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Abstract We address the question that if π1-surjective maps between closed aspherical 3-manifolds

have the same rank on π1 they must be of non-zero degree. The positive answer is proved for Seifert

manifolds, which is used in constructing the first known example of minimal Haken manifold. Another

motivation is to study epimorphisms of 3-manifold groups via maps of non-zero degree between 3-

manifolds. Many examples are given.
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1 Introduction and Some Examples

LetM and N be closed 3-manifolds and f :M → N a map of non-zero degree. Then the image
of f∗ is a subgroup of finite index in π1(N). If M and N are aspherical, any homomorphism
φ : π1(M) → π1(N) determines a unique map f : M → N up to homotopy such that f∗ = φ.
It seems natural to ask does there exist f :M → N of non-zero degree, given a homomorphism
φ surjecting π1(M) onto a subgroup of finite index in π1(N)?
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There are elementary constructions of examples (see below) that show, in general, that the
answer is no. Before discussing some examples we make the following definition:

Definition 1.1 A map f : M → N between 3-manifolds is π1-surjective (resp. π1-finite-
index) if f∗ : π1(M) → π1(N) is surjective (resp. the image of f∗ is a subgroup of finite
index).

Recall that if M is an n-manifold, the rank of π1(M) (or just M by abuse language) is the
minimal cardinality of a generating system for π1(M).

We first consider the situation in dimension 2, which is quite simple. Throughout the paper
Σk will denote a closed orientable surface of genus k.

Example 1.1 It is not difficult to see that there is a π1-surjective map f : Σl → Σk which
is of degree zero when l ≥ 2k.

On the other hand, if f : Σl → Σk is a π1-surjective map with 0 < l < 2k, then we claim
that f is of non-zero degree. To see this, choose a 1-skeleton of Σk to be a one point wedge of
2k circles V = ∨Ci. Fix a point xi on Ci. If f is of degree zero, then the image of f can be
deformed into V . We assume therefore that this is the case. Since f∗ is π1-surjective, f : Σl → V
must be surjective. We may also assume that f is transversal to each xi, i = 1, 2, ..., 2k. So
f−1(∪xi) is a set of essential circles. Partition f−1(∪xi) into sets G1, ..., Gh such that two
components are in the same set if and only if they are parallel. For each Gj, find an annulus
Aj containing Gj . Then squeeze each Aj to an arc aj and the part Σk \ ∪Aj to a point. The
quotient Q will be a bouquet of h circles. Since V −{xi, i = 1, 2, ..., 2k} is contractible, the map
f : Σl → V factors through q : Q → V which is still π1-surjective. It follows that h ≥ 2k. In
particular, there are at least h ≥ 2k disjoint essential non-separating non-parallel circles. By a
well-known argument in surface topology, we must have that l, the genus of Σl, is at least 2k.

Returning to dimension 3, the first example illustrates the aspherical assumption.

Example 1.2 Let f = e ◦ p : S2 ×S1 → S2 ×S1, where p is a map which pinches S2 ×S1 to
S1, and e identifies S1 to a fiber ∗×S1 ⊂ S2×S1. Clearly f is of zero degree but π1-surjective.

Example 1.3 shows that if we do not require that the manifolds have the same rank, then
the answer to the question is no.

Example 1.3 We construct a map f : Σg+1 × S1 → Σg × S1 of zero degree which is π1-
surjective. The map f is the composition of the following four geometric operations:

Project Σg+1 × S1 to Σg+1;

Squeeze a suitable separating circle on Σg+1 to a point in such a way that the quotient
space is a one point union of a torus and Σg;

Squeeze the torus to a circle in such a way that the quotient space is a one point union of
the circle and Σg;

Send Σg and the circle to a section Σg × ∗ and the circle fiber of Σg × S1 respectively.

Example 1.4 has the same purpose as Example 1.3, but the manifolds in this case are
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hyperbolic.

Example 1.4 Let M be a closed hyperbolic 3-manifold whose fundamental group surjects
the free group of rank 2. Such examples are easily constructed by doing hyperbolic surgery on
a null-homotopic hyperbolic knot in Σ2×S1 [Section 3, 1]. Let φ1 : π1(M) → Z∗Z denote such
a map. Let N be any hyperbolic 3-manifold such that π1(N) has two generators. Then there
is an epimorphism φ2 : Z ∗ Z → π1(N). If we choose N such that the volume of N is larger
than the volume of M , then the map realizing the epimorphism φ = φ2 ◦ φ1 must be of zero
degree, by the work of Gromov and Thurston. We remark that the volumes of hyperbolic 3-
manifolds of rank 2 are unbounded. Briefly, it follows from the work of Adams that the volumes
of hyperbolic 2-bridge knot complements are unbounded. Doing large enough hyperbolic Dehn
surgeries on these gives the required family, see [2].

In fact it can be seen directly that the map realizing φ must be of zero degree since such a
map factors through a 1-dimensional complex.

As a consequence of these examples, we state the following more refined version of the
question posed above:

Question 1.5 Let M and N be closed aspherical 3-manifolds such that the rank of π1(M)
equals the rank of π1(N). Assume that φ : π1(M) → π1(N) is surjective or its image is a
subgroup of finite index. Does φ determine a map f :M → N of non-zero degree?

Note that if M and N are homeomorphic and satisfy Thurston’s geometrization conjecture,
then a π1-surjective map f :M →M must be of degree one. For since π1(M) is Hopfian, that
f∗ is surjective implies f∗ is an isomorphism. Since M is aspherical f must be a homotopy
equivalence, and so, in particular, f is of degree one. Thus the question above is a kind of
generalization of the Hopfian property: the condition “homeomorphic manifolds” is replaced
by “manifolds of the same rank”, the condition “π1-surjective” is replaced by “π1-surjective”
or “π1-finite-index”, and in conclusion replace “degree one” by “non-zero degree”. It is easy to
construct examples to show that “non-zero degree” cannot be sharpened to “degree one”, see
the examples in Section 3.

One of the main results of this paper is to prove that Question 1.5 has a positive answer for
Seifert fibered 3-manifolds (see Theorem 2.1 and Remark 2.4).

In Section 4 we use this result to construct the first known example of a Haken 3-manifold
which is minimal with respect to degree 1 mappings in Thurston’s picture of 3-manifolds (Theo-
rem 4.1). The manifold is a graph manifold built from the union of two trefoil knot complements.
An orientable 3-manifold M is minimal if given a degree-one map f : M → N implies either
N = S3 or M = N . Usually it is difficult to tell if a 3-manifold is minimal. We remark that all
minimal Seifert manifolds are non-Haken and that the known minimal hyperbolic 3-manifolds
are also non-Haken, see [1], [3] and [4] for a further discussion of such matters.

We are also motivated by the following:

[5, Problem 1.12 (J. Simon)] Let GK = π1(S3 −K) for a knot K in S3. Conjectures: If
there is a non-trivial epimorphism φ : GK → GL, then
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(A) rank GL > rank GK ;

(B) genus(L) ≥ genus(K);

(C) Given K, there is a number NK such that any sequence of epimorphisms of knot groups
GK → GL1 → ....→ GLn with n ≥ NK contains an isomorphism;

(D) Given K, there are only finitely many knot groups G for which there is an epimorphism
GK → G.

These conjectures have seen little progress. On the other hand, more recently, questions
similar to (C) and (D) have been raised for degree-one maps and there are already several
substantial results in this setting.

[5, Problem 3.100 (Y. Rong)] Let M be a closed orientable 3-manifold.
(A) Are there only finitely many irreducible 3-manifolds N such that there exists a degree-

one map M → N?

(B) Does there exist an integer NM such that given a sequence of degree-one maps M →
M1 → ....→Mk with k > NM0 , the sequence contains an homotopy equivalence?

If one assumes Thurston’s geometrization conjectural picture of 3-manifolds, the answer to
(B) is yes if k = ∞ [6] by Rong, or each Mi is Haken [7] by Soma; the answer to (A) is yes
if the targets have one of Thurston’s eight geometries: for the hyperbolic case [8] by Soma,
for the spherical case [9] by Hayat-Legrand-Wang-Zieschang and the remaining cases [10] by
Wang-Zhou.

Thus it seems natural to study the conjectures of J. Simon for closed orientable 3-manifolds
(Question 3.1 in Section 3). We find that the positive answer for Question 1.5 is important for
studying the conjectures. This will be addressed in Section 3.

2 π1-Surjective Maps Between Aspherical Seifert Manifolds

Theorem 2.1 Let M1 and M2 be closed orientable aspherical Seifert fiber spaces with the
same rank their base orbifolds be orientable. Then any π1-surjective map f : M1 → M2 is of
non-zero degree.

To prove Theorem 2.1, we will make use of Rong [11]; in particular, we refer the reader
to [11] for the definition of a vertical pinch, a squeeze, a squeeze torus, and vertical squeeze.
Suppose T is a vertical torus in a Seifert manifold M with induced S1 fibration. Let C be a
circle on T which meets each S1 fiber in exactly one point. Then T can be parameterized as
C×S1. Call the quotient map C×S1 → S1 by squeezing C×∗ to ∗ for each ∗ ∈ S1 a standard
squeeze.

Also recall that any orientable Seifert manifold M with orientable base orbifold of genus g
and with n singular fibers has a unique normal form (g; b;α1, β1; ...;αk, βk), where 0 ≤ βi ≤ αi,
i = 1, ..., k. The orbifold O1 of M1 will be denoted by (g;α1, ..., αk). In the case when g = 0,
we usually omit the reference to g.
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In preparation for the proof of Theorem 2.1, we begin with two lemmas.

Lemma 2.2 Let f :M → N be a map between aspherical Seifert manifolds and 1 �= f∗(h) ⊂
h′, where M is closed and ∂N �= ∅, h and h′ are regular fibers of M and N , respectively.
Then either f admits a standard squeeze along an incompressible vertical torus, or f can be
homotoped so that the image of f lies in a fiber of N .

Proof Lemma 2.2 is exactly Lemma 3.5 of [11] but with “standard squeeze” being replaced by
“vertical squeeze”. However, one can verify that in Case (2) of the proof of Lemma 3.5 of [11],
the vertical squeeze there is indeed a standard squeeze. Since for a fiber preserving map p from
an S1-fibered torus T to an S1 fibered annulus A, the kernel of p and the S1-fiber generate
the π1(T ) = Z ⊕ Z, therefore the circle on T generating the kernel must intersect the fiber in
exactly one point.

Lemma 2.3 Suppose f : F → O is an orbifold branch covering, where F is a surface of genus
g, and O is a orbifold, both being orientable and having non-positive Euler characteristics. Then
rank(π1(F )) ≥ rank(π1(O))−1 if f is a double-branched cover over 2-sphere, and rank(π1(F )) ≥
rank(π1(O)) if otherwise.

Proof The proof is based on the results about the ranks of Fuchsian groups [12, Theorem
4.16.1] and the Riemann-Hurwitz formula.

Suppose O has k singular points of index vi, i = 1, ..., k, with the underlying space of genus
g′ and the degree of f is n. Then we have

2− 2g = n
(
2− 2g′ −

k∑
i=1

(
1− 1

vi

))
.

For the case g = 1, the verification is direct, so we assume below that g > 1.
If n = 2 then all vi = 2, k = 2m and we have 2− 2g = 2(2− 2g′ −m), i.e., g = 2g′ +m− 1.

Now rank(π1(F )) = 2g = 4g′ + 2m − 2 and the rank(π1(O)) is at most 2g′ + 2m − 1 if g′ > 0
and is 2m− 1 if g′ = 0 by [12, Theorem 4.16.1]. In any case, the lemma follows.

If n ≥ 3, then

2− 2g ≤ 3
(
2− 2g′ −

k∑
i=1

(
1− 1

vi

))
≤ 3

(
2− 2g′ − k

2

)
,

i.e., 2g ≥ 6g′ − 4 + 3k
2 . If g′ > 0, 2g ≥ 2g′ + 3k

2 . But the rank of π1(O) is, at most, 2g′ + k− 1.
If g′ = 0, then we have 2g ≥ −4 + 3k

2 if k is even and g ≥ −4 + 3k
2 + 1

2 if k is odd. The rank
of π1(O) is, at most, k − 1. It follows that if k ≤ 5, then 2g ≥ k − 1. If k ≤ 4 we still have
2g ≥ k − 1 since we assume that g > 1.

Proof of Theorem 2.1 Suppose f is of zero degree. For clarity, the proof is divided into three
steps.

Step (1) We prove the following

Claim: f(h) is homotopically non-trivial, where h is the regular fiber of M1.
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Proof of Claim Let M1 = (g; b; a1, b1; ...; ak, bk) and G1 = π1(M1)/〈h〉, where 〈h〉 is the cyclic
group generated by the regular fiber of M1. Let r = rank(π1(M1)) = rank(π2(M2)).

By [13, Theorem 1.1] and [12, Theorem 4.16.1], one of the following cases holds:

(1) rank(π1(M1)) > rank(G1);

(2) rank(π1(M1)) = rank(G1); there is a set of generators of G1 which realizes the rank and
contains at least one torsion element;

(3) rank(π1(M1)) = rank(G1) = rank(G1/T ), where T is the normal subgroup normally
generated by the torsion elements and G1/T is a surface group.

If f(h) is homotopically trivial, then f∗ : π1(M1) → π1(M2) induces an epimorphism φ :
G1 → π1(M2).

In Case (1), the Claim is clearly true.

In Case (2), the Claim is also true since π1(M2) is torsion free.

In Case (3), f∗ induces an epimorphism φ′ : G1/T → π1(M2). Let f ′ : F → M2 be the
map which realizes φ′. Since φ′ is not injective, (otherwise φ′ would be an isomorphism and
π1(M2) would be a surface group), by the simple loop theorem for maps from a surface to a
Seifert manifold [14], there are essential simple loops in the kernel of φ′. Assume first there is
an essential non-separating simple loop, which we denote by α, in the kernel. Then the map f ′

induces a map f ′′ : F ′ →M2, where F ′ is a complex obtained by squeezing F along α. It is easy
to see that the rank of π1(F ′) is r− 1. We reach a contradiction. If all essential simple loops in
the kernel of φ′ are separating, let α be a maximal family of non-parallel separating essential
simple closed curves in kernel φ′. Again f ′ can factor through f ′′ : F ′ → M2, where F ′ is a
complex obtained by squeezing F along α, which is a union of closed surfaces connected by arcs.
Let S be a surface in F ′. Due to the maximality of α, the restriction f ′′|S is π1-injective, which
must be either horizontal or vertical by [14]. If f ′′|S is horizontal, then p2 ◦ f ′′| : S → O(M2) is
an orbifold branched covering, where p2 :M2 → O(M2) is the fiber map. But the rank of π1(S)
is at most r − 2. This is also ruled out by Lemma 2.3. If f ′′|S is vertical for each surface S of
F ′, then F ′ contains, at most, g such surfaces and each of them is a torus. Clearly the rank of
f ′′∗ π1(F ′) is at most g + 1, which is at most r − 1 (since g > 1 and r ≥ 2g). Again we reach a
contradiction.

Step (2) We will factor f : M1 → X → M2, where the 2-dimensional complex X is a
quotient of M with rank rX .

Since f(h) is homotopically non-trivial and f∗ is surjective, a standard argument in 3-
manifold topology shows that f :M1 →M2 can be deformed to be a fiber-preserving map (see
[15] for example). Suppose the mapping degree is zero. We can further deform the map so that
the image f(M1) misses a regular fiber h′ of M2. To see this, f :M1 →M2 is fiber preserving.
We can further deform f so that for each singular fiber of M2, its pre-image consists of finitely
many fibers of M1. Let Si be the union of singular fibers of M1. Now remove f−1(f(S1) ∪ S2)
fromM1 and remove f(S1)∪S2 fromM2. The restriction of f gives a proper map f ′ :M ′

1 →M ′
2,

which is a fiber-preserving map between circle bundles. Since f is assumed to be of degree zero,
f ′ is of zero degree. Since f(h) is non-trivial, the induced proper map f̄ ′ : F ′

1 → F ′
2 between
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base surfaces must be of degree zero. Hence f̄ ′ can be deformed so that its image misses a point
of F ′

2. This deformation can be lifted to the bundle map f ′ whose image then misses a circle
fiber in M ′

2. With this we reach the situation claimed above.
Now remove an open-fibered neighborhood of h′, and denote the resulting manifold by N .

Then we have a fiber-preserving map f :M1 → N , where ∂N �= ∅.
According to Lemma 2.2, either f : M1 → N admits a standard squeeze along an incom-

pressible vertical torus, or f(M1) ⊂ a fiber of N . Using this we can reformulate the above so
that either f : M1 → M2 admits a standard squeeze along an incompressible vertical torus, or
f(M1) ⊂ a fiber of M2.

Since f is π1-surjective, and M2 is an closed aspherical Seifert fiber space, the situation,
f(M1) ⊂ a fiber of M2, cannot happen. Let T be a maximal family of disjoint non-parallel
incompressible tori along which f admits a standard squeeze. Let X1 = Q ∪ A be the space
obtained after the squeezing, where Q is a union of Seifert fiber spaces with the induced Seifert
fibration, A is a union of annuli and ∂A is a union of regular fibers of Q (due to a standard
squeeze). Then f induces a π1-surjective map X1 →M2, which we continue to denote by f .

Suppose first g > 0. Then f admits a standard squeeze along a non-separating torus
(Indeed by arguments before, we can assume that f is fiber preserving and the image of f
misses a regular fiber of M2. Then f induces a map f̄ from a closed surface Σg to a punctured
surface, and it is known that f̄ admits a squeeze along a non-separating circle C on Σg, which
will provide a non-separating squeeze torus of f , and then the squeeze can be chosen to be
standard by Lemma 2.2). Moreover, if X1 is obtained from M by a standard squeeze along a
non-separating torus, then the rank of π1(X1) is r − 1, which will be a contradiction.

Below we assume that g = 0. Then every squeeze torus is a separating torus. And therefore,
each annulus in A is separating.

Now all components of Q are Seifert fibered spaces with the induced Seifert fibrations, so we
may assume that Q1, ...., Qk1 are Seifert manifolds of Q which are not the trivial circle bundle
over S2 and Qk1+1, ...., Qk1+k2 are trivial circle bundles over S2. Clearly each Qj , j > k1, is
S2 × S1 and which is connected by at least three annuli in A.

Each component Qi of Q must have an infinite fundamental group, otherwise f(h) is an
element of finite order, which must be trivial in π1(M2), and this is forbidden by Step (1). In
particular, we have

Fact 1 Each Qi contains at least 2 singular fibers, i = 1, ..., k1.
We will also verify the following

Fact 2 k1 + k2 ≤ k − 2.
Representing each component of Q by a vertex and each component of A by an edge, we

get a connected tree G of v = k1 + k2 vertices, and at least k2 vertices have valence at least 3.
Then the number of edges e is at least 1

2 (k1+3k2). By the Euler characteristic formula we have
1 = v − e ≤ k1 + k2 − 1

2 (k1 + 3k2) = k1
2 − k3

2 , i.e., k2 ≤ k1 − 2. By Fact 1, we have k1 ≤ k/2,
therefore k1 + k2 ≤ k − 2.

By the maximality of T , each Qi contains no squeeze torus for f |Qi , so we have that f(Qi) ⊂
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a fiber of M2, and consequently we have the following

Fact 3 Each Qi has base orbifold S2 and has no more than 3 singular fibers (otherwise, there
will be a squeeze torus).

So f : X1 → M2 induces a π1-surjective map X = S ∪ A1 → M2, where S is a union of
v = k1 + k2 circles, which are amalgamated by e annuli. Hence π1(X) has a presentation of
k1 + k2 generators with e relations. Therefore its rank rX is at most k1 + k2.

Step (3) We will show that rX < r and then reach a contradiction.
Say that M1 is of type I, if M1 has normal form (0; b; 2, 1; ....; 2, 1; 2λ + 1, bk), where k ≥ 4

is even, and λ > 1, otherwise call M1 of type II. By [13, Theorem 1.1], then r = k − 2 if M1 is
of type I and r = k − 1 if M1 is of type II.

Moreover, if M1 is of type I, then at least one Qi contains 4 singular fibers (since λ > 1 and
both (0; b; 2, 1; 2λ + 1, b2) and (0; b; 2, 1; 2, 1; 2λ + 1, b3) have finite fundamental groups), which
is not possible by Fact 3.

If M1 is of type II, then r = k − 1 and k ≥ 3, but

rX ≤ k1 + k2 ≤ k − 2 < k − 1 = r.

Corollary 2.4 Suppose M1 and M2 are closed orientable Seifert fiber spaces with infinite
fundamental groups and the orbifold of M1 has the underlying space S2 and rank(π1(M1)) < 2
rank(π1(M2)). If a map f :M1 →M2 is π1-surjective, then f is of non-zero degree.

Proof Now π1(O1) is generated by torsion elements. So Step 1 in the proof of Theorem 2.1 is
passed.

Let r, k, rX be defined as in the proof of Theorem 2.1, and r2 be the rank of π1(M2). If
f : M1 → M2 is π1-surjective map and is of zero degree, then r + 1 = k ≥ 2rX ≥ 2r2 by the
end of the proof of Theorem 2.1.

Remark In Theorem 2.1, the condition “f is π1-surjective” can be replaced by “f is π1-
finite-index”, and the condition “orbifolds are orientable” can be removed. For details see [16],
where the proof is parallel to the proof above, but involves a more complicated case by case
argument.

Also the proof in [16] needs the following

Proposition 2.5 Let M1 and M2 be closed orientable aspherical Seifert fiber spaces with
orientable base orbifolds of the same genus g. Suppose there is a π1-surjective map f : M1 →
M2, then f is of non-zero degree.

Proof We may assume that the map f has been deformed to be a fiber-preserving map.
(a) Special Case. We first prove that when both M1 and M2 are circle bundles, and f :

M1 →M2 is π1-surjective or of π1-finite-index, f is of non-zero degree.
If f is of π1-finite index, then we have a π-surjective lift f̃ : M1 → M̃2 of f . By the rank

consideration, the genus of the orbifold of M̃2 must be also g. So below we assume that f is
π1-surjective.
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Let t1 and t2 be circle fibers of M1 and M2, respectively. The restriction f | on the fiber t1
is not null-homotopy. Otherwise we have an epimorphism φ = f̂∗ ◦ p : π1(F ) = π1(M1)/〈t1〉 →
π1(M2) → π1(M2)/〈t2〉π1(F ), where f̂ : F → M2 is the induced map. It follows that the
genus of F1 is at least the genus of F2. By the Hopfian property of surface group, φ must be
an isomorphism. It follows that f̄∗ : π1(F ) → π1(M2) is an isomorphism. This is impossible
since M2 is a closed 3-manifold. It follows that indeed f | : t1 → t2 must be of degree 1. Then
f : M1 → M2 induces a map f̄ : F → F which is also π1-surjective. f̄ must be of degree 1. A
conclusion is that f itself must be of degree 1.

(b) General Case. We equip each regular fiber with the structure of a unit circle in the
complex plane and the length of each singular fiber of type (α, β) is 2π

α . Furthermore, we
assume that the map f has been deformed so that the restriction f | : C1 → C2 on each regular
fiber is given by eiζ �→ eikζ , where the constant k is the mapping degree on regular fibers, and on
the regular neighborhood of singular fiber is the “linear extension”. Suppose the singular fibers
ofM1 are of type (α1, β1; ...;αm, βm) and the singular fibers ofM2 are of type (α′

1, β
′
1; ...;α

′
n, β

′
n).

Let l =
∏
αiα

′
j . Let M i =Mi/Zl, where the cyclic group Zl acts on Mi such that (1) Zl keeps

each fiber invariant, (2) on each regular fiber, the action is given by eiζ �→ eiζ+ 2π
l . Then one

can verify (as we did in Example 3) that (1) both M1 and M2 are circle bundles over F , and
(2) f : M → N induces a fiber-preserving map, f̄ : M → N , and the following diagram is
commutative:

M1
f−→ M2

p1 ↓ ↓ p2
M1

f̄−→ M2.

Since both p1, p2 and f are of π1-finite index, f̄ is of π-finite index. By the special case we
considered, f̄ is of non-zero degree. So f is of non-zero degree.

3 On Epimorphisms Between 3-Manifold Groups

In this section we study the following questions:

Question 3.1 Let Mi be closed orientable aspherical 3-manifolds. Suppose there is an non-
trivial epimorphism φ : π1(M1) → π1(M0).

(A) Is rank π1(M1) > rank π1(M0)?

(B) Is the Heegaard genus of M1 ≥ Heegaard genus M0?

Moreover, given M0:

(C1) Is there a number NM such that any sequence of epimorphisms π1(M0) → π1(M1) →
....→ π1(Mn) with n ≥ NM contains an isomorphism?

(C2) Does any infinite sequence of epimorphisms π1(M0) → π1(M1) → ....→ π1(Mn) → ...

contain an isomorphism?

(D) Are there only finitely manyMi with the same first Betti number, or the same π1-rank,
as that of M0, for which there is an epimorphism π1(M0) → π1(Mi)?
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We remark that a positive answer for (B) of Question 3.1 implies a positive solution to the
Poincaré Conjecture. From Example 1.4 of the Introduction, the answer to (D) is negative if
we remove the condition on the first Betti number or π1-rank on (D) of Question 3.1.

We describe, first, some examples of non-trivial π1-surjective maps between two 3-manifolds
of the same rank, which give a negative answer to (A) of Question 3.1. Clearly those examples
are all of non-zero degrees.

Example 3.1. Let M be a Seifert manifold of normal form (0; 0; 6, b1; 5, b2; 7, b3). Let Z2 be
a cyclic group acting on M such that it induces the identity on the base space and standard
rotation on each regular fiber. Then one verifies that M/Z2 is a Seifert manifold of normal
form (0; 0; 3, b1; 5, 2b2; 7, 2b3). Now

π1(M) = 〈s1, s2, s3, h | [sj , h], s61hb1 , s52h
b2 , s73h

b3 , s1s2s3〉

and

π1(M/Z2) = 〈t1, t2, t3, h′ | [tj , h′], t31h′
b1 , t52h

′2b2 , t73h
′2b3 , t1t2t3〉.

The quotient map p :M →M/Z2 is a branched covering of degree 2 and p∗ sends sj �→ tj and
h �→ h′2. Since (2, b1) = 1, p∗ is surjective. By [13] these manifolds have rank 2.

Examples 3.2. We now give some examples of π1-surjective non-zero degree maps between
hyperbolic manifolds of the same π1 ranks.

LetM be a closed orientable 3-manifold and k ⊂M be any hyperbolic fibered knot. Suppose
the fiber F has genus g. Let Mn be the n-fold cyclic branched cover of M over the knot k.
Then the rank of π1(Mn) is bounded by 2g + 1 for all n and Mn is hyperbolic when n is large.
If k|n, then Mn → Mk is a branched cover, which is π1-surjective. So there must be infinitely
many π1-surjective branched coverings Mn →Mk between hyperbolic 3-manifolds of the same
ranks.

A well-studied case is when Mn is the n-fold cyclic branched cover of the figure-eight knot.
Then for n ≥ 3 the fundamental groups are all 2-generator, in fact, they are the Fibonacci
groups F (2, 2n) (see [17] for example), which are all hyperbolic if n ≥ 4. By abelianizing
F (2, 2n) we see that all Mn have their first Betti number zero (see [17] for example).

Example 3.3 (1) Let M(n, k) = (0; 0; 2k3, b1; 5, 2n−kb2; 7, 2n−kb3). Similarly to Example
3.1, we have a sequence of degree 2 branched coverings M(n, n) → ... → M(n, 1) → M(n, 0)
of length n + 1, which induces a sequence of epimorphisms of groups π1(M(n, n)) → ... →
π1(M(n, 1)) → π1(M(n, 0)) of rank 2. Let M be Σ2 × S1. Clearly π1(M) surjects onto Z ∗ Z,
then we have the sequence of epimorphisms

π1(M) → π1(M(n, n)) → ...→ π1(M(n, 1)) → π1(M(n, 0))

of length n+ 2, where n can be arbitrarily large.

Moreover, suppose we choose b1, b2, b3 such that the Euler number of M(n, n) is non-zero.
Since each M(N, k) has infinite π1 and is the image of M(n, n) under non-zero degree map,
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the Euler number of M(n, k) is non-zero [18, Theorem 2]. It follows that M(n, k) has neither a
horizontal nor a vertical incompressible surface, and therefore all M(n, k) are non-Haken [15].

(2) Let Mn be the n-fold cyclic branched covering of S3 over figure-eight knot as at the end
of Example 3.2. Then we have a sequence of branched coverings of hyperbolic rational homology
spheres M4k → ...→M8 →M4 of length l which induces a sequence of epimorphisms of groups
π1(M4k) → ... → π1(M8) → π1(M4) with rank 2. Let M be a hyperbolic 3-manifold with
π1(M) surjecting Z ∗ Z (as in Example 1.4). Then we have the sequence of epimorphisms

π1(M) → π1(M4k) → ...→ π1(M8) → π1(M4)

of length l + 1, where l can be arbitrarily large.

The next result gives a partial positive answer to (C2) of Question 3.1.

Theorem 3.4 Given M0, and a sequence Mi of closed orientable aspherical Seifert mani-
folds with epimorphisms π1(M0) → π1(M1) → .... → π1(Mn) → ..., this sequence contains an
isomorphism.

Proof By passing to an infinite subsequence, we may assume that all groups in the sequence
have the same rank (each epimorphism in the subsequence is the composition of epimorphisms
involved). Then each epimorphism φi : π1(Mi) → π1(Mi+1) in the sequence can be realized by
a map fi : Mi → Mi+1 of non-zero degree by Theorem 2.1. Moreover, the Seifert fibrations
of the Mi’s can be arranged so that each fi is fiber-preserving. Let Oi be the orbifold of Mi.
Then χ(Oi) ≤ 0 and we have the induced sequence of epimorphisms

π1(O0) → π1(O1) → ....→ π1(On) → ...

of Fuchsian groups. We therefore have a decreasing sequence

−χ(M0) ≥ −χ(M1) ≥ ....− χ(Mn) ≥ . . . .

The {−χ(O)} forms a well-ordered subset of reals, where O runs over compact 2-orbifolds,
χ(Ok) = χ(Ok+1) for k larger than a given N (see [6, Lemmas 2.5 and 2.6] for details). Since
there are at most finitely many orbifolds O with given χ, by passing to a subsequence, we may
assume that all Oi are the same.

Let Oi = (g;α1,, ..., αn). Then Mi = (g; bi;α1,, β1,i; ...;αn,, βn,i).

Since 0 < βl,i < αl for l = 1, ...n, by passing to a further subsequence, we may assume
that βl,i = βl, and finally we get Mi = (g; bi;α1, β1; ...;αn, βn). Moreover we may assume
that all bi �= 0. Note that by [3, p. 680], all Mi have the same first Betti number and the
torsion part of H1(Mi,Z) is unbounded if bi unbounded. Since epimorphisms on π1 induce
epimorphisms on the first homology groups, it follows that bi’s are bounded. Now we have
bi = bj for some i, j, then Mi = Mj and by the Hopfian property of Seifert manifold groups,
the epimorphism π1(Mi) → π1(Mj) is an isomorphism. Then in the sequence above there must
be an isomorphism. Theorem 3.4 follows.
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We have seen that Theorem 2.1 plays an important role in the proof of Theorem 3.4. If the
answer to Question 1.5 is also yes for hyperbolic 3-manifolds, this will lead to a positive answer
to (C2) and (D) for hyperbolic 3-manifolds.

Proposition 3.5 Suppose Question 1.5 has a positive answer for hyperbolic 3-manifolds.
Then for a given closed orientable hyperbolic 3-manifold M0:

(1) Any infinite sequence of epimorphisms π1(M0) → π1(M1) → .... → π1(Mn) → ...

contains an isomorphism, where all Mi are closed orientable hyperbolic 3-manifolds.
(2) There are only finitely many closed orientable hyperbolic 3-manifolds Mi with the same

π1-rank as that of M0, for which there is an epimorphism π1(M0) → π1(Mi).

Proof (1) By passing to an infinite subsequence we may assume all π1(Mi) have the same
rank. Since we assume that Question 1.5 has a positive answer for hyperbolic 3-manifolds, this
sequence is realized by a sequence of non-zero degree maps M0 →M1 → ...→Mn → . . . .

The rest of the proof is now standard. Since all maps fi : Mi → Mi+1 in the sequence are
of non-zero degree, by Gromov’s Theorem [19, Chapter 6], v(Mi) ≥ v(Mi+1), where v(Mi) is
the hyperbolic volume of Mi. By Thurston-Jøgenson’s Theorem [19, Chapter 6], v(Mk) must
be a constant when k is larger than a given integer N . Then by Gromov-Thurston’s Theorem
[19, Chapter 6], fk is homotopic to a homeomorphism, k > N , so fk∗ is an isomorphism.

For (2), since we again assume that Question of 1.5 has a positive answer for hyperbolic
3-manifolds, each φi : π1(M0) → πi(Mi) can be realized by a map of non-zero degree. By
Soma’s theorem [20], there are only finitely many such Mi.

Remark Without the assumption that Question 1.5 has positive answer for hyperbolic 3-
manifold, Proposition 3.5 (1) has been proved in [21]. Indeed, after discussing with D. Cooper,
we tend to believe that Question 1.5 should have a negative answer for hyperbolic 3-manifolds,
but we do not have complete argument yet.

We also note the following partial positive answer to (D) of Question 3.1 follows easily from
the methods of Reid and Wang [4]:

Theorem 3.6 Suppose M is a non-Haken hyperbolic 3-manifold. Then there are only finitely
many closed orientable hyperbolic 3-manifolds Mi for which there is an epimorphism π1(M) →
π1(Mi).

Proof As in [4] we use the character variety of M to control possible target groups. Briefly if
there are an infinite number of Mi as in the statement of the theorem, we can produce a curve
of characters C in the character variety of M . By degenerating to a point at infinity of C we
getting a splitting of the group and hence an embedded incompressible surface in M (see [22]
and [4] for more on this). This is a contradiction.

4 A Minimal Haken Manifold

Let E be the exterior of a trefoil knot with m the meridian and l the longitude. E has a unique
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Seifert fibration with two singular fibers of indices 2 and 3, over the disc. Via this Seifert
structure, we have a presentation

π1(E) = 〈a, b, c, t | a2t, b3t, abc〉,

where t is the regular Seifert fiber. Let E1 and E2 be homeomorphic to E with meridian and
longitudes (mi, li), i = 1, 2. Now glue E1 to E2 via a homeomorphism h : ∂E1 → ∂E2 such that
h(l1) = m2 and h(m1) = l−1

2 . Let M denote the resulting manifold, which is a closed graph
manifold. The main theorem of this section is:

Theorem 4.1 M is a minimal closed Haken 3-manifold among all 3-manifolds satisfying
Thurston’s geometric conjecture.

We begin the proof by collecting some elementary facts.

Lemma 4.2 (1) For any representation φ : π1(E) → SL(2,C), if φ(t) �= 1, then the image
φ(π1(E)) is a cyclic group 〈λ〉. Moreover, we must have φ(a) = λ−2, φ(b) = λ−3, φ(c) = λ5,
and φ(t) = λ6.

(2) In π1(T ), where T = ∂E, we have m = tc−1 and l = t−5c6. (Equivalently, t = 6m + l
and c = 5m+ l.) Hence h(t−5

1 c61) = t2c
−1
2 and h(t1c−1

1 ) = t52c
−6
2 .

(3) M is an integral homology 3-sphere.

(4) The only 2-sided incompressible surface is the incompressible torus T , which separates
M into E1 and E2.

Proof The main part of (1) follows from [23, Prop. 3] and the fact that H1(E,Z) is cyclic. (2)
and (3) and the remaining parts of (1) are just direct calculations. Finally, to establish (4) we
observe the following. Since the trefoil knot is 2-bridge E cannot contain a closed embedded
essential surface by [24]. If M contained an embedded incompressible surface �= T , it would
follow from the remark above and the gluing homeomorphism that E would have a boundary
slope 1/0. However, [22, Theorem 2.0.3] then implies the existence of a closed embedded
essential surface in E.

To show that M is minimal, we assume to the contrary that there is a degree one map
f :M → N , where N is irreducible, N �=M , and N �= S3. First, since M is a graph manifold,
its Gromov norm is zero, so N cannot be a hyperbolic 3-manifold by [Theorem, Chapter 6].
Moreover, it is well-known that N must be an integer homology sphere, [4, Lemma 3.1]. The
proof of Theorem 4.1 will be finished by Lemmas 4.3, 4.4 and 4.5 below.

Lemma 4.3 N is non-Haken.

Proof Suppose N is Haken, and let F ⊂ N be an embedded incompressible surface. We may
deform f so that f−1(F ) is an incompressible surface inM . By (4) of Lemma 4.2, f−1(F ) must
consist of parallel copies of T . By standard 3-manifold topology, we can further deform f so
that f−1(F ) = T . It follows that F is a 2-sphere or torus. Since N is irreducible, F must be a
torus separating N into two parts N1 and N2. Furthermore, the map f can be decomposed into
two proper degree-one maps f | : Ei → Ni. However, Ei is a minimal 3-manifold among knot
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complements in 3-manifolds via proper degree-one maps [1]. Thus, each f | is a homeomorphism,
and it follows that f itself is homotopic to a homeomorphism.

Lemma 4.4 N is not a Seifert manifold with finite fundamental group (other than possibly
S3).

Proof By (3) of Lemma 4.2, if N is a Seifert fibered manifold of finite fundamental group
and N �= S3, it must be the Poincaré Homology 3-sphere P . Note π1(P ) surjects onto A5, the
alternating group on 5 letters. In particular, (as is well known) A5 is a subgroup of PSL(2,C)—
since SO(3) can be identified with PSU(2), and the latter is a subgroup of PSL(2,C). To prove
the lemma, it suffices to prove that the image group of any representation of φ : π1(M) �→
PSL(2,C) cannot be A5.

Case (1) If φ(t1) �= 1 and φ(t2) �= 1, by (1) of Lemma 4.2, the whole image φ(π1(M)) must
be a cyclic group (actually trivial).

Case (2) Without loss of generality, we may assume that φ(t1) = 1 and φ(t2) �= 1. By
(1) and (2) of Lemma 4.2, φ : π1(M) → PSL(2,C) factors as ν : π1(M) → G and µ : G →
PSL(2,C), where G is generated by two groups described in (a) and (b) below:

(a) ν(π1(E1)) = 〈a1, b1, c1|a21, b31, a1b1c1〉, (b) A cyclic group 〈λ2〉 such that ν(c2) = λ5
2,

ν(t2) = λ6
2.

Since h(t1c−1
1 ) = t52c

−6
2 , we have ν(h(c−1

1 )) = ν(h(t1c−1
1 )) = ν(t52c

−6
2 ) = 1. It follows that

G = 〈a1, b1, c1|a21, b31, a1b1c1, c1〉 = 〈a1, b1|a21, b31, a1b1〉,

which is the trivial group.

Case (3) φ(t1) = 1 and φ(t2) = 1. In this case φ : π1(M) → PSL(2,C) factors through a
group G via a map ν : π1(M) → G, with ν(π1(Ei)) being the quotient of Gi = 〈 ai, bi, ci|a2i ,
b3i , ai bi ci 〉, i = 1, 2. Moreover, by (2) of Lemma 4.2 we have that in the quotient c1 = c62 and
c2 = c−6

1 . Immediately we have that c371 = 1 and c372 = 1 and finally

G = 〈ai, bi, ci, i = 1, 2|a2i , b3i , aibici, c
37
i , c1 = c

6
2, i = 1, 2〉.

Suppose there is a homomorphism µ : G→ A5. Since the order of ci is 37, and A5 has order 60,
under the homomorphism µ the images of c1 and c2 must be trivial. It follows that µ : G→ A5

can factor through the group G′,

G′ = 〈a1, b1, |a21, b31, a1b1〉 ∗ 〈a2, b2, |a22, b32, a2b2〉,

but as said above, this is trivial.

Lemma 4.5 N is not a Seifert manifold with infinite π1.

The proof of Lemma 4.5 requires a sequence of additional lemmas. We suppose below that N
is a Seifert manifold with infinite π1. By Lemma 4.3, we may assume that N is non-Haken.
Hence N must be a Seifert manifold with three singular fibers over S2.

We begin by establishing:
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Lemma 4.5.1 (1) Suppose ∆ ⊂ PSL(2,R) is a triangle group and φ : π1(2, 3, l) → ∆ is of
finite index. Then the image of φ is a hyperbolic triangle group isomorphic to π1(2, 3, k), where
k|l.

(2) Suppose a Seifert manifold N is an integer homology 3-sphere with infinite π1 and
orbifold O = (a1, a2, a3). Then gcd(ai, aj) = 1 for i, j = 1, 2, 3, and O is a hyperbolic orbifold.

Proof (1) Let x′, y′ be the order 2 and order 3 elements which generate π1(2, 3, l) such that
x′y′ is of order l. Use x and y to denote their images in PSL(2,R), then x and y generate the
image of φ. Since the image of φ is of finite index in ∆, it must be co-compact and of rank 2.
By the well-known facts, the image is a triangle group with x2 = y3 = (xy)k = 1, where k|l.

(2) follows from [3, p. 680 (d)].

Lemma 4.5.2 There is a simple closed curve in the kernel of f | : T → N .

Proof Since π1(N) is torsion free and T is a torus, to prove the lemma, we need only to show
that the kernel of f | : T → N is non-trivial.

Suppose f(t1) �= 1; otherwise, the claim is proved. Note that all elements in f(π1(E1))
commute with f(t1). If f(t1) is not the fiber t of N , then either

f(π1(E1)) = f(t1) or f(π1(E1)) = 〈f(t1), f(c1)〉 = Z ⊕ Z.

The second case is not possible since H1(E1;Z) = Z. In the first case we deduce that ker(f |T )∗
is non-trivial. Similarly if f(t2) is not the fiber t of N , then ker(f |T )∗ is non-trivial. Suppose
f(t1) = t = f(t2). Since t1 and t2 do not coincide up to an isotopy, still we have that ker(f |T )∗
is non-trivial.

Let C be the simple closed curve provided by Lemma 4.5.2. Suppose C = pm1 + ql1 on
∂E1. Then C = −qm2 + pl2. By (1) of Lemma 4.2 we have pm+ gl = (p− 5q)t + (−p+ 6q)c
and −qm + pl = (−q − 5p)t + (q + 6p)c. So the degree 1 map f factors through f : M →
N1 ∪S1 N2 → N , where N1 and E′

2 are Seifert manifolds whose normal forms are given by
(2, 1; 3, 1;−p+ 6q, p− 5q) and (2, 1; 3, 1; q + 6p,−5p− q), respectively, and the two cores of the
surgery solid tori are identified. If f |∗(π1(N1)) �= π1(N) and f |∗(π1(N2)) �= π1(N) then π1(N)
can be presented as a non-trivial free product with amalgamation by the classical result (see
[22] for example). It follows that N will be Haken, contrary to Lemma 4.3. Thus without loss
of generality, we assume that f |∗(π1(N1)) = π1(N).

Lemma 4.5.3 f |N2 is of non-zero degree.

Proof Let Ẽ be the covering of N corresponding to f |∗(π1(N2)). Then f : N2 → N lifts to
f̃ : N2 → Ẽ, which is π1-surjective. If f |∗(π1(N2)) ⊂ π1(N) is of finite index, then Ẽ is a closed
Seifert manifold. Since both π1(N1) and π1(N) are of rank 2, π1(Ẽ) must also be of rank 2.
Then f̃ is of non-zero degree by Theorem 2.1. Hence f |N2 is of non-zero degree.

Below we show f |∗(π1(N2)) ⊂ π1(N) must be of finite index. Otherwise Ẽ is a non-compact,
aspherical Seifert manifold, for which it is known that either the rank of H1(Ẽ) is positive or
π1(Ẽ) is trivial. Since f |∗(π1(N2)) is not trivial and N2 is a rational homology sphere, all of
the above cases are ruled out. So f |∗(π1(N2)) must be of finite index in π1(N).
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Since N1 and N2 are in symmetry position, we have both f |N1 and f |N2 are of non-zero
degree.

By Lemma 4.5.3, we may assume that f |Ni is fiber preserving. Then f |Ni induces an
homomorphism φi : π1(Oi) → π1(O); in particular, φ1 is surjective and φ2 is of finite index,
where O1 = (2, 3, 6q − p), O2 = (2, 3, 6q + p) and O = (a1, a2, a3) are orbifolds of N1, N2 and
N , respectively. Since N is an integral homology 3-sphere of infinite π1, it follows that π1(O)
is isomorphic to a hyperbolic triangle group. Since φ1 : G1 → G is surjective, it follows that
O = (2, 3, k), where k|6q − p by Lemma 4.5.1(1). Since φ2 is of finite index, the image of φ2

is a hyperbolic triangle group π1(2, 3, k′) with k′|6q + p by Lemma 4.5.1(1); moreover, k′|k. It
is easy to see that k′ is a divisor of both 12q and 2p. Since p and q are coprime, the great
common divisor of 12q and 2p is 12. So k′ is either 2, or 3, or 4, or 6, or 12. Then N can not
be an integer homology sphere by Lemma 4.5.1(2).
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