and is easily seen to be
isomorphic to the Coxeter group C(Pn;m). In this case the surface group is hyperbolic.

If n=4 and all labels are 2 we construct a Euclidean crystallographic group S as the
group generated by reJections in the faces of a square in E2. Note that this Euclidean
crystallographic group contains Z⊕Z of Bnite index, and no other surface groups.

2.3. We say that (�′;m′) is a full subgraph of the labelled graph (�;m), if �′ is a full
subgraph of � and m′ is the restriction of m to the edges of �′. The following lemma
is a standard consequence of properties of Coxeter groups (see [14, Theorem 5.5,
p. 113]).

Lemma 2.2. Let (�′;m′) be a full subgraph of (�;m). Then the induced homomor-
phism of Coxeter groups C(�′;m′) → C(�;m) is injective.

The image of C(�′;m′) in C(�;m) is called a special subgroup of C(�;m).
We shall make use of the following theorem (see [5,6, p. 62]). Recall that an

irreducible Coxeter group is a Coxeter group G such that G does not decompose as a
direct product G1 × G2 with Gi a non-trivial Coxeter group for i = 1; 2.

Theorem 2.3. Let G be a Coxeter group. Then every proper special subgroup of G
is 8nite if and only if one of the following occurs:

(i) G is 8nite;
(ii) G is an irreducible Euclidean re;ection group;
(iii) G is a cocompact re;ection group acting on Hn for some n, whose fundamental

domain is a simplex contained entirely in Hn.

Case (iii) of Theorem 2.3 can be analyzed further. In dimension 2 these groups G
correspond exactly to cocompact hyperbolic triangle groups. For, as in the proof of
2.1, we may construct a triangle with sides S1, S2 and S3 corresponding to the vertices
v1, v2, and v3 of the Coxeter diagram, and with angles (�=p1; �=p2; �=p3) between
pairs of sides (S1; S2), (S2; S3) and (S1; S3) (corresponding to the labelling). The group
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generated by reJections in the faces is the (p1; p2; p3) triangle group which will contain
a hyperbolic surface group if and only if

1
p1

+
1
p2

+
1
p3

¡ 1:

In dimension ¿ 3, there are only a Bnite number of examples (see [14, p. 141]),
namely 9 in dimension 3 and 5 in dimension 4. In dimension 3 it is well known that
these reJection groups all contain surface groups (see for example [23,9] or [18]). For
example taking a face F of a simplex, the centralizer of the reJection in the hyperbolic
plane spanned by F contains a hyperbolic surface group of Bnite index. In dimension
4, one can argue in a similar fashion to the above: given a two-dimensional face F
of one of these simplices, let H denote the two-dimensional hyperbolic plane in H4

spanned by F . Then the subgroup of the Coxeter group G (obtained as the group
generated by reJections in the faces of the simplex) stabilizing H contains a surface
group of Bnite index (since the image of H in H4=G is a closed subset of a compact
set).

In fact, it follows from standard arithmetic constructions (see [20] for example)
that those simplex groups that are arithmetic groups of hyperbolic isometries, contain
inBnitely many commensurability classes of hyperbolic surface groups.

Note also that in case (ii) of Theorem 2.3, by deBnition G acts on En as a discrete
group of isometries. As such it has a normal subgroup of Bnite index that is free
abelian of rank 6 n. If the rank of this free abelian subgroup is ¿ 2, then we may
deduce that G contains a surface group. If the rank is 0, G is Bnite and if the rank
is 1 a simple geometric argument shows that G must be generated by exactly two
reJections, and hence is the inBnite dihedral group.

We summarize all of this discussion in the following:

Corollary 2.4. Let G be an in8nite Coxeter group in which every proper special
subgroup of G is 8nite, but G is not the in8nite dihedral group. Then G contains a
surface subgroup.

2.4. We can now prove Theorem 1.1. We begin with some simple observations.

Lemma 2.5. Suppose that a graph � contains a full n-cycle for some n¿ 4. Then
for any labelling m of � the Coxeter group G = C(�;m) contains a surface group.

Proof. The full n-cycle gives rise to a special subgroup of G which injects in G
by Lemma 2.2. The labelled graph associated to the full n-cycle is isomorphic to (a
labelled) Pn, and so by Theorem 2.1 the special subgroup contains a surface group of
Bnite index.

Lemma 2.6. Let Kn be the complete graph on n vertices. Then for any label-
ling m of Kn, the Coxeter group G = C(Kn;m) either is 8nite or contains a surface
group.
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Proof. If n=0 or 1, then G is Bnite. So suppose that n¿ 2, and assume by induction
that the result is true for n − 1. Consider the proper special subgroups of G corre-
sponding to the n Kn−1 subgraphs of Kn. If these are all Bnite then, by Corollary 2.4,
either G is Bnite or G contains a surface group (note that the inBnite dihedral group
case cannot occur here as the graph is complete). If one of them is inBnite, then by
induction it, and hence G, contains a surface group.

Proof of Theorem 1.1. Let G = C(�;m) be a Coxeter group. We need to prove that
(3) implies (2). If � contains a full n-cycle for some n¿ 4, then G contains a sur-
face group by Lemma 2.5. Hence by Theorem 1.4, we may assume that �∈C. We
proceed by induction on the number of vertices of �. If � ∼= Kn, for some n¿ 0, then
the result follows from Lemma 2.6. If not, then by deBnition of C, � = �1 ∪�0 �2,
where �0

∼= Kn and each of �1 and �2 has fewer vertices than �. This induces a
decomposition G1 ∗G0 G2, where Gi is the special subgroup of G corresponding to �i,
i = 0; 1; 2. By Lemma 2.6, G0 is either Bnite or contains a surface group. Hence we
may assume that G0 is Bnite. Then G0 ∈F, and G1; G2 ∈G by induction, implying that
G ∈G.

2.5. Although we know exactly which Coxeter groups contain surface groups, we can
ask, which Coxeter groups contain hyperbolic surface groups? The above proof shows
that if (�;m) contains either a full n-cycle for some n¿ 4 other than (�; 2) (that
is the square with edges labelled 2), or a labelled complete graph (Kn; k) such that
C(Kn; k) is a cocompact hyperbolic Coxeter group (Theorem 2.3(iii)), then C(�;m)
contains a hyperbolic surface group. However, it is easy to show that the converse
does not hold. That is, there are Coxeter groups C(�;m) which contain a hyperbolic
surface group but where (�;m) contains no full n-cycles for n¿ 4, except possibly
(�; 2), and no complete subgraphs (Kn; k) with C(Kn; k) cocompact hyperbolic.

A family of examples of this type can be described as follows. There are precisely
23 non-compact tetrahedra in H3 with dihedral angles being integer submultiples of
�, corresponding to the 23 hyperbolic Coxeter groups that act non-cocompactly but
with Bnite co-volume on H3 (these are listed on p. 142 of [14]). For each of these
Coxeter groups, the associated labelled graph is K4 with all edge labels in the set
{2; 3; 4; 5; 6}. All the proper special subgroups of these Coxeter groups are either Bnite
or Euclidean Coxeter groups. In particular, we are in the situation described above.
That these contain hyperbolic surface subgroups can be deduced from [8]. For, on
passing to a torsion-free subgroup of Bnite index in these Coxeter groups, we
obtain a subgroup which is the fundamental group of a cusped hyperbolic 3-manifold
of Bnite volume. The main result of [8] now applies to produce a hyperbolic surface
subgroup.

Similar hyperbolic simplex groups exist in all dimensions up through dimension 9.
That is, there are labellings k of the complete graph Kn where 56 n6 10 for which
the associated Coxeter group C(Kn; k) acts non-cocompactly but with Bnite co-volume
on Hn−1. Apart from one example in dimension 5, all these groups are arithmetic and
it is easy to see using standard properties of non-cocompact arithmetic subgroups that
they contain hyperbolic surface subgroups.
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The Bnal example can be handled as follows. The associated labelled K6 in this case
is given by the labeling:

mij =




4; {i j}= {1 2};
3; {i j}= {n n + 1}mod 6; 26 n6 6;

2; otherwise:

Notice that this labeling gives rise to two Euclidean special subgroups, and that the
other proper special subgroups are Bnite. From this it follows that the simplex � in H5

has two ideal vertices, the remaining 4 being interior vertices. If we denote by G the
group generated by reJections in the faces of �, then G acts with Bnite co-volume on
H5, having two cusp ends. Now each top dimensional face of � spans a co-dimension
1 totally geodesic submanifold of H5. Moreover, since � is a simplex any pair of these
top dimensional faces has non-empty co-dimension 2 totally geodesic intersection. Now
since there are only two ideal vertices, we can Bnd a pair of these co-dimension 1
geodesic submanifolds, say H1 and H2, that intersect in a co-dimension 2 geodesic
submanifold H which does not contain either of the two ideal vertices.

The argument is completed as follows. First note that the subgroups of G stabilizing
H1 and H2 respectively, act with Bnite co-volume on the hyperbolic 4-spaces H1 and
H2 (these stabilizers are just the centralizers of the reJections in each of Hi, i=1; 2).
To see this, pass to a normal torsion-free subgroup � of Bnite index in G. Then reJec-
tion in any co-dimension 1 face of � descends to an orientation-reversing involution
on the manifold H5=�. The Bxed-point set is well-known to be a co-dimension 1 em-
bedded totally geodesic submanifold. It therefore follows that the projections of Hi for
i=1; 2 into H5=G are immersed Bnite volume totally geodesic non-compact hyperbolic
4-orbifolds. Furthermore, by the remarks above, these will meet (in general position)
along the projection of H into H5=G, an immersed, closed (by choice of Hi, i=1; 2),
totally geodesic 3-orbifold, denoted below by �. Again since � is a simplex, we may
choose another co-dimension 1 face of � so that its projection into H5=G meets � in
a closed totally geodesic 2-orbifold. The corresponding subgroup of G is virtually a
hyperbolic surface group.

From the above discussions, an interesting case of inBnite Coxeter groups to consider
are those with associated graphs Kn for some n¿ 11, and labelled by integers in
{2; 3; 4; 5; 6}.

Another interesting case is the following. Recall that an all right Coxeter group
is one for which the associated labelling m = 2. We can ask whether the converse
mentioned above holds for all right Coxeter groups. Since C(Kn; 2) ∼= (Z=2Z)n is
Bnite, this becomes:

Question 2.7. Does an all right Coxeter group C(�; 2) contain a hyperbolic surface
group if and only if � contains a full n-cycle for some n¿ 5?

2.6. Here we give the proof of Theorem 1.4. We induct on |V (�)|. If |V (�)| = 0 or
1, the theorem is trivially true, so assume |V (�)|¿ 2.
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If � is a complete graph we are done. If not, then � has a pair of distinct vertices
a and b that are not joined by an edge. Let �′ = Sp(V (�) \ {a; b}). Then �′ is a full
subgraph of �, and is separating in the sense that � \�′ has at least two components.
Let �0 be a (possibly empty) full separating subgraph of � which is minimal (with
respect to inclusion).

Let X1; : : : ; Xm, m¿ 2 be the components of � \ �0. Let NX i be the closure of Xi in
�, so that NX i =Xi ∪Vi, for some Vi ⊂ V (�). Since �0 is full, Sp(Vi) is a subgraph of
�0. Since � \Sp(Vi) has at least two components (one of which is Xi), the minimality
of �0 implies that Vi = V (�0), 16 i6m.

If �0 is not a complete graph, there are distinct vertices u; v∈V (�0) such that
there is no edge of �0, and hence no edge of �, connecting u and v. Consider two
complementary components, X1 and X2 say. Since Vi=V (�0), there is a path in Xi∪u∪v
running from u to v, i=1; 2; let  i be such a path of minimal length. Since  i contains
at least two edges,  =  1 ∪  2 is a full n-cycle in � of length at least 4.

So we may suppose that �0 is a complete graph. Then we can express � as �1∪�2,
where �1 and �2 are subgraphs with �1 ∩�2 =�0, and |V (�i)|¡ |V (�)|, i=1; 2. By
induction, either �1 or �2, and hence �, contains a full n-cycle for some n¿ 4, or �1

and �2, and hence �, belong to the class C.

3. Artin groups

A family of groups closely related to Coxeter groups are Artin groups. These are
deBned in a similar way to Coxeter groups as follows.

Given a labelled graph (�;m), with V (�)={s1; s2; : : : ; sn}, we deBne the Artin group
A(�;m) to be the group with presentation

〈s1; s2; : : : ; sn | prod(si; sj;mij) = prod(sj; si;mij)〉;
where prod(u; v;m) = uvuv : : : (m letters). Thus there is a relation for every edge
e∈E(�). We say that A(�;m) is the Artin group associated with the Coxeter group
C(�;m). Note that if E(�) �= ∅ then A(�;m) contains a Z⊕ Z.

Question 3.1. Which Artin groups contain a hyperbolic surface group?

In this section we shall give some partial answers to this question.

3.1. As for Coxeter groups, an Artin group is said to be all right if it is of the form
A(�; 2).

Theorem 3.2. Let A be an all right Artin group for which the associated Coxeter
group contains a hyperbolic surface group. Then A contains a hyperbolic surface
group.

Proof. This follows easily from [11], but needs some of the set-up of [11]. Let G =
C(�; 2) be an all right Coxeter group. We construct a new graph �′ as follows. The
vertex set of �′ is V (�)× {0; 1}. Vertices (vi; 1) ↔ (vj; 1) (ie are joined by an edge)



C.M. Gordon et al. / Journal of Pure and Applied Algebra 189 (2004) 135–148 143

if and only if vi ↔ vj in �. Vertices (vi; 0) ↔ (vj; 0) if and only if i �= j. Finally
(vi; 0) ↔ (vj; 1) if and only if i �= j. Let G′ be the all right Coxeter group C(�′; 2).
Then the main result of [11] is that the Artin group A(�; 2) is a subgroup of index
2|V (�)| in G′. Now note that by construction of �′, G is a special subgroup of G′, and
therefore if G contains a hyperbolic surface group then G′, and hence A(�; 2), does
also.

The only all right Coxeter groups which are shown to contain a hyperbolic surface
group by the proof of Theorem 1.1 are those whose graphs contain a full n-cycle
for some n¿ 5. In this case, the fact that the corresponding Artin group contains a
hyperbolic surface group is a result of Servatius et al. [27]; more speciBcally they
show that it contains the fundamental group of a surface of genus 1+(n−4)2n−3. We
therefore ask (cf. Question 2.7):

Question 3.3. Does an all right Artin group A(�; 2) contain a hyperbolic surface
group if and only if � contains a full n-cycle for some n¿ 5?

Theorem 3.2 also suggests the following question:

Question 3.4. If a Coxeter group contains a hyperbolic surface group, does the cor-
responding Artin group also contain a hyperbolic surface group?

3.2. We note that there are many instances in which an Artin group contains a hy-
perbolic surface group but the corresponding Coxeter group does not. In fact, a Bnite
or Euclidean Coxeter group clearly does not contain a hyperbolic surface group, but
the corresponding Artin groups (ie those of Bnite or Euclidean type) usually do. To
state this precisely, recall that every Artin (resp. Coxeter) group is a direct product
of irreducible Artin (resp. Coxeter) groups, and note that such a direct product will
contain a hyperbolic surface group if and only if one of the irreducible factors does.

For Artin groups of Bnite type, we have the following theorem. The notion of “type”
for the underlying Coxeter group is that of [14, p. 32] and conforms to the more
traditional Coxeter diagram and not that used here.

Theorem 3.5. Let A be an irreducible Artin group of 8nite type.

(1) If A is of type A1 or I2(m), then A does not contain a hyperbolic surface group.
(2) If A is not of type A1, I2(m) or H3, then A contains a hyperbolic surface group.

This prompts:

Question 3.6. Does the Artin group of type H3 contain a hyperbolic surface group?

Note that the graph corresponding to the Artin group of type H3 in our notation is
a 3-cycle labelled (2; 3; 5).

For Artin groups of Euclidean type we have (the notation is that of [14, p. 34]).
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Theorem 3.7. Let A be an irreducible Artin group of Euclidean type. If A is not of
type Ã1, B̃2 or G̃2 then A contains a hyperbolic surface group.

The Artin group Ã1 is Z ∗ Z, which does not contain a surface group.

Question 3.8. Does the Artin group of type B̃2 or G̃2 contain a hyperbolic surface
group?

Note that in our notation the graphs corresponding to these groups are both 3-cycles
with labellings (2; 4; 4) and (2; 3; 6), respectively.

Recall that the n-string braid group Bn is the Artin group of Bnite type An−1, n¿ 2,
the corresponding Coxeter group being the symmetric group Sn. The main ingredient
in the proof of Theorems 3.5 and 3.7 are the following two lemmas.

Lemma 3.9. The braid group B4 contains a hyperbolic surface group.

Proof. The Bgure eight knot complement M has a description as a once-punctured torus
bundle. Using this, it was shown in [21] that �1(M) admits a faithful representation
– into B4=Z(B4), where Z(B4) denotes the center. Now �1(M) contains a hyperbolic
surface group (see for instance [8] or [19]), and it is easy to see, using the fact
that Z(B4) ∩ [B4;B4] = 1, that if � is such a surface subgroup of �1(M), then the
representation – restricted to � can be lifted to a faithful representation of � into
B4.

Lemma 3.10. (1) The Artin group of type B3 contains a hyperbolic surface group.
(2) The Artin group of type Ã2 contains a hyperbolic surface group.

Proof. (1) That A(B3) contains a surface group follows from Lemma 3.9 as can be
seen as follows. A(Bn) is isomorphic to the subgroup B1; n ¡Bn+1 consisting of all
braids which Bx the Brst string, [16]. Since B1; n has Bnite index in Bn+1 (it contains
the pure braid group as a subgroup of Bnite index), A(B3) ∼= B1;3 contains a hyperbolic
surface group by Lemma 3.9.

(2) It is shown in [15] that the Artin group A(Bn) is isomorphic to a semi-direct
product A(Ãn−1)o& Z, where & has Bnite order. Hence A(Ãn−1)×Z injects in A(Bn)
as a subgroup of Bnite index. It follows from (1) that A(Ã2) × Z, and hence A(Ã2),
contains a hyperbolic surface group.

Proof of Theorem 3.5. (1) The Artin group A(A1) ∼= Z. The Artin group A(I2(m)) =
A(m), say, has a non-trivial center which we denote by Z(m). If �¡A(m) is a surface
subgroup of genus ¿ 2, then �∩ Z(m) = 1, so that � injects in A(m)=Z(m). However,
A(m)=Z(m) is a free product of two cyclic groups, and this cannot contain a surface
group.

(2) The graphs of the irreducible Artin groups of Bnite type, other than those of type
A1, I2(m), B3, F4 and H3 all contain as a subgraph, the graph of type A3. Since the
analogue of Lemma 2.2 holds in the context of Artin groups (this is proved in [17],
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see also [25]), Lemma 3.9 shows the Artin groups associated to these Bnite groups
contain a hyperbolic surface group.

Since the graph F4 contains the graph B3 as a subgraph, the above argument holds
on applying Lemma 3.10(1).

Proof of Theorem 3.7. Let A be an irreducible Artin group of Euclidean type, other
than Ã1, Ã2, B̃2 or G̃2. Then the graph of A, except in the case of type C̃3, contains
the graph of Bnite type A3 as a subgraph, while the graph of C̃3 contains the graph of
type B3. Since the Artin groups of type A3 and B3 contain a hyperbolic surface group
by Theorem 3.5, the theorem is proved.

3.3. A class of Artin groups that do not contain a hyperbolic surface group is given
by the following theorem. (Here, � denotes the graph associated with an Artin group
according to our convention).

Theorem 3.11. Let � be a tree. Then for any labelling m of �, the Artin group
A(�;m) does not contain a hyperbolic surface group.

The proof of this theorem requires the following lemma.

Lemma 3.12. Let X be the exterior of the (2; m)-torus link, and let A ⊂ @X be a
disjoint union of meridional annuli. Let F be a compact, connected, orientable surface
with non-empty boundary, not a disk, and let f : (F; @F) → (X; A) be a map such
that f∗ : �1(F) → �1(X ) is injective. Then F is an annulus.

Deferring the proof of this lemma for the moment, we complete the proof of Theo-
rem 3.11.

Proof. The Artin group associated to the labelling of K2 by an integer m¿ 2, is the
group of the (2; m) torus link (which has one or two components according as m is
odd or even), with the vertices of the graph corresponding to meridians of the link.
It follows that if � is a tree then G = A(�;m) is the group of a link L which is a
connected sum of (2; m) torus links; see [7].

Let M be the exterior of L. Then there is a disjoint union A of properly embedded
annuli in M , such that M cut along A is a disjoint union

⋃n
1 Xi, where Xi is the exterior

of a (2; mi)-torus link, n is the number of edges in �, and where the components of
A are meridional in the boundaries of the Xi’s.

Suppose A(�;m) ∼= �1(M) contains a hyperbolic surface group. Then there is a
closed, connected, orientable surface S of genus ¿ 2 and a map f : S → M such
that f∗ : �1(S) → �1(M) is injective. Homotop f so that it is transverse to A and
so that the number of components of f−1(A) is minimal. Since �1(Xi) does not
contain a hyperbolic surface group by Theorem 3.5(1), f−1(A) is non-empty. Also,
by minimality, no component of S cut along f−1(A) is a disk. Therefore, by Lemma
3.12, each component of S cut along f−1(A) is an annulus. But this would give
*(S) = 0, a contradiction.
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Proof of Lemma 3.12. This is similar to the proof of Proposition 1.2 of [1]. Let the
boundary components of X be @1X and @2X . (We carry out the proof in the case where
@X has two components; the proof in the case where @X has a single component is
obtained by simply omitting all reference to @2X .) X is a Bber bundle over S1 with
Bber B, say, where @B ∩ @iX is connected, i = 1; 2, and with monodromy of Bnite
order n. Hence there is an n-fold cyclic covering p : X̃ → X , where X̃ ∼= B × S1.
Also, there exists a connected, k-sheeted covering p′ : F̃ → F , for some k, and a map
f̃ : F̃ → X̃ such that pf̃ = fp′. Note that f̃ ∗ : �1(F̃) → �1(X̃ ) is injective. Let Z̃ be
the inBnite cyclic central subgroup of �1(X̃ ) generated by [{pt} × S1]. Then we may
assume that f̃ ∗(�1(F̃)) ∩ Z̃ = 1, for otherwise �1(F̃) would have a non-trivial center,
implying that F̃ , and hence F , is an annulus. Hence if q : X̃ → B is projection onto
the Brst factor, then (qf̃)∗ : �1(F̃) → �1(B) is injective. Since we may assume that F̃
is not an annulus, it follows by a well-known argument that qf̃ : F̃ → B is homotopic
rel @ to a covering projection.

For i=1; 2, let @iX̃ =p−1(@iX ), @iF=f−1(@iX ), and @iF̃=p′−1(@iF). Let -i ⊂ @iX
be an oriented meridian, and let -̃i =p−1(-i), with orientation induced from -i. Orient
F ; this induces orientations on @F , F̃ and @F̃ . Since qf̃ has non-zero degree, f̃ ∗([@iF̃])
is a non-zero multiple of [-̃i] in H1(@iX̃ ). Therefore p∗f̃ ∗([@iF̃]) = ni[-i] in H1(X ),
for some ni �= 0. But

p∗f̃ ∗([@iF̃]) = f∗p′
∗([@iF̃]) = kf∗([@iF]):

Since f∗([@F])=0 in H1(X ), we then get n1[-1]+n2[-2]=0 in H1(X ). Since {[-1]; [-2]}
is a basis for H1(X ) ∼= Z⊕ Z, this is impossible.

We remark that there are other examples. For example, if we consider the labelled
graph (�; 2), the Artin group in this case is isomorphic to F2 ×F2 (where F2 denotes
the free group of rank 2), and so does not contain a hyperbolic surface group.

4. Final comments

We close with some other comments. Coxeter groups are well-known to be linear
groups, and so a corollary of [11] is that all right Artin groups are linear groups. A
recent result of Bigelow [4] shows that braid groups are linear. Thus the results of this
paper, and a lack of counterexamples prompts a “surface group version” of the Tits
Alternative. Recall that the Tits Alternative for linear groups says that a Bnitely gen-
erated linear group is either solvable-by-Bnite or contains a free non-cyclic subgroup.
As with the motivating question of Gromov, we will restrict our attention to 1-ended
groups.

Question 4.1. Let G be a 8nitely generated 1-ended linear group that is not solvable-
by-8nite. Does G contain a surface group?

Note that one cannot drop the solvable-by-Bnite hypothesis since there are linear
groups (for example the Baumslag-Solitar group BS(1; n)) that contain no Z⊕Z, and
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contain no inBnite cyclic subgroup of Bnite index. Also, one cannot weaken this to ask
for a hyperbolic surface group, as there are many examples of 1-ended linear groups
which are not solvable-by-Bnite, but for which the only surface subgroups are Z⊕Z.
Finally, we point out that, this question is not yet resolved for the fundamental groups
of hyperbolic 3-manifolds, but is believed to be true in this case.
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