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On the profinite rigidity of triangle groups

Martin R. Bridson, D. B. McReynolds, Alan W. Reid and Ryan Spitler

For Bill Harvey, who knew Fuchsian groups well.

Abstract

We prove that certain Fuchsian triangle groups are profinitely rigid in the absolute sense, that
is, each is distinguished from all other finitely generated, residually finite groups by its set of
finite quotients. We also develop a method based on character varieties that can be used to
distinguish between the profinite completions of certain groups.

1. Introduction

A finitely generated, residually finite group Γ is profinitely rigid (in the absolute sense) if it
is distinguished from all other finitely generated, residually finite groups by its set of finite
quotients. More formally, if Λ is finitely generated and residually finite, then Λ̂ ∼= Γ̂ implies
Λ ∼= Γ (where Δ̂ denotes the profinite completion of a group Δ). Finitely generated abelian
groups have this property, as do certain nilpotent groups, but it is hard to construct examples
of profinitely rigid groups that do not satisfy a group law; indeed no such groups were known
until our work in [6]. The most compelling question in the field is the conjecture that non-
abelian free groups of finite rank are profinitely rigid. More generally, it seems reasonable to
expect all lattices in PSL(2,R) to be profinitely rigid. The main result of [5] shows that such
lattices can at least be distinguished from each other by their finite quotients.

In [6], we proved that certain arithmetic lattices in PSL(2,C) are profinitely rigid, including
the Bianchi group PSL(2,Z[ω]) (where ω2 + ω + 1 = 0) and the fundamental group of the
Weeks manifold, which is the closed hyperbolic 3-manifold of minimal volume. Our main
purpose in the present article is to prove that certain arithmetic lattices in PSL(2,R) are
also profinitely rigid in the absolute sense.

Theorem 1.1. The following arithmetic triangle groups are profinitely rigid in the absolute
sense:

Δ(3, 3, 4),Δ(3, 3, 5), Δ(3, 3, 6), Δ(2, 5, 5),Δ(3, 5, 5),Δ(4, 4, 4),Δ(5, 5, 5),

Δ(2, 3, 8),Δ(2, 3, 10),Δ(2, 3, 12),Δ(2, 4, 5),Δ(2, 5, 6),Δ(2, 4, 8),Δ(2, 5, 10).

We follow the convention of writing Δ(p, q, r) to denote the orientation-preserving subgroup
of index 2 in the Coxeter group generated by reflections in the sides of a hyperbolic (respectively,
Euclidean or spherical) triangle with vertex angles π/p, π/q, and π/r. We shall also prove
(Corollary 4.5) that for the above values of (p, q, r), these hyperbolic Coxeter groups are
profinitely rigid in the absolute sense.
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In its broad outline, our strategy for proving Theorem 1.1 is the one employed in [6] to
establish the existence of Kleinian groups that are profinitely rigid. Several of the key ideas
developed in [6], notably that of Galois rigidity, will play a crucial role again here. But the end-
game by which we move from the general construction of representations to profinite rigidity
for specific examples is more direct in the present setting than it was in [6].

Roughly speaking, a finitely generated subgroup Γ < PSL(2,C) is Galois rigid if all of the
irreducible representations Γ → PSL(2,C) can be constructed from the arithmetic of the trace
field of Γ (see § 2.2). The first five groups in Theorem 1.1 arise as the image in PSL(2,C) of
the elements of norm 1 in a maximal order in a quaternion algebra over a real quadratic field,
ramified at one infinite place and one finite place; see Theorem 3.2. Each of these groups is
Galois rigid; see Proposition 3.3. Both Δ(4, 4, 4) and Δ(5, 5, 5) arise as a subgroup of index 3 in
one of the previous groups; these are also Galois rigid. The other seven groups in Theorem 3.2
are index-2 extensions of the groups written above them.

A key step in the proof of Theorem 1.1 is the proof that every proper infinite subgroup
of the triangle groups Δ considered has a finite quotient that Δ does not have. This can be
established using classical techniques from the study of finitely generated Fuchsian groups (see
Corollary 3.7) but is also covered by the more general and conceptually pleasing method of
producing homomorphisms that we develop in § 5. This method, which is based on the structure
of character varieties, produces homomorphisms to groups of the form PSL(2,F), with F a finite
field, and is useful beyond the context of Theorem 1.1. For example, the following theorem
applies to any group Γ that is the orbifold fundamental group of a non-Haken hyperbolic
3-orbifold. This allows the possibility that the orbifolds considered are non-compact, in which
case the cusp cross-section will be a Euclidean orbifold of the form E2/Δ(p, q, r); the Bianchi
orbifold H3/PSL(2,Z[ω]) is an example.

We remind the reader that a finitely generated group Γ has Property FA if it has a global
fixed point whenever it acts on a simplicial tree.

Theorem 1.2. Let Γ < PSL(2,C) be a finitely generated Kleinian group that has Property
FA. Suppose that H is a finitely generated non-elementary Kleinian group whose PSL(2,C)-
character variety has an irreducible component of positive dimension containing the character
of a discrete faithful representation of H. Then there exists a finite field F and a representation
H → PSL(2,F) whose image is a non-abelian group that is not a quotient group of Γ.

The main point of this theorem is not that Γ and H have different profinite completions
— this can be proved more easily using either goodness (see [12, Theorem 4.11]) or the
profinite invariance of the first �2-betti number (see [5, Corollary 3.3]). Rather, the novelty
of Theorem 1.2 is that it allows us to distinguish between Γ and H by looking only at
their finite images in PSL(2,F). The groups considered are large (that is, contain finite-index
subgroups surjecting a non-abelian free group, [1, 7]), so their set of finite images is vastly more
complicated than their set of images in PSL(2,F), and the fact that they can be distinguished
by the latter images alone is correspondingly stronger.

2. Trace-fields and Galois Rigidity

We recall some of the key ideas from [6].

2.1. Trace-fields

To fix notation, it will be convenient to record some basic facts about trace-fields of finitely
generated subgroups of PSL(2,C). For concreteness, let φ : SL(2,C) → PSL(2,C) be the
quotient homomorphism, and H a finitely generated subgroup of PSL(2,C). Let H1 = φ−1(H).
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It will be convenient to say H is Zariski dense in PSL(2,C) when what we actually mean is
that H1 is a Zariski dense subgroup of SL(2,C). The trace-field of H is defined to be the field

KH = Q(tr(γ) : γ ∈ H1).

If KH is a number field with ring of integers RKH
, we say that H has integral traces if

tr (γ) ∈ RKH
for all γ ∈ H1. The group H1 generates a KH -quaternion algebra A0H, and

when H has integral traces, H1 generates an RKH
-order OH in A0H (see [10, Chapter 3] for

more details on this material). Conversely, if H1 is contained in an order of A0H, then H has
integral traces.

One well-known situation when KH is a number field is the following (see [11, Proposition
6.6] for example). Let Xzar(H,C) denote the set of Zariski dense representations up to conjugacy
of H in (P) SL(2,C).

Lemma 2.1. Let H < PSL(2,C) be a finitely generated group. If Xzar(H,C) is finite, then
KH is a number field.

Suppose that H is a finitely generated group and ρ : H → (P) SL(2,C) a Zariski dense
representation with K = Kρ(H) a number field of degree nK . If K = Q(θ) for some algebraic
number θ, then the Galois conjugates of θ, say θ = θ1, . . . , θnK

provide embeddings σi : K → C
defined by θ �→ θi. These in turn can be used to build nK Zariski dense non-conjugate
representations ρσi

: H → (P) SL(2,C) with the property that tr (ρσi
(γ)) = σi(tr ρ(γ)) for all

γ ∈ H. We sometimes refer to these as Galois conjugate representations.

2.2. Galois rigidity

As in [6], we will be interested in groups Γ with the fewest possible Zariski dense representations.
To be more precise, recall from the discussion in § 2.1 that if Γ is a finitely generated group and
ρ : Γ → (P) SL(2,C) a Zariski dense representation whose trace field K = Kρ(Γ) is a number
field, then using the Galois conjugate representations, we have |Xzar(Γ,C)| � nK .

Definition 2.2 (Galois rigid). Let Γ be a finitely generated group and let ρ : Γ →
(P)SL(2,C) be a Zariski dense representation whose trace field Kρ(Γ) is a number field. If
|Xzar(Γ,C)| = nKρ(Γ) , we say that Γ is Galois rigid (with associated field Kρ(Γ)).

When we say that a subgroup of (P)SL(2,C) is Galois rigid, we are implicitly taking ρ to
be the inclusion map. Note that Γ is Galois rigid if and only if ρ(Γ) is Galois rigid. Note too
that if Γ is Galois rigid, then any irreducible representation with infinite image can serve as
ρ, since any such representation is a Galois conjugate of any other. In particular, Kρ(G) is
an intrinsic invariant of Γ, is the associated quaternion algebra A0Γ := A0ρ(Γ) and the group
homomorphism Γ → ρ(Γ) ↪→ A0Γ1.

The theorem stated below can be extracted from [6, Theorem 4.8, Corollary 4.11], but the
special case that we require involves some preliminaries. To that end, we fix a real quadratic
number field K ⊂ R with σ : K → R the non-trivial Galois embedding, a quaternion algebra
B/K, a maximal order O < B, and a representation ρ : B → M(2,R). Throughout, O1 will
denote the elements of norm 1 in the order O and

Γ1
O = Pρ(O1) < PSL(2,R).

Since K has two real places v1 (the identity place) and v2 (associated to σ), we can prescribe
that B be ramified at either of v1 or v2, and unramified at the other; denote these two
possibilities by B1 and B2 respectively. If Bi is also ramified at a finite place ω with residue
field of characteristic p and ω is the unique such place, then although B1 and B2 are not
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isomorphic (over K), there is an extension of σ that maps B1 to B2. In this situation, and up
to this ambiguity, we can identify B with either of Bi (for i = 1, 2) and assume that Γ < Γ1

O is
a finitely generated subgroup such that KΓ = K. We identify A0Γ with B. With this preamble
established, the following result can readily be extracted from [6, Theorem 4.8, Corollary 4.11].

Theorem 2.3. Let Γ < Γ1
O be as above and assume that Γ is Galois rigid (with associated

field K). If Δ is a finitely generated, residually finite group with Δ̂ ∼= Γ̂, then:

(i) Δ is Galois rigid with associated field K and Zariski dense homomorphism φ′ : Δ →
(P) SL(2,C);

(ii) if B has type number 1, Ram(B) = {v2, ω} where v2 is the real place described above,
and ω is a finite place as above, then the homomorphism φ′ from (i) has image contained
in Γ1

O.

3. Triangle groups

For positive integers p, q, r with 1
p + 1

q + 1
r < 1, we write Δ−(p, q, r) for the group of isometries

of the hyperbolic plane generated by reflections in the sides of a triangle T (p, q, r) with vertex
angles π/p, π/q, and π/r, and we write Δ(p, q, r) for the index 2 subgroup consisting of
orientation preserving isometries. The quotient orbifold O = H2/Δ(p, q, r) is a sphere with
three cone points, orders p, q and r. There are standard presentations

Δ(p, q, r) = 〈a, b, c | ap, bq, cr, abc〉 = 〈a, b | ap, bq, (ab)r〉 ,
Δ−(p, q, r) =

〈
x, y, z | x2, y2, z2, (xy)p, (yz)q, (xz)r

〉
,

where a, b, c are rotations (same orientation) at the different vertices of T (p, q, r).

3.1. Index 2 extensions of triangle groups

As we try to establish profinite rigidity for the groups in Theorem 1.1, we will need to analyse
index 2 extensions of certain triangle groups.

Proposition 3.1. Let Δ < Γ be a pair of groups with Δ = Δ(p, q, r) and [Γ : Δ] = 2.

(1) If p, q, r are distinct, then Γ ∼= Δ × Z/2Z or Γ ∼= Δ−(p, q, r).
(2) If q = r, then there four possibilities for Γ, up to isomorphism, all of the form Δ � Z/2;

they are Δ(p, q, q) × Z/2Z, Δ−(p, q, q), Δ(2p, q, 2) and

Λρ(p, q) := 〈a, b, c, ρ | 1 = ap = bq = cq = ρ2 = abc, ρaρ = a−1, ρbρ = c−1, ρcρ = b−1〉.

Before proving this proposition, we note that Λρ(p, q) is a discrete group of isometries of H2

with quotient H2/Λρ(p, q) a non-orientable 2-orbifold whose underlying space is a disc: there is
a cone point of order q in the interior of the disc, while the boundary circle is mirrored (local
group Z/2Z) and contains a vertex where the local group is dihedral of order 2p.

Proof. As is well-known (see, for example, [8]) Δ(p, q, r) admits a unique faithful discrete
representation into PSL(2,R). Thus any lattice Λ < Isom(H2) that contains a subgroup
isomorphic to Δ(p, q, r) must contain (a conjugate of) a fixed, standard copy of Δ(p, q, r)
as a subgroup of finite index.

Kerckhoff’s solution to the Nielsen Realization Problem (see [9, §V, Theorem 7]) implies
that for any group G containing Δ as a subgroup of index m there is a short exact sequence

1 → K → G → Λ → 1,
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where Λ is a lattice in Isom(H2) containing Δ as a subgroup of index m/|K|. In our setting,
m = 2, so either K = Z/2Z and Λ = Δ, or else K is trivial and Λ contains Δ as a subgroup
of index 2. In the former case, the short exact sequence splits and G = Δ × Z/2Z. In the
latter case, there is a 2-sheeted covering of Riemannian orbifolds H2/Δ → H2/Λ. In order to
understand the possibilities for Λ, we analyse the possibilities for the deck transformation of
this covering, that is, the isometric involutions of the orbifold O = H2/Δ.

In each case, such an involution has at least one fixed point (one of the three cone points),
so the corresponding outer automorphism of Δ = πorb

1 O lifts to an involution in Aut(Δ) and
Λ is a semi-direct product of the form Δ � Z/2Z. If p, q, r are all distinct, then any isometry of
O must fix the three cone points and the geodesic arcs joining them, that is, the image in O of
the boundary ∂T of the geodesic triangle T (p, q, r) ⊂ H2. Thus the only non-trivial isometry
of O in this case is the reflection in the image of ∂T . This reflection, which we denote by τ ,
is the isometry of O induced by each of the three isometries of H2 that are reflections in the
sides of T (p, q, r). Thus Λ ∼= Δ−(p, q, r). This proves (1).

To prove (2), if q = r 	= p, then each isometry of O must fix the cone point with vertex angle
2π/p, but it can interchange the other two cones points v, v′. If ρ : H2 → H2 is the reflection
in the perpendicular bisector of the edge of T opposite the vertex with angle π/p, then the
induced isometry ρ0 : O → O interchanges v and v′ and commutes with τ . The product σ = τρ0

is the only other non-trivial isometry of O; it lifts to a rotation s through π about the midpoint
of the edge of T (p, q, q) opposite the vertex with angle π/p. Note that 〈Δ, s〉 = Δ(2p, q, 2).

Finally, if p = q = r, then Isom(O) = Sym(3) × Z/2Z where the second factor is generated
by τ . The distinct conjugacy classes of involutions are represented by τ, ρ0 and σ, so up
to isomorphism (equivalently, conjugacy in Isom(H2)) the possibilities for Λ are the same
extensions described in the previous case with p = q.

Our description of explicit lifts for τ, ρ0 and σ provides explicit presentations for the three
possible lattices containing Δ as a subgroup of index 2 in the case q = r (regardless of whether
p = q). For example, the reflection ρ conjugates the generator a ∈ Δ(p, q, q) to its inverse while
interchanging b and c−1. Thus Λρ(p, q) = 〈Δ, ρ〉 is given by the presentation in the statement
of the proposition. �

3.2. Some arithmetic triangle groups

In Theorem 3.2, we list a subset of the arithmetic triangle groups whose invariant trace-field
is a real quadratic Q(

√
d) (the value of d is given in the statement of the theorem); this list

is taken from [16]. In each case, the invariant quaternion algebra A0Δ is ramified at one real
place of Q(

√
d) and one finite place (this is listed as Pq where q is the rational prime with

Pq|〈q〉).

Theorem 3.2. With the notation established above, each of the triangle groups shown
below arises as a group Γ1

O where O is a maximal order in the quaternion algebra described
above.

(1) Δ(3, 3, 4), d = 2, P2.
(2) Δ(3, 3, 6), d = 3, P2.
(3) Δ(2, 5, 5), d = 5, P2.
(4) Δ(3, 5, 5), d = 5, P3.
(5) Δ(3, 3, 5), d = 5, P5.

In Figure 1 below, we portray the degrees of commensurabilities of the triangle groups under
consideration that will be useful later (taken from [16]). Here inclusion passes upwards. The
commensurability classes of Δ(2, 3, 8), Δ(2, 3, 12) and Δ(2, 4, 5) contain additional triangle
groups for which our methods are not able to establish profinite rigidity (see Remark 3.5).
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Δ(2, 3, 8)

Δ(3, 3, 4) Δ(2, 4, 8)

Δ(4, 4, 4)

2 3

3 2

Δ(2, 3, 12)

Δ(3, 3, 6) Δ(2, 6, 12)

Δ(6, 6, 6)

2 3

3 2

Δ(2, 3, 10)

Δ(3, 3, 5) Δ(2, 5, 10)

Δ(5, 5, 5)

2 3

3 2

Δ(2, 4, 5)

Δ(2, 5, 5)

2

Δ(2, 5, 6)

Δ(3, 5, 5)

2

Figure 1. Degrees of commensurability.

3.3. Galois rigidity of certain triangle groups

Proposition 3.3. Let Δ be one of the triangle groups Δ(3, 3, 4), Δ(4, 4, 4), Δ(3, 3, 6),
Δ(2, 5, 5), Δ(3, 5, 5), Δ(3, 3, 5) or Δ(5, 5, 5). Then Δ is Galois rigid.

Proof. We begin with some general comments. Let Δ = Δ(p, q, r) and suppose that ρ : Δ →
PSL(2,C) is a non-trivial representation. The orders of ρ(a), ρ(b) and ρ(ab) divide p, q and
r, respectively. Since we are only interested in irreducible representations, we can assume that
ρ(Δ) is not conjugate into the image of the upper triangular matrices in PSL(2,C) (see, for
example, [4, § 3]). Furthermore, standard properties of elements of PSL(2,C) ensure that we
can conjugate ρ so that ρ(a) fixes ∞ and ρ(b) fixes 0; that is,

ρ(a) =
(±ζp 1

0 ±1/ζp

)
, ρ(b) =

(±ζq 0
z ±1/ζq

)
,

for some z ∈ C with ζp and ζq being pth and qth roots of unity, respectively. Moreover, z is
constrained by the requirement that tr (ρ(ab)) = ζpζq + 1/(ζpζq) + z = ±(ζr + 1/ζr) for some
rth root of unity. Visibly, there are only finitely many possibilities for z. To go further, and
establish Galois rigidity, we must analyse the possible solutions.

We do the case of Δ(3, 3, 6) in some detail; the others are similar. As above, let ρ : Δ →
PSL(2,C) be an irreducible representation. Note that ρ(a) and ρ(b) must be elements of order
3, whilst the possibilities for the order of ρ(ab) are 2, 3 and 6. If ρ(ab) has order 2, the image
of ρ is the alternating group A4; in particular, it is finite. If ρ(ab) has order 3, the image
is the Euclidean triangle group Δ(3, 3, 3), and this can be conjugated to lie in the image in
PSL(2,C) of the upper triangular matrices; that is, it is a reducible representation. Hence ρ(ab)
has order 6.

To deal with this last case, as above, we conjugate so that ρ(a) and ρ(b) have the following
form (where ω2 + ω + 1 = 0):

ρ(a) =
(±ω 1

0 ±ω2

)
, ρ(b) =

(±ω 0
z ±ω2

)
,
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for some z ∈ C. Consider tr (ρ(ab)) = ω2 + ω + z = z − 1. Since ρ(ab) has order 6, z − 1 = ±√
3

and this gives the two possibilities. One of these gives the faithful discrete representation
(z = 1 +

√
3) and the other gives its Galois conjugate, a representation into PSU(2). �

Remark 3.4. In addition to Galois rigidity, the invariant quaternion algebras of the groups
listed in Theorem 3.2 all satisfy Theorem 2.3(ii). To see this, first note that they have type
number 1, by [16, Proposition 3]. Since the triangle groups are arithmetic, all the defining
quaternion algebras are ramified at one real place, and the finite places where they ramify are
the unique places of that characteristic. Briefly, 2 is the unique ramified place in the case of
d = 2, 3 and similarly for 5 when d = 5. Also, 2 and 3 are inert in the case of d = 5.

Remark 3.5. Note that in the proof of Proposition 3.3 we observed that Δ(3, 3, 6) does
admit an infinite representation into PSL(2,C) that does not arise as a Galois conjugate
representation. In this case, the image is the Euclidean triangle group Δ(3, 3, 3), which of
course is not Zariski dense, and so does not violate Galois rigidity. This also applies to the
group Δ(4, 4, 4); in this case, the image is the Euclidean triangle group Δ(2, 4, 4), which again
does not violate Galois rigidity.

On the other hand, Δ(6, 6, 6) admits an epimorphism to Δ(2, 6, 6), and this does violate
Galois rigidity. Hence Proposition 3.3 does not hold for Δ(6, 6, 6).

3.4. Profinite epimorphisms among Fuchsian groups

By definition, the Euler characteristic of a Fuchsian group Γ is the orbifold Euler characteristic
of H2/Γ (which by Gauss–Bonnet is the area of a fundamental domain for Γ divided by −2π).
It behaves multiplicatively on subgroups in the sense that [Γ : H] = d implies χ(H) = dχ(Γ).

We shall need the following lemma, which could be rephrased as saying that if the area of
H2/Γ1 is less than the area of H2/Γ2, then Γ2 has a finite quotient that Γ1 does not have.

This is the first place where it is convenient for us to phrase a result in the language of
profinite completions. We remind the reader that the profinite completion of a group Γ is the
inverse limit of its system of finite quotients, Γ̂ = lim←−Γ/N where the limit is taken over finite
index normal subgroups N < Γ ordered by reverse-inclusion. It is endowed with the inverse-
limit topology, making it a compact topological group. If Γ is residually finite (as all of the
groups that we consider are), then the natural map Γ → Γ̂ is injective. The image of Γ is
dense, and every epimorphism from Γ to a finite group Q extends to a continuous epimorphism
Γ̂ → Q.

Lemma 3.6. Let Γ1 and Γ2 be Fuchsian groups. If there is a continuous surjection Γ̂1 → Γ̂2,
then χ(Γ1) � χ(Γ2).

Proof. To begin, given a Fuchsian group Γ, let b1(Γ) denote the first betti number of
Γ, that is, the rank of H1(Γ,Z). If Γ is cocompact, then b1(Γ) � 2 − χ(Γ), and otherwise,
b1(Γ) � 1 − χ(Γ). If additionally Γ is torsion-free, then these are equalities. Finally, for finitely
generated groups in general, if there an epimorphism Ĝ1 → Ĝ2, then b1(G1) � b1(G2) (see [5,
Lemma 2.10]).

Suppose there is a continuous epimorphism η : Γ̂1 → Γ̂2. We can pass to a subgroup of
finite index, say H2 < Γ2 of index d, so that H2 is torsion-free. Then H1 := η−1(H2) ∩ Γ1 is a
subgroup of index d in Γ1 and the restriction of η to H1

∼= Ĥ1 gives an epimorphism Ĥ1 → Ĥ2.
(Here, H denotes the closure of H < Γ in Γ̂.) We do not assume that H1 is torsion-free.

Then,

2 − dχ(Γ1) � b1(H1) � b1(H2) = ε− dχ(Γ2),
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where ε = 1 or 2 according to whether Γ2 is cocompact or not. As d can be taken to be
arbitrarily large, this implies χ(Γ1) � χ(Γ2). �

A stronger form of the following result will be established by less elementary means in
Section 5.

Corollary 3.7. Let Δ = Δ(p, q, r) with 1 > 1
p + 1

q + 1
r � 1

2 .

(1) If S is a non-elementary proper subgroup of Δ, then there does not exist a continuous

epimorphism Δ̂ → Ŝ.
(2) If H is a non-elementary Fuchsian group that is not cocompact, then does there does

not exist a continuous epimorphism Δ̂ → Ĥ.

Proof. If S < Γ1 has finite index, then χ(S) < χ(Δ) and the lemma applies. If not, then we
are in Case (2) of the corollary, and we complete using the argument below.

Assume now that H is a non-elementary Fuchsian group that is not cocompact. Hence it is
a free product of a free group and some finite cyclic groups. If there is a surjection Γ̂1 → Ĥ,
then H must be finitely generated, and since Γ1 has finite abelianization, H must as well. Thus
we are reduced to the possibility that H is a free product of finite cyclic groups C1 ∗ · · · ∗ Cm,
where Ci has order ni, say.

Now,

χ(Δ) =
1
p

+
1
q

+
1
r
− 1 � −1

2
,

whereas

χ(H) =
1
n 1

+ · · · + 1
nm

+ 1 −m.

So χ(H) � −1/2 forces m = 2 or else m = 3 and n1 = n2 = n3 = 2. This last possibility has
abelianization (Z/2Z)3, which cannot be a finite image of Δ (and hence Δ̂) because Δ is
generated by two elements. Thus H = C1 ∗ C2.

Let a, b, c = (ab)−1 be the generators in the standard presentation of Δ, and note that any
two of them suffice to generate. We know from [5, Theorem 5.1] that any finite subgroup of
Ĥ is contained in a conjugate of C1 or C2, so for any map Δ̂ → Ĥ, the image of at least two
of a, b, c must lie in conjugates of the same Ci. But this means that the image of Δ in the
abelianization of H would be a proper subgroup. Since Δ is dense in Δ, this implies that no
continuous map Δ̂ → Ĥ can be surjective. �

4. Profinite rigidity of triangle groups

In this section, we prove Theorem 1.1, whose statement we recall for the reader’s convenience.

Theorem 1.1. The following arithmetic triangle groups are profinitely rigid in the absolute
sense:

Δ(3, 3, 4),Δ(3, 3, 5), Δ(3, 3, 6), Δ(2, 5, 5),Δ(3, 5, 5),Δ(4, 4, 4),Δ(5, 5, 5),

Δ(2, 3, 8),Δ(2, 3, 10),Δ(2, 3, 12),Δ(2, 4, 5),Δ(2, 5, 6),Δ(2, 4, 8),Δ(2, 5, 10).

Proof. Let Δ be one of the first five groups listed in the theorem and let Λ be a finitely
generated, residually finite group with Λ̂ ∼= Δ̂. We must prove that Λ ∼= Δ.
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From Theorem 3.2, we know that Δ can be described as Δ = Γ1
O which is the image in

PSL(2,C) of the elements of norm 1 in a maximal order in a quaternion algebra over a real
quadratic field, ramified at one infinite place and one finite place. Proposition 3.3 assures us that
Δ is Galois rigid, so by Theorem 2.3 and Remark 3.4, there exists an epimorphism ρ : Λ � L
onto a finitely generated, Zariski dense (hence non-elementary) subgroup L � Δ = Γ1

O. This
induces a continuous epimorphism Γ̂ ∼= Λ̂ → L̂, and Corollary 3.7 says that this is impossible
unless L = Δ. Thus ρ induces an epimorphism ρ̂ : Λ̂ → Δ̂ ∼= Λ̂, and since finitely generated,
profinite groups are Hopfian (see [13, Proposition 2.5.2]), we conclude that ρ̂ is injective, and
hence ρ is an isomorphism.

We now deal with Δ = Δ(4, 4, 4), which arises as a normal subgroup of index 3 in Δ(3, 3, 4).
Let Λ be a finitely generated, residually finite group with Λ̂ ∼= Δ̂. As above, using Galois rigidity
we obtain an epimorphism ρ : Λ � L to a non-elementary subgroup of Δ(3, 3, 4) = Γ1

O. In fact,
L must be a subgroup of Δ, since if not, then L ∩ Δ is a normal subgroup of index 3 in L,
which is impossible as the abelianization of Δ is Z/4Z. From Corollary 3.7, we can now deduce
that L = Δ, and as in the previous case we conclude that ρ : Λ → Δ is an isomorphism.

The case of Δ(5, 5, 5) < Δ(3, 3, 5) is entirely similar to Δ(4, 4, 4) < Δ(3, 3, 4).
It remains to deal with the seven groups in the bottom row of Theorem 1.1. These cases are

covered by the discussion in the next section, explicitly Corollary 4.4, because each contains
as a subgroup of index 2 one of the groups that we have already dealt with. In each case, the
inclusion Δ(p, p, q) ↪→ Δ(2, p, 2q) is obtained by noting that the hyperbolic isoceles triangle
with vertex angles (π/p, π/p, π/q) is divided into two copies of (π/2, π/p, π/2q) by dropping a
perpendicular from the vertex with angle π/q. �

Remark 4.1. In the proof of Theorem 1.1, we emphasized techniques that rely on basic
properties of Fuchsian groups. Some of this can be bypassed by invoking deeper parts of [6]
and using Theorem 2.3(i), which implies that Λ is Galois rigid, which forces L to be a triangle
group (cf. the proof of Corollary 5.1).

Remark 4.2. In [6, § 1], we discussed the fact that [6, Theorem 4.8] does not apply to
Δ(2, 3, 7), and so we cannot establish profinite rigidity in this case. The argument given in the
proof of Theorem 1.1 would apply to this group if we knew that the group L constructed in
the proof is actually a subgroup of Δ(2, 3, 7). However, as discussed in [6, § 1], we do not know
this: the group L might be a subgroup of PSL(2, Rk), where Rk is the ring of integers of the
field Q(cosπ/7). At present, we do not know how to exclude this possibility.

4.1. Profinite rigidity for index 2 extensions

Lemma 4.3. For every Fuchsian triangle group Δ = Δ(p, q, r), the index-two extensions of Δ
listed in Proposition 3.1 have pairwise non-isomorphic profinite completions.

Proof. We assume first that p, q and r are all distinct. By Proposition 3.1(1), there are two
extensions of Δ(p, q, r), namely Δ(p, q, r) × Z/2Z and Δ−(p, q, r). From the presentation for
Δ−(p, q, r) given in § 3, we deduce that ̂Δ−(p, q, r) contains finite dihedral groups Dp, Dq and
Dr. Note that at most one of p, q or r equals 2 since Δ(p, q, r) is a Fuchsian group, and so at
most one of these dihedral groups is abelian.

We now invoke [5, Theorem 5.1] which states that for any finitely generated Fuch-
sian group Γ, the inclusion Γ → Γ̂ induces a bijection between conjugacy classes of finite
subgroups. In our setting, we deduce that the maximal finite subgroups of ̂Δ(p, q, r),
up to conjugacy, are Z/pZ,Z/qZ,Z/rZ and hence the maximal finite subgroups of
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̂Δ(p, q, r) × Z/2Z = ̂Δ(p, q, r) × Z/2Z are abelian, namely Z/pZ × Z/2Z, Z/qZ × Z/2Z and
Z/rZ × Z/2Z. Hence ̂Δ(p, q, r) × Z/2Z cannot be isomorphic to ̂Δ−(p, q, r).

We now deal with the groups in Proposition 3.1(2). We need to prove that the profinite
completions of the following groups are distinct

Δ(p, q, q) × Z/2Z, Δ−(p, q, q), Δ(2p, q, 2), Λρ(p, q).

We calculate their abelianizations from the explicit presentations given in § 3:

Z/qZ × Z/hZ × Z/2Z, (Z/2Z)i, Z/h′Z × Z/2Z, Z/qZ × Z/2Z,

where h = gcd(p, q), h′ = gcd(2p, q) and i ∈ {1, 2, 3} depends on the parity of p and q.
The existence of orientation reversing isometries in Δ−(p, q, q) and Λ means that the

results of [5] do not apply to these groups. But, as above, for Δ(p, q, q) and Δ(2p, q, 2),
we can appeal to [5, Theorem 5.1]. Thus the maximal finite subgroups of ̂Δ(2p, q, 2) up to
conjugacy are Z/2pZ,Z/qZ,Z/2Z, whilst those of ̂Δ(p, q, q) × Z/2Z = Δ̂(p, q, q) × Z/2Z are
Z/pZ × Z/2Z and two copies of Z/qZ × Z/2Z. In particular (noting that q � 3), these two
profinite completions are not isomorphic. Moreover, neither is isomorphic to the profinite
completion of Δ−(p, q, q) or Λρ(p, q), since these last two groups contain finite, non-abelian
dihedral groups (using the presentations in § 3). Finally, the profinite completions of Δ−(p, q, q)
and Λρ(p, q) are different because the abelianization of the former is an elementary 2-group
while from above, that of the latter is Z/qZ × Z/2Z and q 	= 2. �

Corollary 4.4. If Δ = Δ(p, q, r) is profinitely rigid in the absolute sense, then so too is
any group that contains Δ as a subgroup of index 2.

We highlight a special case of Corollary 4.4.

Corollary 4.5. For each of the groups Δ(p, q, r) listed in Theorem 1.1, the corresponding
Coxeter group Δ−(p, q, r) is profinitely rigid in the absolute sense.

5. Additional finite quotients from character varieties

In this section, we prove Theorem 1.2. The main idea in the proof is to gain control of
PSL(2,F) quotients in certain situations (here F is a finite field). This in turn depends on
the (P) SL(2,C)-character variety. Recall that for any finitely generated group H, one has
the PSL(2,C)-representation variety Hom(H,PSL(2,C)), and the PSL(2,C)-character variety
Y (H) is the algebro-geometric quotient of Hom(H,PSL(2,C)) by the conjugation action in
the target. We refer the reader to [3] and [4] for definitions and further details about the
PSL(2,C)-character variety.

5.1. Additional finite quotients

We restate Theorem 1.2 for the convenience of the reader.

Theorem 1.2. Let Γ < PSL(2,C) be a finitely generated Kleinian group that has Property
FA. Suppose that H is a finitely generated non-elementary Kleinian group whose PSL(2,C)-
character variety has an irreducible component of positive dimension containing the character
of a discrete faithful representation of H. Then there exists a finite field F and a representation
H → PSL(2,F) whose image is a non-abelian group that is not a quotient group of Γ.

Before proving this in § 5.2, we deduce a corollary of particular interest to us.
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Corollary 5.1. Let Δ(p, q, r) be a Fuchsian triangle group, and H a non-elementary
Fuchsian group that is not a triangle group. Then there exists a finite field F and a
representation H → PSL(2,F) whose image is not a quotient group of Δ(p, q, r).

Proof. It is well-known that Δ(p, q, r) has Property FA (see [14, Example 6.3.5]). It is also
well-known that if H is any finitely generated Fuchsian group that is not itself a triangle group,
then Y (H) contains a positive dimensional component (the Teichmüller component) containing
the characters of faithful discrete representations of H in PSL(2,C) (see [8]) and this proves
the corollary. �

The main theorem of [5] distinguishes Δ(p, q, r) from all other finitely generated Fuchsian
groups by their finite quotients. The novel content of Corollary 5.1 is that one can find a finite
quotient of H that is not a finite quotient of Δ(p, q, r) by looking only at the subgroups of
PSL(2,F) as F ranges over finite fields.

5.2. Proof of Theorem 1.2

We begin by explaining how Theorem 1.2 follows from the three lemmas stated and
proved below.

First we fix some notation that will be used throughout this section. For p a prime, Fp will
denote the finite field with p elements, and Fp will be a fixed algebraic closure of Fp.

With the character from Lemma 5.3 in hand, Lemma 5.4 shows that for a group H as in
the statement of Theorem 1.2, we can find infinitely many primes p so that H has infinitely
many conjugacy classes of irreducible representations into PSL(2,Fp). The image of such an
irreducible representation is a finite subgroup of PSL(2,Fp). Hence we can construct an infinite
sequence of finite quotient groups Qi < PSL(2,Fp) of H with the property that as i → ∞,
Qi contains an element whose trace cannot occur as the trace of an element in Qi−1. By
Lemma 5.2, this must eventually produce a finite group that cannot be a quotient of Γ. Since
the representations considered are irreducible, the quotient groups cannot be abelian. Thus we
have reduced the proof of Theorem 1.2 to the lemmas that follow.

Lemma 5.2. Let Γ be as in Theorem 1.2, and p a prime. Then Γ has only finitely many
irreducible representations into PSL(2,Fp), up to conjugacy.

Proof. This result is contained in Bass’s work on finite n-representation type [2], as we shall
now explain. [14, Proposition 22, p. 59] proves that if a finitely generated group Γ has Property
FA, then in any representation ρ : Γ → GL(2, k) over any field k, the eigenvalues of ρ(γ) are
integral over Z for all γ ∈ Γ: in the terminology of [2], Γ has integral 2-representation type. [2,
Proposition 5.3] and the second remark following it in [2] prove the lemma. �

Lemma 5.3. Let Y be the component defined in Theorem 1.2. Then Y contains a point
corresponding to the character of an irreducible representation.

Proof. Let χρ ∈ Y be the character of a faithful, discrete representation of H. Since Y
has positive dimension, Q = H3/ρ(H) is non-compact. If Q has finite volume, it must have at
least one cusp cross-section that is a torus or S2 with four marked points of cone angle π. If
Q has infinite volume, some component of the boundary of the convex core C(Q) of Q has
positive genus or is a copy of S2 with at least four cone points and with at least one cone
angle less than π (see [3, Chapter 7]). In the former case, we can assume that Y is the Dehn
surgery component, and so the generic point corresponds to the character of a Zariski dense
(and hence irreducible) representation. In the latter case we can assume that Y is a positive



12 MARTIN R. BRIDSON, D. B. McREYNOLDS, ALAN W. REID AND RYAN SPITLER

dimensional component that contains characters of faithful, discrete representations of H that
have geometrically finite image; such representations have Zariski dense image and hence are
irreducible. �

Lemma 5.4. Let H be a finitely generated group for which there exists an irreducible
component Y ⊂ Y (H) of positive dimension containing the character of an irreducible
representation of H. Then for infinitely many primes p, H has infinitely many conjugacy
classes of irreducible representations into PSL(2,Fp).

Some of the ideas used below were motivated by the proofs in [17, § 8].

Proof. First, as Y contains the character of an irreducible representation, any representation
corresponding to the character of a generic point must also be irreducible. We now fix a
representation ρ : H → PSL(2,C) whose character is a generic point in Y . Let H0 = ρ(H) be
its image, let H1 = φ−1(H0) be the preimage in SL(2,C), let R be the subring of C generated
by the Z-span of the traces of H1, and let K be the fraction field of R. As ρ is a generic point
of the positive dimensional component, K/Q has positive transcendence degree.

As described in § 2.1, since H1 is an irreducible subgroup of SL(2,C), the K-span of H1 is a
K-quaternion algebra B/K with B < M(2,C). Fixing a quadratic extension L/K which splits
B (if B is already split, take L = K), we have that B ⊗K L ∼= M(2, L) and H1 < SL(2, L).
Setting S to be the subring of L generated over Z by the matrix entries of H1, we see that
H1 < SL(2, S), the S-span of H1 is M(2, S), R is a subring of S, and the field of fractions of
S is L. Since H1 is finitely generated, we see that S is finitely generated as an algebra over Z.
Finally, since L contains K, we see that L/Q has positive transcendence degree.

Any (non-trivial) ring morphism ψ : S → Fp induces a morphism M(2, S) → M(2, ψ(S)) of
S-modules and a group homomorphism SL(2, S) → SL(2,Fp). As H1 generates M(2, S) as
an S-module, it follows that ψ(H1) generates M(2, ψ(S)) as a ψ(S)-module. As M(2, ψ(S))
generates M(2,Fp) over Fp, we see that the Fp-span of ψ(H1) is M(2,Fp). Consequently, the
induced representation H1 → SL(2,Fp) is irreducible. Finally, as R is generated by the traces
of H1, if two homomorphisms of S to Fp do not agree on R, their induced representations of
H1 in SL(2,Fp) will have distinct characters and cannot be conjugate.

We will now prove that the inclusion of R in S induces a function Hom(S,Fp) → Hom(R,Fp)
with infinite image. We will first prove that for all but finitely many primes Hom(S,Fp) is
infinite. We will complete the proof by proving that Hom(S,Fp) → Hom(R,Fp) is finite-to-one.

We start by proving that Hom(S,Fp) is infinite for all but finitely many primes. As S
is finitely generated over Z and the fraction field of S has positive transcendence degree
r > 0, there exist y1, . . . , yr ∈ S such that the ring morphism Z[x1, . . . , xr] → S induced by
sending xi to yi is injective and there exists n ∈ Z such that S[1/n] is a finite ring extension of
Z[y1, . . . , yr][1/n] [15, Tag 07NA]. In particular, S[1/n] is finitely generated as a module over
Z[y1, . . . , yr][1/n].

If p does not divide n, then the morphism ψ : Z[y1, . . . , yr] → Fp extends uniquely to a
morphism Z[y1, . . . , yr][1/n] → Fp. We can tensor the ring map Z[y1, . . . , yr][1/n] → S[1/n]
with Fp along ψ to get an inclusion Fp → S[1/n] ⊗ Fp which gives S[1/n] ⊗ Fp as a finite-
dimensional algebra over Fp. As Fp is algebraically closed, S[1/n] ⊗ Fp

∼= ∏
Fp is the product

of finitely many copies of Fp. Finally, we can project onto one of these factors to get a
homomorphism S → S[1/n] → S[1/n] ⊗ Fp → Fp which restricts to ψ on Z[y1, . . . , yr]. Thus
we have shown that each homomorphism of Z[y1, . . . , yr] to Fp extends to at least one
homomorphism of S to Fp. In particular, Hom(S,Fp) is infinite.

We complete the proof by showing the induced function Hom(S,Fp) → Hom(R,Fp) is finite-
to-one. As S is finitely generated as an R-module, the inclusion of integral domains R ↪→ S
makes S a finitely generated R–algebra. As the extension of fraction fields L/K is finite, there
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exist s1, . . . , sm ∈ S such that each si is algebraic over R and S = R[s1, . . . , sm]. Thus, if F
is any field and φ : R → F is a ring homomorphism, there are at most finitely many distinct
homomorphisms φ′ : S → F which restrict to R to give φ. Hence, the inclusion of R in S induces
a function Hom(S, F ) → Hom(R,F ) which is finite-to-one for any field F . �
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