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Hyperbolic 3-Manifolds and Discrete Groups

Hyperbolic 3-space can be defined as

H3 = {(z, t) ∈ C× R : t > 0}

and equipped with the metric ds = dsE
t .

Geodesics are vertical lines perpendicular to C or semi-circles
perpendicular to C.
Codimension 1 geodesic submanifolds are Euclidean planes in
H3 orthogonal to C or hemispheres centered on C.

The full group of orientation-preserving isometries of H3 can be
identified with PSL(2,C).

Abuse of notation
We will often view Kleinian groups as groups of matrices!



A discrete subgroup of PSL(2,C) is called a Kleinian group.

Such a group acts properly discontinuously on H3.
If Γ is torsion-free (does not contain elements of finite order)
then Γ acts freely.
In this latter case we get a quotient manifold H3/Γ and a
covering map H3 → H3/Γ which is a local isometry.

We will be interested in the case when H3/Γ has finite volume.

Note: If Γ is a finitely generated subgroup of PSL(2,C) there is
always a finite index subgroup that is torsion-free.



Examples

1. Let d be a square-free positive integer, and Od the ring of
algebraic integers in Q(

√
−d). Then PSL(2,Od) is a Kleinian

group.
Indeed H3/PSL(2,Od) has finite volume but is non-compact.
These are known as the Bianchi groups.

d = 1
(picture by Jos Leys)



2. Reflection groups.

Tessellation by all right dodecahedra
(from the Not Knot video)



3.Knot Complements

The Figure-Eight Knot

Thurston’s hyperbolization theorem shows that many knots
have complements that are hyperbolic 3-manifolds of finite
volume.

e.g. Out of approximately 1.7 million knots with ≤ 16 crossings

only 32 are not hyperbolic.

Important example: K the figure-eight knot above,
S3 \K = H3/Γ where

Γ =<

(
1 1
0 1

)
,

(
1 0
ω 1

)
>, where ω2 + ω + 1 = 0

So Γ < PSL(2,O3) of index 12 (R. Riley, 1974).



Number Theory
Let Γ < PSL(2,C) be finitely generated. The trace-field of Γ is
the field:

Q(tr Γ) = {tr(γ) : γ ∈ Γ}

e.g. With Γ the figure-eight knot group,

Q(tr Γ) = Q(ω) = Q(
√
−3).

Some trace-fields of other hyperbolic knot groups. (thanks to
SnapPy, Sage and Matthias Goerner).

They are all number fields; ie finite extensions of Q!

Rigidity implies that if Γ has finite co-volume, Q(tr Γ) is always
a number field.
Question: Which number fields arise? How about just for knot
complements?



Trace-fields of Knot Complements
1. If two hyperbolic knot complements are commensurable (i.e.
have a common finite sheeted cover) they have the same
trace-field.

In general commensurable Kleinian groups need not have the
same trace-field. However there is an invariant trace-field. For
knots, the invariant trace-field is the trace-field.

2. The figure-eight knot complement is the only arithmetic
knot complement.
(i.e. trace field quadratic imaginary and all traces are algebraic
integers)
So the figure-eight knot complement is incommensurable with
any other knot complement.

Question: Is there any other knot whose complement has
quadratic imaginary trace-field?



3. There are many knots with the same trace-field.

Mutants



Question Are there only finitely many knots with the same
trace-field?

4. Consider the knots 61 and 77 from the table.
Their trace-fields are generated by a root of the polynomial
x4 + x2 − x+ 1 (which has two pairs of complex conjugate
roots).
However, the trace-fields are generated by different pairs.

So these knot complements are not commensurable.

Conjecture There are at most three hyperbolic knot
complements in a commensurability class.

Known to be true ”generically” (when the knot has no hidden
symmetries—Boileau-Boyer-Cebanu-Walsh).



4. Suppose S3 \K = H3/Γ is a hyperbolic knot with kΓ of odd
prime degree and tr Γ consists of algebraic integers.

e.g. 52, 62, 71, 72, 74, 85, 810, 815, 816, 820,.....

S3 \K does not contain any immersed closed totally geodesic
surfaces. Proof uses ideas from later in the lecture.

When K is the figure-eight knot, S3 \K contains infinitely
many distinct immersed closed totally geodesic surfaces. This is
a consequence of arithmeticity!

Thanks to recent work of Margulis-Mohammadi,
Bader-Fisher-Miller-Stover this characterizes the figure-eight
knot amongst hyperbolic knots.

S3 \ 820 contains no immersed totally
geodesic surface (closed or otherwise). (more
subtle, work of D. Calegari).



Some more constructions of hyperbolic
3-manifolds Dehn Surgery



Thurston’s Dehn Surgery Theorem
If K is a hyperbolic knot then all but finitely many Dehn
surgeries give hyperbolic 3-manifolds.

Example: The figure-eight knot
All p/q /∈ {1/0, 0/1,±1,±2,±3,±4} give closed hyperbolic
manifolds.

Theorem (Hodgson, Long-R)

Let K be a hyperbolic knot. If rj is any infinite sequence of
distinct hyperbolic Dehn surgeries on K, then the degree of the
trace-field of π1(K(rj))→∞.



Quaternion algebras
The Hamiltonian quaternions can be described as a
4-dimensional real vector space H with basis {1, i, j, k = ij} and
multiplication defined by i2 = j2 = −1 and ij = −ji.
We can encode this with a symbol:(

−1 , −1

R

)

Now let k be any field (characteristic 6= 2) and a, b ∈ k non-zero
elements. Then a Quaternion Algebra B/k can be described by
a Hilbert symbol (

a , b

k

)
Meaning: There is a 4-dimensional k-vector space B with basis
{1, i, j, ij} with multiplication defined by i2 = a, j2 = b and
ij = −ji.



Quaternion algebras associated to Kleinian
groups
Let Γ be a Kleinian group of finite co-volume (which we view as
a subgroup of SL(2,C)) and with trace-field kΓ.
Set

A0(Γ) =

{
n∑
i=1

αiγi : αi ∈ kΓ, γi ∈ Γ

}
.

Then A0(Γ) is a quaternion algebra defined over kΓ.
As a basis one can take any x, y ∈ Γ non-commuting elements
and then {1, x, y, xy} is a basis.



Examples
1. K to be the figure eight knot. Seen

Γ =<

(
1 1
0 1

)
,

(
1 0
ω 1

)
>⊂ SL(2,O3) ⊂ M(2,Q(

√
−3)).

A0Γ = M(2,Q(
√
−3)).

2. K any hyperbolic knot, and Γ the knot group.
Can conjugate Γ so that:(

1 1
0 1

)
∈ Γ and Γ lies in SL(2, kΓ).

It follows that A0Γ = M(2, kΓ).

3. M = K(5/1) where K is the figure eight knot.

A0Γ =
(
−1 , −1

k

)
where k = Q(t) and t a complex root of

t4 − t− 1 = 0.



Return to:
Suppose S3 \K = H3/Γ is a hyperbolic knot with kΓ of odd
prime degree and tr Γ consists of algebraic integers.

S3 \K does not contain any immersed closed totally geodesic
surfaces.
If it did then Γ contains a Fuchsian surface group F whose
traces are real. Hence kF ∩ kΓ ⊂ R ∩ kΓ = Q.(prime degree)
Moreover, tr Γ consists of algebraic integers.

Hence trF ⊂ Z.

This implies F is an arithmetic Fuchsian surface group and
A0(F ) is a division algebra defined over Q.

But: A0(F )⊗Q kΓ = M(2, kΓ).

This is impossible! odd degree extension cant split a quaternion
division algebra.



Ramification
Theorem (Classification of quaternion algebras over local
fields)

I M(2,C) is the unique isomorphism class of quaternion
algebras over C.

I H and M(2,R) represent the isomorphism classes of
quaternion algebras over R.

I If L is a finite extension of Qp then there two isomorphism
classes of quaternion algebras over L: M(2, L) and a
unique division algebra of quaternions DL.



Let k be a number field and B/k a quaternion algebra given by
the Hilbert Symbol (

a , b

k

)
.

Let σ : k → C be a field embedding. Define:

Bσ =

(
σ(a) , σ(b)

σ(k)

)
.

Say B is ramified at σ if Bσ ⊗σ(k) R ∼= H.

Examples

1. B =
(
−1 , −1

Q

)
is ramified at the identity embedding of Q

but B =
(
−2 , 3

Q

)
is not.

2. B =
(
−1 , 1+

√
2

Q(
√

2)

)
is unramified at the identity embedding of

Q(
√

2) and ramified at the non-trivial embedding since
σ(1 +

√
2) = 1−

√
2 < 0.



A notion of ramified can also be made for the non-archimedean
places of a number field k ”locally one gets the division
algebra”.

The Classification Theorem for Quaternion
Algebras over Number Fields There are a finite
even number of ramified places (ie real embeddings and
primes). This set determines the isomorphism class.



Dehn surgery and Quaternion Algebras
Let K be a hyperbolic knot. Seen that the quaternion algebra
associated to the knot group Γ is always M(2, kΓ).
Apart from finitely many Dehn surgeries, we get closed
hyperbolic 3-manifolds which in turn have their associated
quaternion algebras over their trace fields.

How do we understand how the algebras are
varying?
Two examples: The figure eight knot group and the group of
the knot 74 (shown below)

The trace-field in this case is Q(t) where t is a complex root of
x3 + 2x− 1 = 0.
What explains this apparently different
behavior of ramification at finite places?



Notation:
Γ = π1(S3 \K).

If K ⊂ S3 is a hyperbolic knot and K(r) is hyperbolic, let
Γr = π1(K(r)),

kr the trace field of Γr and Br the quaternion algebra over kr
associated to Γr.

∆K(t) denotes the Alexander polynomial of K.



Theorem (Chinburg-R-Stover)

Let K be a hyperbolic knot and suppose that ∆K(t) satisfies:

(?) for any root z of ∆K(t) and w a square root of z, we have
an equality of fields: Q(w) = Q(w + w−1).

Then there exists a finite set S of rational primes p so that if
some prime P of kr ramifies Br then P|p for some p ∈ S.

When (?) fails to hold the set S consists of infinitely many
primes (of positive density).



Examples
1. When ∆K(t) = 1 then S = ∅ and so Br as above is
unramified at all finite places.

2. The figure-eight knot

∆K(t) = t2 − 3t+ 1, and so has roots

z =
3±
√

5

2
,

and z = (±w)2, where

w =
1±
√

5

2
.

Then w + 1/w = ±
√

5.

So Q(w) = Q(w + w−1) in this case and (?) holds.

In this case S = {2}.



3. The knot K = 74

∆K(t) = 4t2 − 7t+ 4.

∆K(t) has roots

z =
7±
√
−15

8
.

Set w =
√
z.

Then w is a complex number but w + 1/w = ±
√

15/2 is real.

So in this case condition (?) does not hold.

The primes in the set S can be identified via congruence
conditions obtained from the splitting of primes in the
extension Q(w =

√
z).



4. The (−2, 3, 7)-Pretzel knot

∆K(t) = t10 − t9 + t7 − t6 + t5 − t4 + t3 − t+ 1 = L(−t)

where L(t) is Lehmer’s polynomial.
So ∆K(t) = 0 has two (negative) real roots λ and 1/λ and all
other roots lie on the unit circle.
In this case Q(w) is totally imaginary but Q(w + 1/w) has a
real embedding.

So (?) does not hold

The (−2, 3, 7)-Pretzel knot is an example of a so-called L-space
knot from Heegaard-Floer theory. It seems conjecturally that
(?) never holds for such knots.



Proof involves:
• The theory of Azumaya algebras over curves (organizes the
quaternion algebras obtained by Dehn surgery).

• Work of G. De Rham:

Relate roots of the Alexander polynomial to eigenvalues of
Non-abelian reducible representations of knot groups.

Introduction aux polynômes d’un noeud, Enseignement Math.
13 (1967).

The End—La Fin—Das Ende


