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Hyperbolic 3-Manifolds and Discrete Groups

Hyperbolic 3-space can be defined as
H? = {(2,t) € C xR : ¢ > 0}

and equipped with the metric ds = d%.

Geodesics are vertical lines perpendicular to C or semi-circles
perpendicular to C.

Codimension 1 geodesic submanifolds are Euclidean planes in
H? orthogonal to C or hemispheres centered on C.

The full group of orientation-preserving isometries of H? can be
identified with PSL(2, C).

Abuse of notation
We will often view Kleinian groups as groups of matrices!



A discrete subgroup of PSL(2,C) is called a Kleinian group.

Such a group acts properly discontinuously on H?.

If T is torsion-free (does not contain elements of finite order)
then I' acts freely.

In this latter case we get a quotient manifold H?/T" and a
covering map H? — H3/I" which is a local isometry.

We will be interested in the case when H3/T" has finite volume.

Note: If I' is a finitely generated subgroup of PSL(2,C) there is
always a finite index subgroup that is torsion-free.



Examples

1. Let d be a square-free positive integer, and Oy the ring of
algebraic integers in Q(v/—d). Then PSL(2,0q) is a Kleinian
group.

Indeed H3/PSL(2, Oq) has finite volume but is non-compact.
These are known as the Bianchi groups.

(picture by Jos Leys)
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Tessellation by all right dodecahedra
(from the Not Knot video)



3.Knot Complements

The Figure-Eight Knot

Thurston’s hyperbolization theorem shows that many knots
have complements that are hyperbolic 3-manifolds of finite
volume.

e.g. Out of approximately 1.7 million knots with < 16 crossings

only 32 are not hyperbolic.

Important example: K the figure-eight knot above,
S$3\ K = H3/T where

I'=< L1 , Lo >, where w? +w+1=10
0 1 w 1

So I' < PSL(2, 03) of index 12 (R. Riley, 1974).



Number Theory

Let I' < PSL(2,C) be finitely generated. The trace-field of T' is
the field:

Q(tr I') = {tr(y) : v € '}
e.g. With I' the figure-eight knot group,
Q(tr I') = Q(w) = Q(V=3).
Some trace-fields of other hyperbolic knot groups. (thanks to
SnapPy, Sage and Matthias Goerner).

They are all number fields; ie finite extensions of Q!

Rigidity implies that if T has finite co-volume, Q(tr I') is always
a number field.

Question: Which number fields arise? How about just for knot
complements?



Trace-fields of Knot Complements

1. If two hyperbolic knot complements are commensurable (i.e.
have a common finite sheeted cover) they have the same
trace-field.

In general commensurable Kleinian groups need not have the
same trace-field. However there is an invariant trace-field. For
knots, the invariant trace-field is the trace-field.

2. The figure-eight knot complement is the only arithmetic
knot complement.

(i.e. trace field quadratic imaginary and all traces are algebraic
integers)

So the figure-eight knot complement is incommensurable with
any other knot complement.

Question: Is there any other knot whose complement has
quadratic imaginary trace-field?



3. There are many knots with the same trace-field.

Mutants



QUGStiOH Are there only finitely many knots with the same
trace-field?

4. Consider the knots 67 and 77 from the table.

Their trace-fields are generated by a root of the polynomial
2% 4+ 22 — x4+ 1 (which has two pairs of complex conjugate
roots).

However, the trace-fields are generated by different pairs.

So these knot complements are not commensurable.

COHJ eCture There are at most three hyperbolic knot

complements in a commensurability class.

Known to be true ”generically” (when the knot has no hidden
symmetries—Boileau-Boyer-Cebanu-Walsh).



4. Suppose S3\ K = H3/T is a hyperbolic knot with kr of odd
prime degree and tr I' consists of algebraic integers.

e.g. 527 62; 717 727 747 85, 8107 8155 8167 820) """

S3\ K does not contain any immersed closed totally geodesic

surfaces. Proof uses ideas from later in the lecture.

When K is the figure-eight knot, S3\ K contains infinitely
many distinct immersed closed totally geodesic surfaces. This is
a consequence of arithmeticity!

Thanks to recent work of Margulis-Mohammadi,
Bader-Fisher-Miller-Stover this characterizes the figure-eight
knot amongst hyperbolic knots.

53\ 899 contains no immersed totally

geodesic surface (closed or otherwise). (more
subtle, work of D. Calegari).



Some more constructions of hyperbolic
3-manifolds Dehn Surgery
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Thurston’s Dehn Surgery Theorem

If K is a hyperbolic knot then all but finitely many Dehn
surgeries give hyperbolic 3-manifolds.

Example: The figure-eight knot

All p/q ¢ {1/0,0/1,+1,£2,4+3, +4} give closed hyperbolic
manifolds.

Theorem (Hodgson, Long-R)

Let K be a hyperbolic knot. If r; is any infinite sequence of

distinct hyperbolic Dehn surgeries on K, then the degree of the
trace-field of m (K (r;)) — oo.



Quaternion algebras

The Hamiltonian quaternions can be described as a
4-dimensional real vector space H with basis {1,4,j,k = ij} and
multiplication defined by i? = j2 = —1 and ij = —ji.

We can encode this with a symbol:

-1, -1
R
Now let k& be any field (characteristic # 2) and a,b € k non-zero
elements. Then a Quaternion Algebra B/k can be described by

a Hilbert symbol
a, b
k

Meaning: There is a 4-dimensional k-vector space B with basis
{1,4, 4,45} with multiplication defined by i?> = a,j? = b and
ij = —ji.




Quaternion algebras associated to Kleinian
groups
Let T" be a Kleinian group of finite co-volume (which we view as

a subgroup of SL(2,C)) and with trace-field kp.
Set

AO(F) = {Zai’yi Do € kp,y; € F} .
=1

Then Ay(I") is a quaternion algebra defined over kr.
As a basis one can take any z,y € I' non-commuting elements
and then {1, z,y, zy} is a basis.



Examples
1. K to be the figure eight knot. Seen

I —< (é 1) , (i 2) >C SL(2,04) € M(2,Q(v=3)).

AT = M(2,Q(/=3)).

2. K any hyperbolic knot, and I" the knot group.
Can conjugate I" so that:

<é 1) € I' and T lies in SL(2, kr).

It follows that Aol = M (2, kr).

3. M = K(5/1) where K is the figure eight knot.
Aol = (%) where k = Q(t) and t a complex root of
th—t—1=0.



Return to:

Suppose S3 \ K = H?3/TI" is a hyperbolic knot with kr of odd
prime degree and tr I' consists of algebraic integers.

S3\ K does not contain any immersed closed totally geodesic
surfaces.

If it did then I' contains a Fuchsian surface group F' whose
traces are real. Hence kr Nkr C RN kpr = Q.(prime degree)
Moreover, tr I' consists of algebraic integers.

Hence trF C Z.

This implies F' is an arithmetic Fuchsian surface group and
Ap(F) is a division algebra defined over Q.

But: Ao(F) @g kr = M(2, kr).

This is impossible! odd degree extension cant split a quaternion
division algebra.



Ramification

Theorem (Classification of quaternion algebras over local
fields)

» M(2,C) is the unique isomorphism class of quaternion
algebras over C.

» H and M(2,R) represent the isomorphism classes of
quaternion algebras over R.

» If L is a finite extension of Q, then there two isomorphism
classes of quaternion algebras over L: M(2,L) and a
unique division algebra of quaternions Dy,.



Let k be a number field and B/k a quaternion algebra given by
the Hilbert Symbol

a,b

= |

Let 0 : kK — C be a field embedding. Define:

()

Say B is ramified at o if B? @4;) R = H.

Examples

1. B= (%) is ramified at the identity embedding of Q
but B = <_2’ 3) is not.

Q
2. B= (%\/-g)\/é) is unramified at the identity embedding of
Q(v/2) and ramified at the non-trivial embedding since

c(1+vV2)=1-v2<0.



A notion of ramified can also be made for the non-archimedean
places of a number field k£ ”locally one gets the division
algebra”.

The Classification Theorem for Quaternion
Algebras over Number Fields There are a finite

even number of ramified places (ie real embeddings and
primes). This set determines the isomorphism class.



Dehn surgery and Quaternion Algebras

Let K be a hyperbolic knot. Seen that the quaternion algebra
associated to the knot group I' is always M (2, kr).

Apart from finitely many Dehn surgeries, we get closed
hyperbolic 3-manifolds which in turn have their associated
quaternion algebras over their trace fields.

How do we understand how the algebras are
varying”

Two examples: The figure eight knot group and the group of
the knot 74 (shown below)

g3

The trace-field in this case is Q(¢) where ¢ is a complex root of
2 4+22-1=0. . .

What explains this apparently different
behavior of ramification at finite places?



Notation:
I =m(S3\ K).

If K ¢ S3 is a hyperbolic knot and K (r) is hyperbolic, let
I, =m(K(r)),

k, the trace field of I, and B, the quaternion algebra over k,
associated to I',.

Ak (t) denotes the Alexander polynomial of K.



Theorem (Chinburg-R-Stover)
Let K be a hyperbolic knot and suppose that Ak (t) satisfies:

(%) for any root z of Ak (t) and w a square root of z, we have
an equality of fields: Q(w) = Q(w +w™1).

Then there exists a finite set S of rational primes p so that if
some prime P of k, ramifies B, then P|p for some p € S.

When (x) fails to hold the set S consists of infinitely many
primes (of positive density).



Examples
1. When Ag(t) =1 then S = ) and so B, as above is

unramified at all finite places.

2. The figure-eight knot
Ak (t) =t — 3t + 1, and so has roots

3++5
2 )

and z = (+w)?, where

Then w + 1/w = +/5.
So Q(w) = Q(w + w™1) in this case and () holds.
In this case S = {2}.



3. The knot K =74
Ak (t) = 4t2 — Tt + 4.

Ak (t) has roots
7TE£v-15
2= ——".
8
Set w = /z.
Then w is a complex number but w + 1/w = +1/15/2 is real.
So in this case condition (x) does not hold.

The primes in the set S can be identified via congruence
conditions obtained from the splitting of primes in the

extension Q(w = 1/z).



4. The (-2, 3,7)-Pretzel knot

Ag) =t =2+ 47—t 485 —t* + £ —t + 1 = L(—t)

where L(t) is Lehmer’s polynomial.

So Ak(t) = 0 has two (negative) real roots A and 1/ and all
other roots lie on the unit circle.

In this case Q(w) is totally imaginary but Q(w + 1/w) has a
real embedding.

So (%) does not hold
The (-2, 3, 7)-Pretzel knot is an example of a so-called L-space

knot from Heegaard-Floer theory. It seems conjecturally that
(%) never holds for such knots.



Proof involves:

e The theory of Azumaya algebras over curves (organizes the
quaternion algebras obtained by Dehn surgery).

e Work of G. De Rham:

Relate roots of the Alexander polynomial to eigenvalues of
Non-abelian reducible representations of knot groups.

Introduction aux polynomes d’un noeud, Enseignement Math.

13 (1967).
The End—La Fin—Das Ende



