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THIN SURFACE SUBGROUPS IN COCOMPACT LATTICES
IN SL(3,R)

D. D. LONG AND A. W. REID

Abstract. We show certain cocompact lattices in SL(3,R) con-
tain closed surface groups. With further restrictions, we exhibit

such lattices containing infinitely many commensurability classes
of closed surface groups.

1. Introduction

Let G be a semi-simple Lie group, and Γ<G a lattice. Following Sarnak
(see [19]), a finitely generated subgroup Δ of Γ is called thin if Δ has infinite
index in Γ, but is Zariski dense.

There has been a good deal of interest recently in thin groups (see, for
example, [7], [8] and [19] to name a few), and there are many results that give
credence to the statement that “generic subgroups of lattices are free and thin”
(see [7], [9] and [18]). Our interest is rather more focused on the case where
Δ is freely indecomposable, and in previous work [13], the authors exhibited
thin surface subgroups contained in any non-uniform lattice in SL(3,R). This
note provides further evidence of the utility of the techniques to establish
“thinness” that was developed in previous work. In particular, we will prove
the following theorem.

Theorem 1. There are infinitely many cocompact lattices in SL(3,R)
which contain thin surface subgroups.

Kahn and Markovic prove that every cocompact lattice in Isom((H2)r)
contains a thin surface subgroup, see [12]. At the time of writing this paper,
as far as the authors were aware, the examples provided by Theorem 1 were
the first examples of thin surface subgroups constructed in a cocompact lattice
in any higher rank simple Lie group. However, U. Hamenstädt has recently
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informed the authors that using the methods of [10] (that build on those
of [11]) she is able to construct examples of thin surface subgroups in any
cocompact lattice contained in SL(3,R).

Regarding Theorem 1, one can say rather more for certain lattices. In
the notation established below, we construct explicit lattices in SL(3,R) that
contain thin surface subgroups. (We refer the reader to Section 4.2 for the
definition of a Pisot integer.)

Theorem 2. Suppose that u is a totally real Pisot integer for which (u−
1)/2 is an integer.

Then the lattice Λ(u−1),(u−1) contains infinitely many commensurability
classes of thin surface subgroups.

The fact that such a plethora of examples can (at least sometimes) exist
inside such lattices is rather striking. This second result uses the following,
which should be of independent interest.

Theorem 3. Suppose that Δ is a hyperbolic triangle group, and that
{ρn(Δ)} is an infinite family of representations whose characters determine
distinct points on the Hitchin component.

Then there is an infinite subsequence, no two of which are commensurable
up to conjugacy.

This is the only case that we shall need, but there is a much more gen-
eral statement. However, even this statement suffices to show that the main
theorem of [14] exhibits infinitely many genus two surface groups in SL(3,Z)
which are non-commensurable, even up to conjugacy. On the other hand,
in the present setting we are unable to prove that sharper genus statement,
as control on the genus seems to be lost at two points: (i) Lemma 8, where
although we prove that one can pass to a subgroup of finite index to get the
representation to be integral, one has no idea what that index might be and
(ii) in the use of the Gram-Schmidt process, which also produces an unknow-
able subgroup of finite index.

The method of proof will follow the ideas in [13], and is a mix of computa-
tional and theoretical. However, the proofs here are somewhat more delicate
than those of [13].

The outline of the paper is as follows. As stated above, we follow the
ideas in [13], and in particular the basic idea there that exploits characters of
representations lying in the Hitchin component of a certain triangle group as
a means of certifying that a representation of that triangle group with certain
algebraic integer traces is faithful. This is reviewed in Section 3 (where we
also impose conditions on traces and construct a Hermitian form that will be
needed later). In Section 2, we recall the algebraic framework that is needed
to construct certain cocompact lattices in SL(3,R), and in Section 4, put the
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constructions of Section 2 and Section 3 together to generate explicit examples
of cocompact lattices containing thin surface subgroups.

2. Hermitian forms and cocompact lattices in SL(3,R)

In this section, we recall some facts about certain cocompact lattices at-
tached to Hermitian forms, as well as some background on Hermitian forms
(we refer the reader to [21] for further details about the former, and to [20]
for the latter).

Let F be a totally real algebraic number field, different fromQ, and suppose
that t, a, b ∈ F are such that

• t, a, b > 0.
• L= F (

√
t) with ring of integers O.

• τ is the non-trivial Galois automorphism of L over F .
• At the non-identity embeddings σ : F →R, we have σ(t), σ(a), σ(b)< 0.

Define Ja,b = diag(−1, a, b) which we view as a Hermitian form on V = L3.
Note that at the identity place of F , Ja,b has signature (2,1), whilst at the non-
identity places, our assumption above shows that Jσ

a,b = diag(−1, σ(a), σ(b))

has signature (3,0).
Suppose now that J ∈GL(3, F ) defines another Hermitian form on V , then

J is L-equivalent to Ja,b if there exists P ∈ GL(3,L) so that P ∗Ja,bP = J .
From [20] Chapter 10, Example 10.1.6(iv), the L-equivalence class of J is
completely determined by the determinant of Ja,b (which is −ab (modulo

F ∗2)) and the signatures at the real embeddings.
For a matrix X = (xij) ∈ SL(3,L) define X∗ = (τ(xij))

t and define:

SU(J ;L, τ) =
{
X ∈ SL(3,L) :X∗JX = J

}
.

Of particular interest to us will be the integral special unitary group:

SU(J ;O, τ) =
{
X ∈ SL(3,O) :X∗JX = J

}
.

In the special case when J = Ja,b, we let Λa,b = SU(Ja,b;O, τ).
If J is L-equivalent to Ja,b, say P ∗Ja,bP = J , then for X ∈ Λa,b, a computa-

tion shows that PXP−1 ∈ SU(J ;L, τ) and a standard argument upon clearing
denominators shows that PΛa,bP

−1 is commensurable with SU(J ;O, τ).
Summarizing this discussion we have the following proposition.

Proposition 4. In the notation above, there is a unique L-equivalence
class of Hermitian forms equivalent to Ja,b and this determines a unique com-
mensurability class of groups (up to conjugation) commensurable with Λa,b.

2.1. Constructing cocompact arithmetic subgroups. The existence of
thin surface subgroups in certain cocompact lattices depends on having an ex-
plicit description of certain cocompact lattices in SL(3,R). In particular, the
basis of our construction is the following result, drawn from [21] Chapter 6.7.
For convenience, we sketch the proof of this. The notation is as above.
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Proposition 5. Let F be a totally real algebraic number field, different
from Q. Suppose that t, a, b ∈ F are as in Section 2.1. Then Λa,b is a cocom-
pact arithmetic subgroup of SL(3,R).

Note that by Margulis’s Arithmeticity theorem [15] Chapter IX, any co-
compact lattice in SL(3,R) is arithmetic.

Proof of Proposition 5. Following Margulis, [15] Chapter IX.1.5, an arith-
metic lattice Γ in SL(3,R) is defined via the following construction.

Let k be a totally real number field with ring of integers Rk, G an absolutely
almost simple algebraic group defined over k (i.e. the only proper normal
algebraic subgroups of G are finite) and φ : G(R) → SL(3,R) a continuous
isomorphism. Suppose that for every non-trivial embedding σ : k→R, Gσ(R)
is compact. Then Γ is arithmetic if it is commensurable with φ(G(Rk)). Note
that by standard considerations if k �=Q the group Γ is cocompact.

In our setting, we take as the field k, the field F as in the statement
of Proposition 5. For the algebraic group, we take a group G defined
over F whose F -points can be identified with SU(J ;L, τ) = {X ∈ SL(3,L) :
X∗JX = J}. The group G can be made explicit by using the restriction of
scalars from L to F thereby embedding L ↪→M(2, F ) and G(F ) ⊂ SL(6, F )
(see [21] Chapter 6).

To complete the discussion, we need to understand the nature of the groups
Gσ(R) for σ : F →R. The nature of these real groups is determined by the
conditions on a, b, t and σ(a), σ(b), σ(t) given above. In particular, the special

unitary nature will persist when σ(t) < 0, in which case Lσ = F (
√
σ(t)) is

an imaginary quadratic extension equipped with a complex conjugation τσ ,
given by the non-trivial Galois automorphism of Lσ/σ(F ). The type of the
special unitary group is then determined by the signature of the form Jσ

a,b,

which in our case has σ(a), σ(b)< 0, so that in summary for σ a non-identity
embedding, we have Gσ(R) = SU(Jσ

a,b;C, τσ) is the compact group SU(3).

At the identity place L/F is a real extension, and in this case we have
R⊗F L =R×R. It now follows that in this case we get G(R) ∼= SL(3,R)
(see [16] Chapter 2.3.3, for example).

We can now apply the construction of an arithmetic group given above to
deduce that Λa,b < SL(3,R) is a cocompact arithmetic lattice. �

Remark. Note that by construction, the lattices Λa,b all contain arithmetic
Fuchsian groups which arise as subgroups of SO(Ja,b;Rk) ↪→ Λa,b. However,
these have Zariski closure SO(2,1,R) and so are not thin in SL(3,R).

3. The surface group and its representations

As remarked in Section 1, we will use the ideas of [13] and construct the
surface subgroups from certain points in the Hitchin component of the triangle
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group

Δ=Δ(3,4,4) =
〈
a, b | a3 = b4 = (a.b)4 = 1

〉
.

It follows from [4] that the Hitchin component of any triangle group where
p, q, r > 2 is 2-dimensional and that any representation corresponding to a
character in the Hitchin component, different from the character of the Fuch-
sian representation, is Zariski dense, see [3]. The use of the particular triangle
group Δ(3,4,4) is (almost completely) related to the computations necessary
to implement our program already having been performed in [14]. We note
that it is part of that computation that the Fuchsian representation occurs
when u= v = 7.

The details involved in the construction of the representation ρu described
below are contained in [14] (and [13]) building on the work in [5]. Figure 1
shows where a certain discriminant D = (u−7)(1+u) vanishes in the uv-plane
and this gives a convenient description of the Hitchin component. The upper
right region is where the discriminant is positive and contains the discrete
faithful representation. Our above remarks show that the representations
with uv values in this region (generically there are two for each such value)
are therefore discrete and faithful (see [14]).

Figure 1. The Hitchin component.
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We note that while this is a two parameter representation, we only require
the case u= v, so we record only that specialization here.

ρu(a) =

⎛
⎝
1 1 −(1 + u+

√
D)/4

0 −1 1
0 −1 0

⎞
⎠ ,

ρu(b) =

⎛
⎝

1 0 (3− u−
√
D)/4

(1 + u−
√
D)/2 1 −1

(−3 + u−
√
D)/2 0 −1

⎞
⎠ .

It is crucial in the setting of Proposition 5 that all traces are integral. One
might hope that one could conjugate the representation so that all the entries
are integral, but this is apparently not easily accomplished. Instead, we use
the technique introduced in [1] (see Lemma 2.2 therein).

Lemma 6. The representation ρu has traces which are integral polynomials
in u and

√
D.

Proof. This involves a computation (as it must); we sketch the idea here
and have placed a file with an implementation at [22].

We begin with some general remarks. One can find elements g1, . . . , g9
which are a basis for the vector space of 3× 3 matrices M(3,R). We always
choose g1 to be the identity matrix. Let g∗1 , . . . , g

∗
9 be the dual basis with

respect to trace, that is,

tr
(
gi.g

∗
j

)
= δij .

One can use the action of the group on this dual basis by left multiplication to
obtain a 9-dimensional left regular representation that is, if γ ∈ ρu(Δ), then
its action is defined by

γ.g∗i =
∑
j

αij(γ)g
∗
j .

Taking traces in this equation, we get

tr
(
γ.g∗i

)
=
∑
j

αij(γ) tr
(
g∗j
)
.

Notice that since we have chosen g1 = I , we have that tr(g∗j ) = tr(g1.g
∗
j ) = δ1j ,

in particular these are all rational integers. Writing I =
∑

τjg
∗
j , notice that

τi = tr(gi) by duality; one verifies that these traces are all integral. Moreover,
multiplying by γ and taking traces, we have

tr(γ) =
∑
j

tr(gj) tr
(
γ.g∗j

)
=
∑
j,k

tr(gj) tr
(
g∗k
)
αjk(γ) =

∑
j

tr(gj)αj1(γ).

The upshot of these two computations is the following: Fix some choice
of basis and verify the associated left regular representation matrices for the
generators have determinant 1. It then follows that the denominators of the
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entries for these generators contains the denominators for the traces of the
original collection of matrices of Γ.

We now return to the proof of the lemma. It follows from the considera-
tions of the previous paragraph that if one could find a basis for which this
construction gave integral matrices (αij(γ)), then this would prove the result
claimed by the lemma. However, this appears to be hard. We bypass this dif-
ficulty by constructing two representations via two different choices of basis
{gi} which give rise to different, coprime denominators. Since traces are not
dependent on choice of basis, the traces of the original representation must
be integral. �

Corollary 7. Specializing u to be an algebraic integer determines a rep-
resentation ρu with algebraic integer traces.

The passage to a commensurable integral representation is now achieved
using the next result.

Lemma 8. Let k be a number field and suppose that Γ< SL(3, k) is a finitely
generated non-solvable group satisfying:

• Q(tr(γ) : γ ∈ Γ) = k, and
• tr(γ) ∈Ok for every γ ∈ Γ.

Then Γ has a subgroup of finite index contained in SL(3,Ok).

Proof. Consider

OΓ= {Σaiγi | ai ∈Ok, γi ∈ Γ},
where the sums are finite. It is shown in [2] (see Proposition 2.2 and Corol-
lary 2.3), that OΓ is an order of a central simple subalgebra B ⊂ M(3, k),
which by the first assumption is defined over k. By Wedderburn’s theorem,
since the dimensions of central simple algebras are squares, the non-solvable
assumption implies that B =M(3, k). Hence, OΓ is an order in M(3, k), and
therefore it is contained in some maximal order C of M(3, k) (cf. [17] p. 131,
Exercise 5 and the proof of Lemma 2.3 of [14]).

Now it is a standard fact that the groups of elements of norm 1 in orders
contained in M(3, k) are commensurable (since the intersection of two orders
is an order and the unit groups of orders will be irreducible lattices, see [21]
Chapter 5). In particular, SL(3,Ok) and C1 are commensurable. Let H =
SL(3,Ok) ∩ C1, which has finite index in both groups. Then Γ≤ C1, so that
Γ∩H has finite index in Γ and lies inside SL(3,Ok) as required. �

3.1. The form. Given the data of Section 2, and assuming that L= F (
√
D)

is a quadratic extension of F , it is easy to compute that the matrices ρu(a)
and ρu(b) preserve the form J below; that is, they satisfy X∗JX = J , where
X∗ is given by transposing and mapping

(∗)
√
D→−

√
D.
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Figure 2. Control of the signature.

One finds J given by

J =

⎛
⎝

12 5 + u+
√
D 2(1− u−

√
D)

5 + u−
√
D 4 −1− u−

√
D

2(1− u+
√
D) −1− u+

√
D 4

⎞
⎠ .

The application of Proposition 5 requires some understanding of signatures
in J and how they are controlled by u. We refer the reader to Figure 2, of
particular relevance are the intervals along the line u= v.

An entirely routine application of the Gram–Schmidt process, together with
the remarks of Section 2, shows that J is L-equivalent to the form

Λ=

⎛
⎝
1 0 0
0 (1− u) 0
0 0 (1− u)

⎞
⎠ .

The form Λ has signature (3,0) for u < 1 and (2,1) when u > 1. Also note
that the automorphism of (∗) is complex conjugation when (u−7)(1+u)< 0.

4. Proofs of Theorems 1 and 2

Given the previous set up, we are now in a position to prove Theorem 1.
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4.1. Proof of Theorem 1. In this subsection, we construct infinitely many
cocompact lattices which contain thin surface groups.

Let F be any totally real field; this will be the field F of Proposition 5. We
claim that inside F there are infinitely many integers u with the properties
that:

(i) At the identity embedding of F , u > 7;
(ii) At all the other embeddings σ : F →R one has −1< σ(u)< 1.

Assuming this claim for the moment, we finish off as follows. As usual, we
set D = (u−7)(1+u) and L= F (

√
D). Note that D cannot be a square in F ,

since if this were the case D = x2 for some x ∈ F . Now F is totally real, so if
σ : F →R is any non-identity Galois embedding then σ(D) = σ(x2) = σ(x)2.
On the other hand, by construction σ(D)< 0, and so we have a contradiction.

One can now check that with the choice a= b= (u− 1), the hypotheses of
Proposition 5 are satisfied for the form −Λ = J(u−1),(u−1). Hence, it follows

that Λ(u−1),(u−1) is a cocompact lattice in SL(3,R). Now the group ρu(Δ)
is a faithful representation of the triangle group Δ since, by construction
u > 7, places the character of ρu in the Hitchin component and as remarked
at the start of Section 3, these are all faithful. Moreover, from Section 3.1,
we see that a conjugate of ρu(Δ) which we denote by W is a subgroup of
SU(J(u−1),(u−1);L, τ). This observation, coupled with Lemma 8 and the re-
mark following it, shows that there is an integral subgroup of finite index
in W . Hence, we deduce the existence of a surface subgroup of finite index
in W that lies inside Λ(u−1),(u−1) as required. Note the surface subgroup is
thin since by Theorem 2.1 of [13], it is Zariski dense in SL(3,R) and theo-
rems of Margulis imply a surface group cannot have finite index in a lattice
of rank > 2.

That we have infinitely many commensurability classes of cocompact lat-
tices follows from the discussion in Section 2.1 and Proposition 4 when we let
F vary and choose L= F (

√
t) as above. �

Examples. (1) Let d be any square-free positive integer and take F =

Q(
√
d). Let u be any unit in the integers of F ; by replacing u by −u if need

be, we can suppose that u > 1. Since u is a unit, it follows that the other
conjugate lies in the interval (−1,1). Then all sufficiently large powers satisfy
ur > 7 and −1< σ(ur)< 1.

(2) A more complicated example is the following. Consider the polynomial
f(u) =−1+2u+8u2 − 7u3 − 12u4 +u5; this has five real roots, four of which
lie in the interval (−1,1) and the fifth is around 12.507542> 7.

We sketch a proof of the claim.

Lemma 9. Any totally real field F contains an integer (in fact a unit when
the field is different from Q) which is > 7 at the identity embedding and has
all other conjugates in the interval (−1,1).
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Proof. Suppose that [F :Q] = k+ 1 and let v1, . . . , vk be generators of the
unit group as determined by Dirichlet’s Unit theorem. As usual, there is a
canonical embedding of F into Rk+1 and by squaring each vj , we can suppose
that the image of each of the vj ’s has all its coordinates positive. Taking
logarithms, gives a map from the positive orthant of Rk+1 to Rk+1 so that
each vj lies in the hyperplane where the sum of the coordinates is equal to zero.
Dirichlet’s Unit theorem says that the images of the set {v1, . . . , vk} form a
basis for this hyperplane, so there is a linear combination of their images which
yield the vector (−1/k,−1/k, . . . ,−1/k,1), hence a rational linear combination
giving a vector very close to that vector and therefore by scaling, one obtains
an integer linear combination with the property that the first k co-ordinates
are negative and the last coordinate is positive. After possibly taking further
powers (to arrange u > 7) this unit has the required properties. �

Remark. Notice that once a unit u has the requisite properties, so do all
its powers.

4.2. Proof of Theorem 2. In this section, we show that at least for certain
sequences of u-values, one can construct infinitely many thin surface groups
inside a single cocompact lattice. Here is the outline:

In order to construct infinitely many commensurability classes of surface
subgroups in some of the lattices Λ(u−1),(u−1), we need to find infinitely many
totally real integers u that satisfy the conditions stated in Section 3.1, that is,
(i) At the identity embedding u > 7 and (ii) at all the other embeddings −1<
σ(u)< 1. Such u we will call totally real Pisot integers. As in Section 3.1, such

a u defines a quadratic extension L= F (
√

(u− 7)(u+ 1)), and our first task
is to prove that we can find infinitely many totally real Pisot integers u which
determine the same quadratic extension. This is achieved in Theorem 10.
It will then follow from Section 2.1 that the arithmetic groups Λ(u−1),(u−1)

are commensurable (up to conjugacy). That these surface groups are non-
commensurable up to conjugacy is shown in Section 4.2.1.

Theorem 10. Suppose that u is a totally real Pisot integer of OF for which
(u− 1)/2 is an integer.

Then there are infinitely many totally real Pisot integers u′ in OF for which

L= F
(√

(u− 7)(u+ 1)
)
= F

(√(
u′ − 7

)(
u′ + 1

))
.

Remark. If we begin with any totally real Pisot unit u, then since it does
not represent the zero class in the ring OF /2OF , there are infinitely many
powers so that uk represents 1 in this ring. It will follow from the work in this
section that for any such power, the lattice defined by uk contains infinitely
many non-commensurable surface groups.

Proof of Theorem 10. Given a totally real Pisot u = u1 ∈ OF , we seek to
construct infinitely many other totally real Pisot integers u2 ∈ OF for which
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(u1 − 7)(u1 +1) = x2(u2 − 7)(u2 +1) for some x ∈ F . Since we do not require
that x be an integer, we can introduce a slack variable λ satisfying (u1 −
7)(u1 + 1) = λ and claim we can use u1 to generate infinitely many totally
real Pisot solutions to

(1) (u− 7)(u+ 1) = λx2
u

hence generating solutions satisfying

(u1 − 7)(u1 + 1)

(u− 7)(u+ 1)
= (1/xu)

2

as required.
Completing the square in (1), we obtain (u − 3)2 − 16 = λx2

u, which we
re-write as a Pell Equation

(2) U2 − λX2 = 1,

where U = (u − 3)/4 and X = xu/4; with initial solution given by u = u1

and xu = 1, which determines the value of the slack variable λ. In the usual
fashion, if we regard (2) as the equation

(U +
√
λX)(U −

√
λX) = 1

one sees that one can generate solutions to (2) from the powers (U +
√
λX)k.

The fact that (U +
√
λX) satisfies Pell’s equation means that over F , it sat-

isfies

(3) Q2 − 2UQ+ 1= 0.

Our condition on u1 means that the initial solution 2U1 = (u1 − 3)/2 is an
integer and that 2U1 > (7− 3)/2 = 2, so the two roots of (3) are both real and
integral, hence so are their powers. Moreover, if σ is any other embedding of
F , then (3) becomes Q2 − 2σ(U)Q+ 1 = 0 and one sees that −2< 2σ(U) =
(σ(u1)− 3)/2<−1, so that all the other Q-conjugates are pairs of complex
conjugate numbers on the unit circle. The upshot of this discussion is that
the number u1 +

√
λ is a Salem number and it is well known (it follows easily

from Kronecker’s Approximation theorem) that the complex embeddings of
the powers of such a number form a dense set in the relevant product of unit
circles. We deduce that infinitely many powers of the initial solution u1+

√
λ

can be used to generate totally real Pisot integer solutions, as required. �

Example. If one takes u1 = 4 +
√
13 and u2 = 35787970 + 9925797

√
13,

one finds that (u2−7)(u2+1)
(u1−7)(u1+1) = ((31354669+ 8696221

√
13)/2)2.



50 D. D. LONG AND A. W. REID

4.2.1. Infinitely many commensurability classes. In this section, we show that
infinitely many commensurability classes of thin surface subgroups can arise
from certain values of u as in the construction of Section 3.1. The key result
is the following theorem.

Theorem 11. Suppose that {ρn(Δ)} is an infinite family of representations
on the Hitchin component, no two of which are conjugate.

Then there is an infinite subsequence, no two of which are commensurable
up to conjugacy.

Deferring the proof of this for now, we will complete the proof of the fol-
lowing.

Theorem 12. Suppose that u is a totally real Pisot integer and has (u−
1)/2 an integer.

Then the lattice Λ(u−1),(u−1) contains infinitely many commensurability
classes of thin surface subgroups.

Proof. Theorem 10 shows that for totally real Pisot u1 satisfying (u1−1)/2
an integer, there are infinite sequences of representations {ρun(Δ)} all of
which lie in a fixed field L, moreover, the remarks of Section 2.1 show that
the invariant forms for this family of groups are all equivalent.

We claim these are all non-conjugate representations. For example, one
may regard the group Δ as generated by the two elements of order 4, b and
ab. Any conjugacy between different image groups must preserve the pair
(b, ab) up to some mild automorphism and hence preserve the characteristic
polynomial of their commutator.

One finds that under the representation ρu, their commutator has charac-
teristic polynomial

χ(Q) = 1+
(
1− u2 − (u− 1)D

)
Q+

(
−1 + u2 − (u− 1)D

)
Q2 −Q3.

One can now see that this polynomial takes on infinitely many different values
for varying values of u.

The subsequence provided by Theorem 11 now completes the proof, since
we may pass to subgroups of finite index in {ρn(Δ)} and conjugate them so
they all lie in the lattice Λ(u−1),(u−1). By construction, no two of these are
commensurable up to conjugacy. �

The proof of Theorem 11 will require some facts about about projective
manifolds and the actions of subgroups of PGL(3,R) that preserve a properly
convex domain in RP2. We refer to [6] for standard facts about such matters.

We begin with some preliminary remarks. Since the groups ρu(Δ) have
characters in the Hitchin component and are chosen different from the char-
acter of the Fuchsian representation, it follows that this defines a properly
convex projective structure on the triangle orbifold S =H2/Δ, which arises
as Ωu/ρu(Δ) where Ωu ⊂ RP2 is a properly convex domain that is not an
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ellipsoid (see for example [4] and [6] for more details). For convenience,
we set Ω = Ωu and we will refer to the frontier of Ω as the limit set. For
an element g ∈ PGL(3,R) we let [g] denote the action on RP2, and set
Stab(Ω) = {g ∈ PGL(3,R) : [g]Ω = Ω}. Then we have the following lemma.

Lemma 13. Suppose that Ω ⊂ RP2 is a properly convex domain, not an
ellipsoid, and that Ω has a compact quotient.

Then Stab(Ω)≤ PGL(3,R) acts discretely on Ω.

Proof. Suppose in search of a contradiction that gn ∈ Stab(Ω) is a collection
of matrices with the property that [gn] converges to the identity map on Ω.
We recall that the domain Ω admits a Finsler metric, the so-called Hilbert
metric (see [6]) for which Stab(Ω) acts as a group of isometries. In particular,
we may fix a point p ∈ Ω and eventually the terms of the sequence [gn]p are
within a Hilbert distance 1, say of p.

We now appeal to Theorem 7.1 of [6]: For every d > 0, there is a compact
subsetK of PGL(3,R), so that the subset of Stab(Ω) which moves p a distance
at most d lies inside K. It follows that the subgroup Stab(Ω) is non-discrete
in PGL(3,R), and we may therefore take its topological closure, denote this
by G. This is a closed subgroup of a Lie group, so a Lie group. However, it is
a result of Benoist [3] (this may also be seen directly in this small dimension)
that since Ω has a compact quotient and is not an ellipsoid, Stab(Ω) must be
Zariski dense in PGL(3,R); it follows that G= PGL(3,R). However, this is
a contradiction, since it is easily seen that G must preserve Ω. �

Corollary 14. For Ω as in Lemma 13, Stab(Ω) acts properly discontin-
uously on Ω.

Proof. Fix any ball B of radius R in the Hilbert metric and suppose that
B ∩ [gn]B is non-empty for some sequence of elements in Stab(Ω). It follows
that for any point p ∈ B, [gn]p is no further than 3R from the centre of B.
Appealing again to [6] Theorem 7.1, it follows that we may subconverge the
gn sequence in PGL(3,R) and hence get a convergent sequence in Stab(Ω), a
contradiction to Lemma 13. �

Proof of Theorem 11. Suppose that there were an infinite subsequence for
which the limit sets of the groups ρn(Δ) were all projectively equivalent.
Thus we can conjugate all those groups into Stab(Ω), where Ω is the properly
convex set defined by this limit set; abusing notation we continue to denote
these groups by ρn(Δ).

Corollary 14 shows that Stab(Ω) acts properly discontinuously and so it
is isomorphic to the fundamental group of a negatively curved 2-orbifold. In
particular, it is finitely generated and so has only finitely many subgroups of
a fixed index.

However, we are supposing the group Stab(Ω) contains infinitely many
groups ρn(Δ), all isomorphic to Δ, and it follows that all of these image
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groups have index [Stab(Ω) : ρn(Δ)] given by the ratio of the orbifold Eu-
ler characteristics χ(Ω/ρn(Δ))/χ(Ω/Stab(Ω)). Therefore at least two these
groups must determine the same subgroup of Stab(Ω), in other words, two of
the original groups ρn(Δ) were conjugate. This is a contradiction.

The result now follows, since groups which are commensurable up to con-
jugacy must have projectively equivalent limit sets and this argument shows
that each limit set can only occur finitely often. �

Remark. In fact, we produce an infinite family of groups with projectively
distinct limit sets; such groups cannot be mapping class group equivalent
either.
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