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AbstractThe extent towhich a finitely generated or finitely presented residually finite
group is profinitely rigid amongst the class of finitely generated or finitely presented
residually finite groups has seen a resurgence of activity in the last decade. This
paper will survey some recent progress, in both the positive and negative directions,
as well as surveying properties of groups that are, or are not, profinite properties.

1 Introduction

It is an old and natural idea to try to distinguish finitely presented groups via their
finite quotients. For instance, one might prove that a group presentation does not rep-
resent the trivial group by exhibiting a map onto a non-trivial finite group. Recently,
there has been renewed interest in the question of when the set of finite quotients of
a finitely generated residually finite group determines the group up to isomorphism.
In more sophisticated language, one wants to develop a complete understanding of
the circumstances in which finitely generated residually finite groups have isomor-
phic profinite completions. Motivated by this, we say that a residually finite group is
profinitely rigid, if whenever ∆̂ � Γ̂, then ∆ � Γ.

This article is based on two lectures the author gave at K.I.A.S. in September
2023, and its purpose is to survey some recent work and progress on profinite
rigidity motivated by Remeslennikov’s question (stated here as Conjecture 1) on the
profinite rigidity of a free group, related groups as well as properties of discrete
groups that are, or are not, profinite properties. A survey of previous work up until
2018 is available at [51], so this article will focus on more recent developments.
However, the article will have some overlap with a recent Seminar Bourbaki article
by B. Remy [52].
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2 Alan W. Reid

We finish the Introduction by briefly outlining the remainder of the paper. In
§2 we review some basics on profinite groups and profinite completions of discrete
groups, in §3 we recall the notions of profinite rigidity and being a profinite property,
as well stating the main conjectures about profinite rigidity of free groups, surface
groups and the fundamental groups of finite volume hyperbolic 3-manifolds. In §4
we then discuss recent progress on these conjectures. In the other direction, in §5
we describe how so-called Grothendieck pairs can be constructed, as well as their
utility in constructing examples of groups with isomorphic profinite completions
with properties not preserved by the profinite completion. Finally in §7, we gather
some remarks and pose some questions that arise out of this survey article.
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2 Preliminaries

We will provide some background on profinite groups and profinite completions of
discrete groups, and refer the reader [53] for a more detailed account of the topics
covered here.

2.1 Profinite groups

A directed set is a partially ordered set I such that for every i, j ∈ I there exists k ∈ I
such that k ≥ i and k ≥ j. An inverse system is a family of sets {Xi}{i∈I }, where I
is a directed set, and a family of maps φi j : Xi → Xj whenever i ≥ j, such that:

• φii = idXi ;
• φi jφ jk = φik , whenever i ≥ j ≥ k.

Denoting this system by (Xi, φi j, I), the inverse limit of the inverse system
(Xi, φi j, I) is the set

lim
←−−

Xi = {(xi) ∈
∏
i∈I

Xi |φi j(xi) = xj, whenever i ≥ j}.
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If (Xi, φi j, I) is an inverse system of non-empty compact, Hausdorff, totally dis-
connected topological spaces (resp. topological groups) over the directed set I, then
lim
←−−

Xi is a non-empty, compact, Hausdorff, totally disconnected topological space
(resp. topological group).

2.2 Profinite completion

Let Γ be a finitely generated group (not necessarily residually finite for this discus-
sion), and letN denote the collection of all finite index normal subgroups of Γ. Note
that N is non-empty as Γ ∈ N , and we can make N into directed set by declaring
that

For M, N ∈ N, M ≤ N whenever M contains N .

In this case, there are natural epimorphisms φNM : Γ/N → Γ/M , and the inverse
limit of the inverse system (Γ/N, φNM,N) is denoted Γ̂ and defined to be to the
profinite completion of Γ.

Note that there is a natural map ι : Γ→ Γ̂ defined by

g 7→ (gN) ∈ lim
←−−
Γ/N,

and it is easy to see that ι is injective if and only if Γ is residually finite.
An alternative, perhaps more concrete way of viewing the profinite completion

is as follows. If, for each N ∈ N , we equip each Γ/N with the discrete topology,
then

∏
{Γ/N : N ∈ N} is a compact space and Γ̂ can be identified with j(Γ) where

j : Γ→
∏
{Γ/N : N ∈ N} is the map g 7→ (gN).

3 Profinite rigidity

Henceforth all discrete groups will be assumed to be finitely generated and residually
finite.

Definition 1 The genus of a finitely generated group Γ is: G(Γ) = {∆ : ∆̂ � Γ̂}.

In addition, if L is a class of groups, then we define GL(Γ) = {∆ ∈ G(Γ) : ∆ ∈ L}.

Definition 2 We define Γ to be profinitely rigid if G(Γ) = {Γ}.
In addition, if Γ ∈ L, a class of groups, we say Γ is profinitely rigid in L if

GL(Γ) = {Γ}.

We will not give a detailed survey of profinite rigidity, we refer the reader to [51]
for this, however, we will discuss some recent progress on profinite rigidity, and its
failure below. The context for the discussion remains Remeslennikov’s question as
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to whether the free group Fn of rank n ≥ 2 is profinitely rigid. This remains open,
but we feel at this stage, Remeslennikov’s question should be promoted to have a
conjectured positive answer.

Conjecture 1: Fn is profinitely rigid.

The group Fn arises in many guises in low-dimensional geometry and topology, and
hence affords several natural ways in which to generalize. In the light of this, natural
generalizations of Remeslennikov’s question, which we also promote to conjectures
are the following.

Conjecture 2: Let Σg be a closed orientable surface of genus g ≥ 2, then π1(Σg) is
profinitely rigid.

Conjecture 3:Let M be a complete orientable hyperbolic 3-manifold of finite volume,
then π1(M) is profinitely rigid.

In §4 we will describe some recent progress on these conjectures as well as other
related questions and conjectures.

We will also discuss profinite properties of finitely generated groups: i.e. a prop-
erty P of a group is said to be a profinite property, if whenever ∆ is finitely generated
with ∆ ∈ G(Γ), if Γ has P then ∆ has P. It is easy to see that being abelian or
nilpotent are profinite properties, as is the abelianization of a group. A more subtle
profinite property is the first `2-Betti number [16, Corollary 3.3]. On the other hand,
having Property T is not a profinite property [3], and an alternative way to formulate
Remeslennikov’s question is the question as to whether being free is a profinite prop-
erty. Some recent work on properties that are not profinite properties is provided in
§5

4 Progress on the Conjectures in §3

In this section we describe some recent advances on the conjectures raised in §3.

4.1 The free group

Until recently, there has been little progress onwhether the free group Fn is profinitely
rigid. However, in [38], it was proved that if there exists a finitely generated residually
finite group Γ with Γ̂ � F̂n, then Γ is parafree: that is to say, Γ is residually nilpotent
and has the same lower central series quotients as Fn. Apart from the properties in
the definition of a parafree group, it is known that parafree groups do share other
properties with free groups: for example any non-trivial finitely generated normal
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subgroup has finite index, they satisfy a Freiheitssatz, they have non-zero b(2)1 and
are C∗-simple (see [15] for a discussion of all of these results).

Beyond this, what is needed at this point is to develop a structure theory for
finitely generated parafree groups, which we now discuss and list some questions.
We begin with the following question.

•? Question

Let Γ be a finitely generated parafree group with the property that every subgroup
of finite index is parafree. Is Γ free?

Proposition 1 Suppose that Question 7 has a positive answer. Then free groups are
profinitely rigid.

Proof As noted above, if there exists a finitely generated residually finite group Γ
with Γ̂ � F̂n, then Γ is parafree. Given a subgroup P of finite index of Γ, then it
follows that P̂ � F̂ for some finitely generated free group F. Applying [38] once
again implies that P is parafree. Hence all subgroups of finite index in Γ are parafree,
and so the assumption of a positive answer to Question 7 implies that Γ is free.

Question 7 is similar in spirit to what has become known as Mel’nikov’s con-
jecture. Recall that a group Γ is called a Mel’nikov group if it is a non-free infinite
one-relator group, all of whose finite index subgroups are one-relator groups. Then
the conjecture is that a Mel’nikov group is a surface group or isomorphic to the
Baumslag-Solitar group BS(1, n) for some n , 0.

There has been recent progress on the Mel’nikov conjecture: for example, [31]
proved it in the case of two-generator one-relator groups, [40] proved it in the case
when H2(Γ,Z) , 0, and [29] proved it in the case when Γ is residually free. This
contrasts strongly with Question 7 in which there has been (to the best of the author’s
knowledge) no progress.

Going back to work of Baumslag [6], many constructions of parafree groups
provide examples of one-relator parafree groups. Moreover, a basic result about
parafree groups proved by Baumslag in [5] is that parafree groups are 2-free; i.e.
every 2-generator subgroup of a parafree group is free. Using this, together with
work of Louder and Wilton [42], Linton proved in [41, Corollary 7.4] that one-
relator parafree groups are hyperbolic and virtually compact special (in particular
they are linear). Given this, a recent result of Wilton [62] proves that if Γ is a
one-relator group, then Γ contains a one-ended, quasi-convex subgroup S of infinite
index, and so we have the following.

Corollary 1 In the notation above, if Γ is a one-relator parafree group for which the
quasi-convex subgroup S is a surface group, then Γ̂ is not isomorphic to F̂ for any
finitely generated free group F.

Proof This follows from [16, Proposition 4.9] on noting that S is good in the sense
of Serre, and that the virtual compact special assumption ensures that quasi-convex
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subgroups of Γ are separable in Γ. This latter condition then implies that Ŝ → Γ̂ is
injective, and so completes the proof.

Remark 1 We note that this argument was also employed by Wilton [61] when he
proved (amongst other things) that the profinite completion of a non-free limit group
could not be isomorphic to a free profinite group.

Remark 2 If the one-ended subgroup S as provided by Wilton could be shown to be
a Poincaré duality group over some finite field Fp , then the same argument could be
made to prove that the profinite completion of a one-relator parafree group could not
be isomorphic to a free profinite group.

Indeed, in the light of the importance of the framework of virtually special
groups, an approach based on the discussion above (albeit seemingly out of reach at
present without a better understanding of a structure theory for parafree groups) to
Conjecture 1 is presented by a solution to the following conjecture:

Conjecture 4: Let Γ be a finitely generated parafree group. Then Γ is hyperbolic,
virtually compact special and contains a quasi-convex surface subgroup.

Weclose this section by noting that in [6], Baumslag constructs an infinitely generated
parafree group with the same set of finite quotients as a free group of rank 2.

4.2 A general template for proving profinite rigidity

Here we describe a general template that can be used to attempt to prove profinite
rigidity. This was successfully implemented in [17] and [18] with an improvement
in [19] in some (as yet) restricted class of examples (see below). We will discuss in
more detail in certain situations the steps in the template.

Template: Let Γ be a lattice in a semi-simple Lie group G and suppose that Λ is a
finitely generated residually finite group with Λ̂ � Γ̂.

1. (Representation rigidity/Galois rigidity) Arrange that Γ has theminimal number
of Zariski dense representations into G, together with additional constraints
(discussed below). Use this to construct a homomorphism ρ : Λ → Γ with
Zariski dense image (sometimes one can get away with not being quite into Γ but
commensurable with Γ).

2. Arrange for the following statement to hold: Any proper Zariski-dense subgroup
L < Γ has a finite quotient that Γ does not.

Given this set up, it follows that the homomorphism ρ is surjective, and then
the Hopfian property for profinite groups [53], implies the induced epimorphism
ρ̂ : Λ̂→ Γ̂ is an isomorphism, from which profinite rigidity follows.
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We now discuss some cases where the above template can be followed, in some
cases to completion, and others only partially.

Galois rigidity for Fuchsian and Kleinian groups: Let φ : SL(2,C) → PSL(2,C)
be the quotient homomorphism, and suppose that H is a finitely generated subgroup
of PSL(2,C). Set H1 = φ−1(H), then we say that H is Zariski dense in PSL(2,C)
whenwhat H1 is a Zariski dense subgroup of SL(2,C). The trace-field of H is defined
to be the field

KH = Q(tr(γ) : γ ∈ H1).

If KH is a number field with ring of integers RKH , we say that H has integral traces
if tr(γ) ∈ RKH for all γ ∈ H1.

Suppose that H is a finitely generated group and ρ : H → PSL(2,C) a Zariski
dense representation with K = Kρ(H) a number field of degree nK . If K = Q(θ)
for some algebraic number θ, then the Galois conjugates of θ, say θ = θ1, . . . , θnK ,
provide embeddings σi : K → C defined by θ 7→ θi . These in turn can be used to
build nK Zariski dense non-conjugate representations ρσi : H → PSL(2,C) with
the property that tr(ρσi (γ)) = σi(trρ(γ)) for all γ ∈ H. We refer to these as Ga-
lois conjugate representations. The existence of these Galois conjugates shows that
|Xzar(H,C)| ≥ nKρ(H )

, where Xzar(H,C) denotes the set of Zariski dense representa-
tions H → PSL(2,C) up to conjugacy.

Definition 3 Let Γ be a finitely generated group and ρ : Γ → PSL(2,C) a Zariski
dense representationwhose trace field Kρ(Γ) is a number field. If |Xzar(Γ,C)| = nKρ(Γ)

,
we say that Γ is Galois rigid (with associated field KΓ).

Zariski dense representations β : Γ → PSL(2,C) are irreducible, so it follows
that they are determined up to conjugacy by their character. With this in mind, we
shall sometimes abuse notation by writing β ∈ Xzar(Γ,C)when what we mean is that
β is a Zariski dense representation. Likewise, it is sometimes convenient to refer to
elements of Xzar(Γ,C) as if they were representations.

Examples: (1) Let p > 5 be a prime number then the (2, 3, p) triangle group
∆(p) = 〈a, b|a2 = b3 = (ab)p = 1〉 is Galois rigid (this can be done by direct
calculation, or see [1] for example).

Note that all triangle groups have 0-dimensional PSL(2,C)-character varieties,
but most are not Galois rigid; e.g. if ∆ = 〈a, b|al = bm = (ab)n = 1〉, then using
divisors of l, m and n we can arrange for surjections of ∆ to other hyperbolic triangle
groups (depending on the divisors).
(2) The Bianchi group PSL(2,Z[ω]) is Galois rigid [17, Section 6]. However, all
other Bianchi groups are not Galois rigid, since Thurston’s Dehn surgery theorem
produces high (i.e. ≥ 1) dimensional components in the PSL(2,C)-character variety.
(3) If MW denotes the Weeks manifold (i.e. the smallest volume closed orientable
hyperbolic 3-manifold [30]), then π1(MW ) is Galois rigid [17, Proposition 5.3].
(4) Let M1 (resp. M2) denote the manifold obtained by 0-surgery on the knot 62
(resp. 63). Then π1(Mi) is Galois rigid for i = 1, 2 [23]. Note that these manifolds
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are fibered over the circle, hence π1(Mi) admits a homomorphism onto Z, and so has
a positive dimensional character variety. However, the Zariski dense representations
are simply the ones given as described as above using Galois conjugate embeddings.

(5) Let K ⊂ S3 denote the figure-eight knot, let Qn be the orbifold obtained by
(n, 0)-Dehn filling on K and let Mn be the n-fold cyclic branched cover of K . Note
that Mn can also be regarded as an n-fold cyclic (orbifold) cover of Qn; this is the
maximal abelian cover. When n = 2, M2 is the Lens Space L(5, 3), and so Q2 is an
orbifold with finite fundamental group; when n = 3, M3 is the flat manifold known
as the Hantzsche-Wendt manifold and soQ3 is a Euclidean crystallographic orbifold;
when n ≥ 4, Mn and Qn are hyperbolic (see [27] for example). In addition, it was
shown in [36] that Γn = π1(Mn) � F(2, 2n) where F(2, 2n) is one of the Fibonacci
groups of [26]. Let ∆n be the orbifold fundamental group of Qn. Then Qn = H

3/∆n
and Γn = [∆n,∆n] is a subgroup of index n.

The following theorem is proved in [19].

Theorem 1 In the notation established above,

1. ∆p is Galois rigid for all primes p ≥ 5;
2. ∆4,∆6 and ∆9 are Galois rigid;
3. Γ4 is Galois rigid.

To pass from Galois rigidity to profinite rigidity requires a good deal more
control of the groups in question. In particular, we need the Fuchsian and Kleinian
groups in question to be arithmetic (which we will not define here, but refer the
reader to [45] for a detailed discussion), but in particular requires integral traces.
Furthermore, additional control on the defining number field and quaternion algebra
is also required. For complete details we refer the reader to [17, Theorem 4.8 &
Corollary 4.11].

The endgame for Fuchsian and Kleinian groups: We now discuss cases where
Step (2) of the template can be executed, and thereby, in some cases establish profinite
rigidity. The following result can be proved using [18] and [19]. We provide a sketch
of the proof.

Theorem 2 1. Let Γ be a Kleinian group of finite co-volume. If H < Γ is a finitely
generated, proper subgroup, then Γ̂ and Ĥ are not isomorphic.

2. Let ∆(p, q, r) = 〈a, b|ap = bq = (ab)r = 1〉 be a Fuchsian triangle group, and H
a non-elementary Fuchsian group that is not a triangle group. Then there exists a
finite field F and a representation H → PSL(2, F) whose image is not a quotient
group of ∆(p, q, r).

Some ideas in the proof: For (1), if H is infinite index then b(2)1 (Γ) = 0 whilst
b(2)1 (H) , 0, which contradicts the profinite invariance of b(2)1 (as noted in §3). If
H has finite index, then we use a result of Liu [43] which establishes that only
finitely many finite volume hyperbolic 3-manifolds can have fundamental groups
with isomorphic profinite completions; the key point is that the Correspondence
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Theorem between finite index subgroups of the discrete group and the profinite
completion [53] can then be used to build an infinite sequence of subgroups Hn < Γ
with [Γ : Hn] = dn such that Ĥn � Γ̂, which if Γ is torsion-free contradicts Liu’s
result. The torsion case is easy to deduce from this.

For (2), the key point is that if H is not a triangle group then the PSL(2,C)-
character variety is positive dimensional, and this can be leveraged into building
representations in characteristic p.

Remark 3 It is also worth pointing out that (in the notation on Theorem 2(2)), that
if H , ∆(p, q, r) is a triangle group then it is known that H can be explicitly
distinguished from ∆(p, q, r) by finite quotients (see [16], [22] and [25]).

We now summarize some of the known examples of Fuchsian and Kleinian groups
that can be proved to be profinitely rigid using the template, and the ideas described
above.

Theorem 3 1. PSL(2,Z[ω]) and π1(MW ) are profinitely rigid [17].
2. In the notation of Example (5) above, the manifold M4 and the 2-fold quotient

known as Vol 3 have fundamental groups that are profinitely rigid [19].
3. The fundamental groups of the manifolds obtained by 0-surgery on 62 and 63 are

profinitely rigid [23].
4. The following arithmetic triangle groups are profinitely rigid (see [18] and the

erratum):

∆(3, 3, 4),∆(3, 3, 5),∆(3, 3, 6),∆(2, 5, 5),∆(4, 4, 4)
∆(2, 3, 8),∆(2, 3, 10),∆(2, 3, 12),∆(2, 4, 5),∆(2, 4, 8).

Wefinish this subsectionwith some challenges thatwould be interesting to answer.

1. Show that ∆(2, 3, 7) is profinitely rigid.
Note that ∆(2, 3, 7) is Galois rigid, and running the ideas in the template one finds
that if Λ is a finitely generated residually finite group with Λ̂ � ∆̂(2, 3, 7), then;
either Λ � ∆(2, 3, 7) or there is a representation ρ : Λ → PSL(2,R) as in (1) of
the template, where R is the ring of integers in Q(cos(π/7)).

2. Construct infinitely many profinitely rigid Kleinian groups of finite co-volume.

4.3 Other 3-manifold groups

We refer to [51] for earlier work on profinite rigidity, as well as its failure, for the
fundamental groups of compact non-hyperbolic 3-manifolds (aswell as in the relative
setting of the fundamental groups of compact 3-manifolds). Of most relevance to
what follows in this article is the following result proved in [20], and for which we
mention some of the key ideas in the proof.
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Theorem 4 Let ∆(p, q, r) be a triangle group listed in Theorem 3, and let M be a
Seifert fibred space with base S2(p, q, r) = H2/∆(p, q, r). Then π1(M) is profinitely
rigid.

Sketch of the ideas in the proof:Underlying the proof are some of the ideas described
above, namely the use of Galois rigidity in the context of Γ = π1(M) with M as
in the statement of Theorem 10; namely if Λ is a finitely generated residually finite
group with Λ̂ � �π1(M), then Galois rigidity can be applied to deduce that Λ admits
an epimorphism onto ∆ with central kernel isomorphic to Z. Since π1(M) is torsion
free, and good in the sense of Serre, this implies that Λ is also torsion-free.

The next two results then complete the proof, the first ofwhich reduces the problem
to the relative setting of deciding profinite rigidity amongst the fundamental groups
of closed orientable Seifert fibred spaces. The second is a result ofWilkes [60] which
classifies exactly when the fundamental groups of a Seifert fibred space is (or is not)
profinitely rigid within the class of fundamental groups of compact 3-manifolds, and
in our setting an easy calculation shows that the euler number e(M) , 0.

Lemma 1 [33]
Suppose that G fits into a short exact sequence

1→ Z→ G→ F → 1,

where F is a cocompact Fuchsian group. Then G is the fundamental group of a
Seifert fibred space if and only if G is torsion-free.

Theorem 5 Let M be a closed aspherical Seifert fibred space, and let N be a compact
3-manifold with �π1(M) � �π1(N). Then, either N � M or else N is a Seifert fibred
space and both M and N are among the surface bundles over the circle with periodic
monodromy that arise in the construction of [35]. In particular, when �π1(M) � �π1(N)
and M and N are not homeomorphic, both M and N have H2 × R geometry and
e(M) = e(N) = 0.

Remark 4 It is worth remarking that the relationship between the centre of a group
Γ and the centre of Γ̂ can be somewhat complicated in general. For example, if
Γ = SL(3,Z), then Z(Γ) = {1} is trivial. On the other hand, there are infinitely
many p for which Zp (the p-adic integers) contains a primitive cube root of unity, in
which case the centre of SL(3,Zp) is a cyclic group C3 of order 3. Therefore Z(Γ̂) =
Z(
∏

p SL(3,Zp)) contains a countable direct product of copies of C3. However, in
our setting things are much better, and we can gain control of centres.

4.4 Other lattices

As we have described above, the template can be implemented and pushed to a
successful conclusion in the setting of certain Fuchsian and Kleinian groups. As far
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as the author is aware this is the extent of our knowledge of successfully executing the
template to completion. There aremany situations inwhich one canmake progress on
(1) of the template; e.g. using superrigidity, and the congruence subgroup property
(and we list a few of these below). However, the major obstacle to progressing is
simply: we do not understand the subgroup structure of lattices in other semi-simple
Lie groups well enough! This is already visible in the case of ∆(2, 3, 7), where the
“or" conclusion in the discussion of ∆(2, 3, 7) at the end of §4.2 is the issue.

As an example of the progress mentioned above, in [55] it is shown that if Λ is
a finitely generated residually finite group with the same profinite completion as Γ
being one of SL(n,Z) with n ≥ 3 or SL(n,Z[1/p]) with n = 2, 3 and p a prime, then
there exists an injective homomorphism Λ ↪→ Γ which induces the isomorphism of
profinite completions.

Remark 5 Interestingly, SL(4,Z[1/p]) is not profinitely rigid [24]. Indeed, [24] pro-
duces a group Λ which is not isomorphic to a subgroup of SL(4,Z[1/p]) with the
same profinite completion. This example will be discussed further in §5.2 Applica-
tion 3.

5 Grothendieck pairs

In this section we describe a construction that provides many interesting example
of groups with the same profinite completion, and also a mechanism for certifying
certain properties are not profinite properties.

5.1 Grothendieck’s question

We begin by posing the following question: Let Γ be a finitely presented residually
finite group and let u : P ↪→ Γ be the inclusion of a subgroup P. Suppose that u
induces an isomorphism û : P̂ ↪→ Γ̂. Is u an isomorphism?

When u fails to be an isomorphism we call (Γ, P)u a Grothendieck pair (we often
suppress the subscript). We say that Γ is Grothendieck rigid if no proper finitely
generated subgroup u : P→ Γ gives a Grothendieck pair.

The motivation for this terminology is Grothendieck’s paper [32], in which he
asked about the existence of Grothendieck pairs when P is also finitely presented
group. The first such pairs were constructed by Bridson and Grunewald in [13]. The
analogous problem for finitely generated groups had been settled earlier by Platonov
and Tavgen [48] (and other examples were given by Bass and Lubotzky in [4]). All
of the constructions rely on versions of the following result (cf. [48], [13, Theorem
5.2] and [9]).

We first remind the reader of the definition of the fibre product (we give a general
version): For i = 1, . . . , d, let pi : Γi → Qi be a homomorphism of groups. The fibre
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product of this family of maps is

Pd = {(γ1, . . . , γd) | pi(γi) = pj(γj), i, j = 1, . . . , d}.

When all of the groups Γi are isomorphic as well as the groupsQi , d = 2 and p1 = p2
we get:

Proposition 2 Let 1→ N → Γ→ Q→ 1 be a short exact sequence of groups with
Γ finitely generated and let P be the associated fibre product. Suppose that Q , 1 is
finitely presented with Q̂ = 1, and H2(Q,Z) = 0. Then

1. (Γ × Γ, P) is a Grothendieck pair;
2. if N is finitely generated then (Γ, N) is a Grothendieck pair.

Examples of Grothendieck pairs were constructed so as to provide the first ex-
amples of finitely-presented, residually finite groups Γ that contain an infinite se-
quence of non-isomorphic finitely presented subgroups Pn so that the inclusion
maps un : Pn ↪→ Γ induce isomorphisms of profinite completions. In particular, this
provides examples of finitely presented groups Γ for which G(Γ) contains infinitely
many finitely presented groups [10].

The Platonov-Tavgen example [48]: In the notation of Proposition 2, the group Γ is
F4 and the group Q is Higman’s group which has no finite quotients by construction,
and is presented as:

〈a, b, c, d |bab−1 = a2, cbc−1 = b2, dcd−1 = c2, ada−1 = d2 > .

That H2(Q,Z) = 0 follows since Q has a balanced presentation.

5.2 Some applications

Application 1: Rank is not a profinite property: Recall that by the rank of a finitely
generated group Γ we mean the cardinality of a minimal generating set for Γ. We
will make use of Proposition 2(2) in tandem with the Rips construction [54]. Recall
that [54] proves the following:

Theorem 6 Given any finitely presented group Q and any real number λ > 0, there
is a C ′(λ) group G and a short exact sequence

1→ N → G
p
→ Q→ 1

with N finitely generated. Indeed N can be taken to be 2-generator.

With this in hand, we can proceed as follows (which was explained to me by Martin
Bridson):
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Take Q to be Higman’s group as in the Platonov-Tavgen example above, and let
Q(d) denote the free product of d copies of Q, which by Grushko’s theorem has
rank 4d. In addition �Q(d) = 1, and H2(Q(d),Z) = 0. For each d we now apply
Proposition 2(2) to produce Grothendieck pairs (Γ(d), N(d)) using p : Γ(d) → Q(d)
as in Theorem 6. Since Q(d) has rank 4d, it follows that Γ(d) has rank ≥ 4d, yet, as
remarked upon in Theorem 6, N(d) is always 2-generator. This proves that not only
is rank not a profinite property, but the difference can be arbitrarily large.

Application 2: Right Angled Coxeter groups: In [28] the following result is proved:

Theorem 7 Every Right Angled Coxeter group is profinitely rigid amongst all Cox-
eter groups. On the other hand there are Right Angled Coxeter groups which have
infinite genus amongst all finitely generated residually finite groups.

We will not discuss the proof of the first statement, but will discuss the second
as the groups in question arise as Grothendieck pairs. To that end, let Γ denote the
“universal" Right Angled Coxeter group on four generators; i.e. the free product of
four cyclic groups of order 2, where we view each order two generator as a “reflec-
tion". We will apply Proposition 2(1) using an epimorphism Γ → Vn where n ≥ 2
is a Higman-Thompson group. That such an epimorphism exists is the crucial point,
and this is proved in [28, Theorem 4.1]. We refer the reader to [28] for explanations
of why Vn has the properties required by Proposition 2(1), and in particular why
H2(Vn,Z) = 0. This produces Grothendieck pairs (Γ × Γ, Pn), and we note that Γ × Γ
is also a Right Angled Coxeter group.

Application 3 Fixed point properties: As was noted in Remark 4, the group
SL(4,Z[1/p]) is not profinitely rigid [24], although the “other" group, which we
denote by Γ in what follows, is not part of a Grothendieck pair. In fact, the main
point of [24] is to prove that Property FA is not a profinite property (recall that [3]
showed that Property T is not a profinite property, but the groups in question both
have Property FA). Indeed, [24] proves the existence of finitely presented groups
Γ1 (which is the group SL(4,Z[1/p])) and Γ2 for which Γ̂1 � Γ̂2 with Γ1 having
Property FA where as Γ2 does not. In [11], a different proof of this is given (although
in the setting of [11], one of the groups is finitely presented, and the other is only
finitely generated), and moreover provides a generalization replacing actions on trees
(a 1-dimensional CAT(0) space) to actions on d-dimensional CAT(0) spaces, with
d ≥ 1 arbitrary. To state the result of [11] we recall terminology.

Say that a group G has property Fixd if G fixes a point whenever it acts by
semisimple isometries on a complete CAT(0) space of dimension at most d.

Theorem 8 [11]
For every integer d ≥ 1, there exist triples of residually finite groups

M ↪→ P ↪→ Γ that :

1. The inclusion maps induce isomorphisms M̂ � P̂ � Γ̂;
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2. M is finitely generated, P is finitely presented, and Γ is of type F∞;
3. M and Γ have property Fixd, but
4. P is a nontrivial free product with amalgamatation, and therefore acts on a

simplicial tree without a global fixed point.

The proof again crucially relies on the template for constructing Grothendieck pairs
described above.

Application 4: Free-by-free contains failure of many profinite properties: The final
application is a construction due to Bridson [12], and illustrates how Grothendieck
pairs can be used to show that the profinite completions of finitely generated, resid-
ually finite free-by-free groups contain, as retracts, the profinite completions of all
subgroups of finitely presented groups. In particular this allows for some additional
“ exotic" behavior in groups with the same profinite completion (we point out some
explicitly below). The following is proved in [12].

Theorem 9 Given an arbitrary, finitely generated, recursively presented group Γ
that is residually finite, one can construct a finitely generated, residually finite free-
by-free group MΓ = F∞ o F4 and an embedding MΓ → (F4 ∗ Γ) × F4 that induces an
isomorphism of profinite completions.

Note that D(Γ) := (F4 ∗ Γ) × F4 is residually finite and the obvious retraction
D(Γ) → Γ induces a retraction M̂Γ � �D(Γ) → Γ̂. Some consequences of Theorem
9 are:

1. Examples of groups of cohomological dimension 2 whose profinite completions
have cohomological dimension d + 1, where d is arbitrary.

2. Examples to show that the profinite completions of free-by-free groups can contain
torsion of prescribed order (torsion-free groups with arbitrary torsion in the
profinite completion were previously exhibited by Lubotzky [44]).

3. Examples that show being locally indicable or being left-orderable or having all
2-generator subgroups being finitely presented are not profinite properties.

6 Finitely presented versus finitely generated

The main result that we will discuss in this section is another occurrence of
Grothendieck pairs, but in this case, the appearance of Grothendieck pairs is con-
nected to a complete description of groups which occur in the genus of certain finitely
presented groups, and is the following (cf. the discussion above in connection with
construction of Platonov and Tavgen).

Theorem 10 There exist finitely presented, residually finite groups Γ with the fol-
lowing properties:

1. Γ × Γ is profinitely rigid among all finitely presented, residually finite groups.
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2. There exist infinitely many non-isomorphic finitely generated groups Λ such that
Λ̂ � Γ̂ × Γ̂.

3. If Λ is as in (2), then there is an embedding Λ ↪→ Γ × Γ that induces the
isomorphism Λ̂ � �Γ × Γ; in other words, (Γ × Γ,Λ) is a Grothendieck pair.

The groups Γ in question can be taken to be the fundamental group of any Seifert
fibered space M with base orbifold S2(3, 3, 4) or S2(3, 3, 6) or S2(2, 5, 5) described
in Theorem 4.

Sketch of ideas in the proof: We highlight the key steps in the proof. We begin with
a comment: Although Galois rigidity does not hold in the strict sense when applied
to representations of Γ × Γ to PSL(2,C), enough control is gained to execute an
endgame similar to that described in Step (2) of the template.
Throughout this discussion, Λ is a finitely generated, residually finite group with
Λ̂ � �Γ × Γ.
Step 1: Show that there is an embedding Λ ↪→ Γ × Γ inducing the isomorphism at
the level of profinite completion.

A crucial part of the proof, and where Galois rigidity is used, is in proving the
following.

Proposition 3 Let Γ be the fundamental group of a Seifert fibred space whose base
orbifold S2(p, q, r) is one of those in Theorem 10 and let∆ = ∆(p, q, r) be the orbifold
fundamental group of this base. LetΛ be a finitely generated group with Λ̂ = Γ̂1× Γ̂2,
where Γ1 � Γ2 � Γ. If Λi is the projection of Λ to Γ̂i , then there exist epimorphisms
gi : Λi → ∆ and hence a homomorphism

g : Λ ↪→ Λ1 × Λ2
(g1,g2)
→ ∆ × ∆

with image a full subdirect product.

With this in hand, and with some additional argument, we can show that the
epimorphsims gi : Λi → ∆ fit into a short exact sequence: 1→ Z → Λi → ∆→ 1
with Z central and infinite cyclic. As in the sketch of the proof of Theorem 4, Λi

can then be shown to be the fundamental group of a Seifert fibred space, and indeed
Λ1 � Λ2 � Γ.

Step 2:We prove that there are no finitely presentedΛ as in the statement of Theorem
10. To do this we prove the following result (that builds on arguments of [14]). We
provide a sketch of some of the ideas in the proof.

Theorem 11 Let M be a Seifert fibred space with hyperbolic base orbifold, let
Γ = π1M , let D be the direct product of finitely many copies of Γ, and let Λ < D be
a subgroup such that the inclusion induces an isomorphism of profinite completions.
If Λ is finitely presented, then Λ = D.

Some ideas in the proof:We restrict to the case that the base orbifold is closed.
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We first project Λ to the product of the base groups B = ∆ × · · · × ∆, and note
that the image group is still finitely presented since the kernel is finitely generated
(being in the centre). Using a variation of an argument of [14], we can deduce that
this mapping is onto (since the image of Λ will be dense in B̂.

We now have an epimorphism Λ̂→ B̂. The key point is to show that this implies
that Λ contains the centre Z = Zr < D (where r is the number of factors). To see
this, first note that ifΛ∩Z has finite index inZ, thenΛ∩Z = Z, because otherwise
[D : Λ] < ∞, and this contradicts Λ̂ = D̂. With this observation, the only concern is
that Λ meets one of the direct factors ofZ trivially. However, this cannot happen.

The reason is this: since M is a Seifert fibred space, Γ is good in the sense of
Serre, hence D is also good by [34, Proposition 3.4], and so in particular the fact
that D has cohomological dimension 3r is witnessed by the continuous cohomology
of D̂ with finite field coefficients. If Λ meets one of the factors of Z trivially, then
Λ will be an extension of B by Zs , with s < r , and in particular is again good in the
sense of Serre, by another application of [34, Proposition 3.4]). But, in this case Λ
has cohomological dimension less than 3r , and therefore so does Λ̂, a contradiction.

Step 3: Finally we construct Grothendieck pairs (Γ×Γ,Λ)withΛ finitely generated.
This is achieved using the following result (but we will not discuss in detail how it
is implemented).

Theorem 12 Let ∆ be a non-elementary hyperbolic group and let Γ be a group with
H2(Γ,Z) = 0 that maps onto ∆. Let G be a finitely generated group that maps onto a
subgroup of finite index in [Γ, Γ]. Then,

1. there exists an infinite sequence of distinct finitely generated subgroupsPn < G×G
such that each inclusion un : Pn ↪→ G × G induces an isomorphism of profinite
completions.

2. If G is a central extension of a hyperbolic group and centralizers of elements in
that hyperbolic group are virtually cyclic, then Pn is not abstractly isomorphic to
Pm when n , m.

The subgroups Pi will not be finitely presented in general, even if G is finitely
presented (cf. [10]).

In our setting we would like to apply Theorem 12 to the fundamental groups of
the Seifert fibre spaces over the base orbifolds S2(p, q, r) listed in Theorem 10. More
specifically, in the notation of Theorem 12, we would like to take ∆ = ∆(p, q, r)
and G = Γ = π1M . But we cannot do this because H2(M,Z), although finite, is not
trivial. Instead, we construct an auxiliary group B with finite abelianisation and with
H2(B,Z) = 0 so that B maps onto a non-elementary hyperbolic group and π1M maps
onto a subgroup of finite index in [B, B]. The key point here is the following result
(which gives an indication as to why there is a restriction on the Seifert fibred spaces
considered in Theorem 10).

Proposition 4 Let Π be the fundamental group of a Seifert fibred space M with base
orbifold S2(p, q, r). If |H1(M,Z)| is finite and odd, then there is a group Λ > Π with
the following properties:
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1. Π = [Λ,Λ];
2. H1(Λ,Z) is cyclic of order 2;
3. H2(Λ,Z) = 0;
4. Λ maps onto ∆−(p, q, r) = ∆(p, q, r) o C2.

Remark 6 In general, for a fixed group Γ, there can be uncountably many finitely
generated, residually finite groups H with Ĥ � Γ̂; see [46] and [49] for example. In
other settings, for example nilpotent groups [47], there are only finitely many such
H, up to isomorphism. The groups Γ × Γ in Theorem 10 provide the first examples
of groups where the number of such H is countably infinite; this property is assured
by parts (2) and (3) of Theorem 10. We have the following.

Corollary 2 There exist finitely presented, residually finite groups whose profinite
genus is countably infinite.

7 Final remarks and questions

In this final section we gather some remarks and pose some questions that arise out
of this survey article. We will not replicate questions that are stated in [50] and [51],
nor will we update the status of the questions in these earlier papers.

•? Question

Suppose Γ is word hyperbolic (and hence finitely presented) and Λ a finitely pre-
sented, residually finite group with Λ̂ � Γ̂. Is Λ word hyperbolic?

Asmentioned earlier, [10] provides an example of a finitely presented groupwhich
contains infinitely many finitely presented subgroups in its genus. However, these
are not word hyperbolic. Constructions of word hyperbolic groups with the same
profinte completion are given in [56] (indeed these can be taken to be cocompact
lattices in PU(n, 1) for all n ≥ 2). Using the Rips construction, one can construct a
hyperbolic group Γ and a finitely generated subgroup N < Γ such that (Γ, N) is a
Grothendieck pair. However, N will never be hyperbolic.

•? Question

Does there exist a Right Angled Coxeter group Γ < Isom(Hn) admitting an epimor-
phism Γ → Q where Q satisfies the conditions of Proposition 2 and with finitely
generated kernel; e.g. Q can be taken to Higman’s group or a Higman-Thompson
group Vn (both mentioned above)?
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If such exists then, by Proposition 2(2), this would give rise to a Grothendieck pair,
and would be the first example of a Grothendieck pair where the ambient group is a
lattice in Isom(Hn).

•? Question

Let T denote the ideal simplex in H4 defined by the Coxeter notation [4, 32,1], and
let Γ < Isom+(H4) denote the index 2 subgroup consisting of orientation preserving
isometries of the group generated by reflections in the faces of T .

Is Γ Galois rigid in SO(4, 1)?
Is Γ profinitely rigid?

Note that by [59], the group Γ can be identifiedwithSO+(4, 1;Z), and in someways
is similar to the profinitely rigid group PSL(2,Z[ω]). Given that we know nothing
about profinite rigidity (or lack thereof) of groups of isometries of hyperbolic spaces
of dimensions ≥ 4, this would seem like a good test case.

We suspect the answer to both parts of this question is Yes, and it seems likely that
the first part can be carried out. As for the second part, we will likely find ourselves
in a situation similar to that described for SL(n,Z) described in §4.4 of not having
a good enough grasp of finitely generated subgroups to execute the endgame of the
template described in §4.2.

•? Question

Can one prove a higher dimensional version of Liu’s result [43]? i.e. if M is a
finite volume hyperbolic n-manifold with n ≥ 4, then there are only finitely many
hyperbolic n-manifolds of finite volume whose fundamental groups have profinite
completion isomorphic to �π1(M).

If Γ is a free group or a surface group then Γ is well-known to be LERF, and so
there are no Grothendieck pairs (Γ,H) (see [48]). In dimension 3, Agol [2] proved
that the fundamental groups of finite volume hyperbolic 3-manifolds are LERF.
Actually [2] proves GFERF (i.e. separable on geometrically finite subgroups), the
LERF conclusion follows from Canary’s covering theorem [21]. In particular, there
are no Grothendieck pairs (Γ,H) with Γ the fundamental group of a finite volume
hyperbolic 3-manifold.

Now in [32] (see also [39]) it is shown that if Γ is a free group or a surface
group, then, in addition, there are no Grothendieck pairs (Λ, Γ). Very roughly, this is
achieved by exploiting a hyperbolic structure on a punctured or closed surface that is
uniformized by an arithmetic Fuchsian group. A similar strategy works to show that
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if Γ is an arithmetic lattice in a semisimple Lie group then there are no Grothendieck
pairs (Λ, Γ).

However, in dimension 3, we do not knowwhether there are possibleGrothendieck
pairs (Λ, Γ) with Γ the fundamental group of a finite volume hyperbolic 3-manifold.

In higher dimensions, [7] proved that arithmetic lattices in SO(n, 1) are GFERF,
and so there are no Grothendieck pairs (Γ,H) with H geometrically finite. How-
ever, arithmetic lattices in SO(n, 1) are not LERF (see [57], [58] and [8]), and
indeed the subgroup structure is much more complicated. Hence there could yet be
a Grothendieck pair (Γ,H) with H geometrically infinite.

Given the discussion above we raise the following questions:

•? Question

Do there exist Grothendieck pairs (Γ,H) with Γ < SO(n, 1) a lattice and n ≥ 4?
Suppose that n ≥ 3, and Γ is a non-arithmetic lattice. Can Γ be part of a Grothendieck
pair (Λ, Γ)?
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