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Heegaard genus and property τ for hyperbolic 3-manifolds

D. D. Long, A. Lubotzky and A. W. Reid

Abstract

We show that any finitely generated non-elementary Kleinian group has a co-final family of finite
index normal subgroups with respect to which it has Property τ . As a consequence, any closed
hyperbolic 3-manifold has a co-final family of finite index normal subgroups for which the infimal
Heegaard gradient is positive.

1. Introduction

Let M be a finite volume hyperbolic 3-manifold and L = {Mi} some family of finite sheeted
regular covers of M . We say that L is co-final if

⋂
i π1(Mi) = {1}, where, as usual, the π1(Mi)

are all to be regarded as subgroups of π1(M). The infimal Heegaard gradient of M with respect
to the family L is defined as:

infi
χh
−(Mi)

[π1(M) : π1(Mi)]
,

where χh
−(Mi) denotes the minimal value for the negative of the Euler characteristic of a

Heegaard surface in Mi .
In [12], Lackenby showed that if π1(M) is an arithmetic lattice in PSL(2,C), then M has

a co-final family of covers (namely, those arising from congruence subgroups) with positive
infimal Heegaard gradient. The main point of the current note is to show that the same applies
for every finite volume hyperbolic 3-manifold.

Theorem 1.1. Let M be a finite volume hyperbolic 3-manifold. Then M has a co-final
family of finite sheeted covers for which the infimal Heegaard gradient is positive.

It is interesting to recall that if M has a finite sheeted cover which fibers over a circle (and a
well-known conjecture, due to Thurston, asserts that every hyperbolic M has such a covering),
then M has a (co-final) family of finite sheeted covers whose infimal Heegaard gradient is zero.

Theorem 1.1 is a consequence of Theorem 1.2 below. To state this theorem, we need some
preliminary definitions. Let Γ be a group generated by some finite symmetric set S and let
L = {Ni} be a family of finite index normal subgroups of Γ. Then the group Γ is said to have
Property τ with respect to L if the family of Cayley graphs X(Γ/Ni, S) forms a family of
expanders (see [14, Chapter 4] for various equivalent forms of Property τ).

In [12], Lackenby showed for M , a finite volume hyperbolic 3-manifold and L = {Mi}, a
family of finite sheeted covers (but not necessarily a cofinal family), that if π1(M) has Property
τ with respect to π1(Mi), Mi ∈ L, then the infimal Heegaard gradient of M with respect to L is
positive. Thus, Theorem 1.1 follows immediately from our next result, which can be viewed as
providing a first step towards a generalization of Clozel’s result [8] to non-arithmetic lattices.
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Theorem 1.2. Let Γ be a finitely generated non-elementary Kleinian group. Then Γ has
a co-final family of finite index normal subgroups L = {Ni} with respect to which Γ has
Property τ .

In § 2, we review Property τ and prove a lifting result about Property τ from smaller
subgroups (see Proposition 2.1) and in § 3, we prove Theorem 1.2. The proof of Theorem 1.2
uses a recent result of Bourgain and Gamburd [3] on expanding properies of the finite groups
SL(2,p) when the generating set makes the Cayley graph have large girth. This result can then
be combined with Lemma 3.2, which generalizes a result of Margulis [18] and shows that in
our context, we can ensure that the Cayley graph does have large girth. It is perhaps worth
emphasizing that our main result has a purely topological conclusion, but the methods of [3]
are those of additive combinatorics, and in particular recent work of Tao and Vu [20], work of
Helfgott [10], and sum-product estimates in finite fields ([5,2]).

The key tool in Theorem 1.2 is proving a somewhat stronger result, namely Proposition 3.1,
which shows that co-final families of the required type exist for every non-virtually soluble
subgroup of SL(2,k), where k is an arbitrary number field. Theorem 1.2 will now follow: if the
Kleinian group Γ has finite co-covolume, then Mostow–Prasad rigidity implies that Γ admits
a discrete faithful representation into SL(2,C) where the entries lie in some number field. The
general case of a finitely generated Kleinian group follows by applying results of Brooks, Scott
and Thurston.

Finally, in § 4 we discuss some possible generalizations of Theorem 1.2 to finding nested
co-final families and to more general linear groups.

2. Promoting τ

Let Γ be a group, S a finite symmetric set of generators of Γ, L = {Ni} a family of finite index
normal subgroups of Γ, and X(Γ/Ni, S) the quotient Cayley graphs. Recall the definition that
X(Γ/Ni, S) form a family of expanders (see [14]).

Definition. A finite k-regular graph X = X(V,E) with a set V of n vertices is called an
(n, k, c)-expander if for every subset A ⊂ V :

|∂A|� c

(
1 − |A|

n

)
|A|,

where ∂A = {v ∈ V : d(v,A) = 1} and d the distance function on the graph.
A family of k-regular graphs (k fixed) is called an expander family if there is a c > 0 such

that all of the graphs are (n, k, c)-expanders.
In this notation the family of Cayley graphs X(Γ/Ni, S) are ([Γ : Ni ], |S|, c)-expanders for

some c > 0.

There are various methods of lifting Property τ from smaller subgroups of a larger group to
the larger group (see [7] and [15]). These have been used in the context of arithmetic groups.
We now provide another method (inspired by [14, p. 52, Example E]) which applies to both
arithmetic and non-arithmetic groups.

Proposition 2.1. Let Γ be a finitely generated group, and L = {Ni} a family of finite
index normal subgroups of Γ. Suppose that H < Γ (not necessarily of finite index) is finitely
generated, and assume that H surjects onto the finite quotients Γ/Ni for all but a finite number
of i. Then if H has Property τ with respect to the family {H ∩ Ni}, Γ has Property τ with
respect to L.
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Proof. Fix a symmetric generating set SH for H and extend this to a generating set S for
Γ. By assumption, the quotient Cayley graphs X(H/H ∩ Ni, SH ) form a family of expanders.
Now H surjects onto the finite quotient Γ/Ni for all but a finite number of i and so we can
ignore this finite number for our considerations since throwing away a finite number of graphs
will not affect the fact that a family forms a set of expanders. It follows that X(Γ/Ni, S) is
also a family of expanders, since for every subset A of Γ/Ni , the computation of the ratio
|∂A|/((1 − |A|/ni)|A|) (where ni = [Γ : Ni ] = [H : H ∩ Ni ]) can only be increased by the
addition of the extra edges coming from enlarging the generating set.

3. Proof of Theorem 1.2

The key result in the proving of Theorem 1.2 is our next proposition.

Proposition 3.1. Let k be a number field and let Γ be a finitely generated subgroup
of SL(2,k) which is not virtually soluble. Then Γ has a co-final family of finite index normal
subgroups L = {Ni} with respect to which Γ has Property τ .

Proof. Since Γ is finitely generated, we can assume that Γ < SL(2,A) where A is a ring of
S-integers in a number field k, of degree n say, over Q. We fix some notation. Let P be a prime
ideal of A with residue class field F, and let

πP : SL(2,A) −→ SL(2,F),

be the reduction homomorphism.
Since Γ is not virtually soluble, it contains a non-abelian free subgroup F =< a±1 , b±1 >.

By the Cebotarev density theorem, we can find infinitely many rational primes p which split
completely in k, and it follows from Strong Approximation (see [13] for an elementary argument
in the case of SL(2)) that for all but finitely many of the rational primes p that split completely
in k, F surjects SL(2,p) under the homomorphisms πP . Also, note that ker πP ∩Γ (respectively
ker πP ∩ F) forms a co-final family of normal subgroups of finite index in Γ (respectively F ).

We need the following lemma (cf. [18]). Recall that the girth of a finite graph X is the length
of the shortest non-trivial closed path in X.

Lemma 3.2. There is a constant C = C(a, b) so that the girth of the Cayley graph of
SL(2,p) with respect to the generating set {πP(a±1), πP(b±1)} is at least C log(p).

This lemma will be proved below. Assuming Lemma 3.2, the proof of Proposition 3.1 is
completed by the following result of Bourgain and Gamburd (see [3, Theorem 3]).

Theorem 3.3. Suppose that for each p, Sp is some symmetric generating set for SL(2,p),
of fixed size independent of p, such that the girth of the Cayley graph X(SL(2, p), Sp) is at
least C log(p) (where C is independent of p). Then X(SL(2,p),Sp) forms a family of expanders.

Thus to complete the proof, applying Lemma 3.2 to the free subgroup F of Γ (with generating
set as before), we can apply Theorem 3.3 to SL(2,p) with these generating sets and the result
now follows from Proposition 2.1 and our previous discussion.

Proof of Lemma 3.2. Denote the ring of integers of k by Rk . If α ∈ Rk , define:

µ(α) = max{|α′| : α′ is a Galois conjugate of α}.
Here, |∗| denotes the complex absolute value. Note that since α is an algebraic integer, µ(α) � 1
with equality if and only if α is a root of unity.
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It follows easily from the definition that µ(α + β) � µ(α) + µ(β) and µ(α · β) � µ(α) · µ(β),
since for example, in computing the maximum for |α′ + β′|, one clearly cannot do better than
maximize the two terms of |α′| + |β′|.

Given a matrix t ∈ SL(2,A), we may write t as 1/α · t∗, where t∗ ∈ M(2, Rk ) and α ∈ Rk .
Take M to be the biggest value of µ taken over the entries of the matrices a∗, (a−1)∗, b∗ and
(b−1)∗, together with the four denominators of those matrices.

Claim. If w is a word of length r in matrices taken from a∗, (a−1)∗, b∗ and (b−1)∗, then the
entries of w cannot have their µ value be larger than (2M)r .

The proof of the claim is by induction on r: Consider X ·a∗, for example, where X is a word
of length r − 1. The entries of the product X · a∗ have the form x1a1 + x2a2 , where xi is an
entry in X, etc. Then by the above remarks µ(x1a1 +x2a2) � µ(x1a1)+µ(x2a2) � µ(x1)µ(a1)+
µ(x2)µ(a2) and by induction, this is at most (2M)r−1M +(2M)r−1M = (2M)r . This completes
the proof of the claim.

Now suppose that p >> 0 is a rational prime that splits completely in k and P is a k-
prime dividing p. Let r denote the girth, and let w(a, b) ∈ F be a reduced word of length
r which projects to a cycle of length r under πP . Clearing denominators in the congruence
w(a, b) = id mod P, we obtain a congruence between Rk -integral matrices

w(a∗, (a−1)∗, b∗, (b−1)∗) = Z · id mod P.

By the claim, the entries on the left-hand side have their µ values bounded above by (2M)r ,
and Z is a product of r integers with µ value at most M , so µ(Z) � Mr .

Now the integral matrix w(a∗, (a−1)∗, b∗, (b−1)∗) − Z · id is not identically zero, since a and
b generate a free group of rank two. Let β be one of its non-zero entries. The above remarks
show that µ(β) is bounded above by (2M)r + Mr < (3M)r , say. Notice that β ∈ P, and
the k/Q-norm of β is a non-zero integer which is divisible by p, since we take the product
of all the conjugates of β which lie in conjugates of P. Recalling that n is the degree of k
over the rationals, it follows from the definition of µ that this integer is bounded above by
µ(β)n � ((3M)r )n .

We therefore deduce that in order to be divisible by p, r must be large enough, so that
(3M)rn > p; that is to say, r � C log(p) with C = 1/(n log(3M)) as required.

Proof of Theorem 1.2. Without any loss of generality, we may assume that Γ is torsion free.
In the case that Γ has finite co-volume, then as remarked in § 1, it follows from local rigidity
that Γ (or more precisely a lift to SL(2,C)) can be conjugated into SL(2,k) for some number
field k (indeed k can be chosen to be a quadratic extension of the trace-field; see [17] Corollary
3.2.4), and Proposition 3.1 applies.

Now assume that Γ has infinite co-volume. Since Γ is non-elementary, it is not virtually
soluble, and is either geometrically finite or geometrically infinite. In the former case, we
can apply a result of Brooks [6] that produces a quasi-conformal conjugate Γ′ of Γ that is a
subgroup of a Kleinian group of finite co-volume. Hence, as in the previous paragraph, this
implies Γ′ < SL(2,k) for some number field k. In the case when Γ is geometrically infinite, as
pointed out in [1] for example, it is a consequence of the Scott Core Theorem and Thurston’s
Hyperbolization Theorem for Haken manifolds that there exists a group Γ′ isomorphic to Γ
with Γ′ geometrically finite. We now argue as before.

4. Final remarks

4.1. Although Theorem 1.2 provides a co-final family, it does not provide a family which is
co-final and nested. In the proof of Theorem 1.2, we used [3] which does not provide a nested
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family. Recent work of Bourgain, Gamburd and Sarnak [4] extends some of [3] to products of
primes, and may yet eventually lead to a co-final nested family in groups Γ as above.

However, even in the absence of this result, we can produce a rich class of non-arithmetic
Kleinian groups that do contain a co-final nested family.

Proposition 4.1. Let Γ be a Kleinian group of finite co-volume that contains an arithmetic
Fuchsian subgroup. Then Γ contains a co-final nested family L = {Ni} of normal subgroups of
finite index, such that Γ has Property τ with respect to L.

Proof. We begin with a preliminary remark. Let F be an arithmetic Fuchsian group. As is
pointed out in [14, pp. 51–52] for example, it follows from a result of Selberg and an application
of the Jacquet–Langlands correspondence, that F has Property τ with respect to the entire
family of its congruence subgroups.

Thus, if F is an arithmetic Fuchsian subgroup of Γ, then after possibly discarding perhaps
finitely many prime ideals, we can form ‘congruence subgroups of Γ’ obtained via reduction
homomorphisms. Furthermore, by considering only the primes that split completely in the
invariant trace-field of Γ (and hence, also in the invariant trace-field of F ), we can arrange that
there are infinitely many congruence quotients of Γ for which F surjects.

In fact, an easy argument using Strong Approximation and the Chinese Remainder Theorem
shows that we can find a sequence of completely split primes, so that F surjects each of the
reductions modulo the descending sequence of ideals In = P1 . . .Pn . These now form a co-
final nested family of congruence subgroups. The result now follows from Proposition 2.1 with
F = H.

Examples of non-arithmetic Kleinian groups Γ satisfying the hypothesis of Proposition 4.1
are plentiful as we now discuss.

Construction of examples

Example 1. A thrice-punctured sphere has a unique hyperbolic structure arising as H2/
Γ(2), where Γ(2) is the principal congruence subgroup of level 2 in the modular group. In
particular, Γ(2) is an arithmetic Fuchsian group. Many non-arithmetic link complements con-
tain an immersed (or embedded) thrice-punctured sphere. For example, all the non-arithmetic
hyperbolic twist knot complements. By [11], these are all mutually incommensurable.

Example 2. The examples of non-arithmetic hyperbolic manifolds of Gromov and Piatetski-
Shapiro [9] as hybrids of arithmetic ones. By construction, these contain an arithmetic totally
geodesic surface.

Example 3. One can also easily obtain closed examples by only 3-dimensional methods
using the construction of [19]. There, a non-compact hyperbolic orbifold with a torus cusp
is constructed, the boundary of which consists of two totally geodesic isometric copies of a
hyperbolic 2-orbifold H2/∆ for some hyperbolic triangle group ∆. Doubling this orbifold along
the totally geodesic boundary gives a two-cusped hyperbolic orbifold H3/Γ for which Γ contains
triangle groups. This construction can be done where the triangle group is chosen arithmetic
(see [19]). These are rigid, so any surgeries on the cusps will leave them as totally geodesic
and arithmetic. Sufficiently high order Dehn surgeries will produce non-arithmetic hyperbolic
3-orbifolds (for example by using Borel’s result on the discreteness of the set of co-volumes of
arithmetic Kleinian groups; see [17, Chapter 11.2.1]).
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4.2. It seems quite possible that Theorem 1.2 and Proposition 3.1 hold for any finitely
generated subgroup of SL(2,C) which is not virtually soluble. At present, our methods only
prove the following.

Theorem 4.2. Let Γ be a finitely generated subgroup of SL(2,C) which is not virtually
soluble. Then Γ has an infinite family L = {Ni} of finite index normal subgroups, such that Γ
has Property τ with respect to L.

This result follows by noting that Proposition 3.1 implies that we are done, unless Γ contains
an element whose trace is transcendental; in this case, we may choose an algebraic specialization
where the image group is not virtually soluble (see [16, Proposition 2.2] for a more general
version of this specialization result).

At present our argument works only for SL(2), since there is no analogue of the result of
[3] yet known for groups SL(n), n > 2. However, it seems reasonable to expect the following
stronger conjecture to hold.

Conjecture. Let Γ be a finitely generated subgroup of GL(n,C) whose Zariski closure is
semi-simple. Then Γ has a co-final (nested) family L = {Ni} of finite index normal subgroups,
for which Γ has Property τ with respect to L.

This Conjecture would provide a far-reaching generalization of Clozel’s work [8] mentioned
in § 1.
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