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Abstract

We show that for every n ≥ 2 there exists closed hyperbolic n-manifolds for which the full
group of orientation preserving isometries is trivial.
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1 Introduction

Let Hn denote hyperbolic n-space, that is the unique connected simply connected Riemannian
manifold of constant curvature −1. By a hyperbolic n-manifold we shall mean a quotient Hn/Γ
where Γ is a torsion-free discrete group of isometries of Hn. It is well-known that the group of
isometries of a finite volume hyperbolic n-manifold is finite. We shall denote the group of isometries
(resp. orientation-preserving isometries) of a hyperbolic manifold M by Isom(M) (resp. Isom+(M)).
We define a hyperbolic n-manifold to be asymmetric (resp. +asymmetric) if Isom(M) = 1 (resp.
Isom+(M) = 1). It was shown by Greenberg [6] that every finite group is realized as Isom+(M) for
some hyperbolic surface. Indeed, one can realize any finite group as Isom(M) for some hyperbolic
surface. Kojima [8] showed that a similar result holds in dimension 3. In particular +asymmetric
and asymmetric examples exist in low dimensions. However, the methods used in these dimensions
tend to rely on special features of low dimensions; for example, Teichmüller theory in dimension
2 or Thurston’s Dehn surgery theorem in dimension 3 (see also [5] for a different construction
of +asymmetric hyperbolic surfaces using coset diagrams). The main result of this note is the
generalization of Greenberg’s result to all dimensions.

Theorem 1.1 For every n ≥ 2 there exists a closed +asymmetric hyperbolic n-manifold.

As mentioned, since this is well-known in dimensions 2 and 3 we will only consider manifolds of
dimension ≥ 4. This also avoids some inconveniences in the methods of proof. The method of proof
will provide infinitely many examples in each dimension. Passage to asymmetric examples seems
much harder (see §4 for more on this).

2 Preliminaries

For convenience we record some standard results about hyperbolic manifolds and the theory of finite
groups that will be needed in the proof of Theorem 1.1.
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2.1

Recall that the full group of isometries of Hn can be identified with PO0(fn; R) where fn is the
quadratic form< 1, 1, . . . 1,−1 >. The group of orientation-preserving isometries of Hn is a subgroup
of index 2 in PO0(fn; R) consisting of those elements of determinant 1, denoted by PSO0(fn; R).

Notation: If G is a group we will denote the commutator subgroup of G by [G,G] and if H < G,
we will denote the normalizer of H in G by NG(H).

The following lemma is well-known, but we include a sketch of the proof for convenience.

Lemma 2.1 Let Γ be a discrete subgroup of PSO0(fn; R). Then Isom(Hn/Γ) is isomorphic to
NPO0(fn;R)(Γ)/Γ, and Isom+(Hn/Γ) is isomorphic to NPSO0(fn;R)(Γ)/Γ

Proof: Given η ∈ NPO0(fn;R)(Γ) this induces an isometry η of Hn/Γ. For if p ∈ Hn then

ηΓp = ηΓη−1ηp = Γηp.

The mapping η → η is a homomorphism which induces a homomorphism

f : NPO0(fn;R)(Γ)/Γ→ Isom(Hn/Γ).

This is a monomorphism since the kernel of the homomorphism η → η is Γ. That f is onto follows
from the fact that any isometry g of Hn/Γ lifts to an isometry φg of Hn which satisfies φgΓφ−1

g = Γ,
that is φg ∈ NPO0(fn;R)(Γ). The second claim also follows on noting that an orientation-preserving
isometry of Hn/Γ lifts to an orientation-preserving isometry of Hn. tu

An immediate corollary of this is the following.

Corollary 2.2 Let M = Hn/Γ be a hyperbolic n-manifold. If NPSO0(fn;R)(Γ) = Γ, then Isom+(M) =
1. tu

2.2

Here we collect some facts about the structure of subgroups of finite simple groups of Lie type.
Useful references are [1] and [2].

Let G be a group, and B and N , a pair of subgroups of G which form a (B,N)-pair for G. B is
often called a Borel subgroup of G. A standard example is the following.

Example: Let F be a finite field of characteristic 6= 2, 3. Then a Borel subgroup B of PSL(n,F)
is the image in PSL of the group of upper triangular matrices in SL(n,F). Furthermore any Borel
subgroup of PSL(n,F) is conjugate in PSL(n,F) to B (see [1] §16).

A class of groups of Lie type that we shall make use of are those arising from orthogonal groups.
Let f be an m-dimensional quadratic form over the finite field F of cardinality q = pn. To simplify
some of the discussion we assume p is odd and m ≥ 5. In the case when m is also odd, there is a
unique orthogonal group O(m, q) up to isomorphism, and when m is even there are two O±(m, q)
(see [14] p 377 Theorem 5.8). Let SO(m, q) and SO±(m, q) denote the special orthogonal groups in
these cases.

Let Ω(m, q) = [O(m, q),O(m, q)] when m is odd (resp. Ω±(m, q) = [O±(m, q),O±(m, q)] when
m is even). When m is even Ω±(m, q) has index 2 in SO±(m, q) and has a center of order 1 or
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2. Let PΩ±(m, q) be the central quotient group. When m is odd, Ω(m, q) is a simple subgroup of
O(m, q) of index 4. When m is even, Ω(m, q) is a subgroup of O(m, q) of index 4 and the quotient
PΩ±(m, q) is simple whenever (see [2] or [14] pp 383–384 for more details). We sometimes suppress
the subscripts ±, and also use the notation Ω(f ; q), or Ω(f ; F) where F is a finite field, or simply
just Ω when no confusion will arise.

Remarks: 1. It is known that the groups SO(m, q), SO±(m, q) and all finite simple groups of Lie
type admit a (B,N)-pair (see [2]). In the case of SO(m, q), SO±(m, q) the groups B arise from the
more classical notion of a Borel subgroup of an algebraic group (see [1]).

2. A fact about Borel subgroups that we shall make use of is that they are all self-normalizing. That
is, if G is a group with a (B,N)-pair as above, then NG(B) = B (see [1] Theorem 11.16 and [2]
§8.3).

3 Proof of Theorem 1.1

We shall assume throughout that n ≥ 4 so that the form fn is at least 5 dimensional. This will
avoid some minor inconveniences with n = 2 and 3 in the proof. As already remarked the main
theorem is already known in these cases, and indeed infinitely many examples are known.

Theorem 1.1 follows from Theorem 3.1 below on noting that [7] shows the existence of cocompact
non-arithmetic groups Γ in all dimensions. Also recall that if Γ is a finite co-volume non-arithmetic
subgroup of PSO0(fn; R), there is a unique maximal group in the PO0(fn; R) commensurability class
of Γ (see [11]). We denote this group by C(Γ). By passing to the subgroup of index 2 consisting
of orientation-preserving isometries in C(Γ), we get a maximal discrete subgroup of PSO0(fn; R) in
the PSO0(fn; R) commensurability class of Γ, which contains Γ.

Theorem 3.1 Let Γ be a finite co-volume non-arithmetic subgroup of PSO0(fn; R) which is max-
imal in its commensurability class in PSO0(fn; R). Then Γ has a torsion-free group ∆ such that
Isom+(Hn/∆) = 1.

Before commencing with the proof of Theorem 3.1 we make some further comments. Since Γ
is a finite co-volume subgroup of PSO0(fn; R) and n ≥ 4, Mostow Rigidity implies that we can
conjugate Γ in PO0(fn; R) so that Γ has entries in a number field, L say (see [13]). We will assume,
that L is a minimal such field of definition in the sense of [15]. Note that by definition L ⊂ R.
Furthermore, since Γ is finitely generated Γ < PSO0(fn;R) where R is a subring of L in which a
finite number of prime ideals of L are inverted.

Notation: Let R ⊂ L be as above and ℘ ⊂ R be a prime ideal. Let φ℘ : SL(n,R) → SL(n,R/℘)
denote the reduction homomorphism, B℘ denote the subgroup of SL(n,R/℘) consisting of upper
triangular matrices of SL(n,R/℘) and Γ0(℘) = φ−1

℘ (B℘). It will also be a standing assumption that
the characteristic of R/℘ is different from 2 in what follows.

Lemma 3.2 In the notation above, there are infinitely many prime ideals ℘ for which PΓ0(℘) is a
torsion free subgroup of finite index in PSL(n,R).

Proof: That Γ0(℘) has finite index is clear. To see that infinitely many choices of primes ℘ give
rise to torsion-free PΓ0(℘) we argue as follows. There are only finitely many possible orders for
elements of finite order in SL(n,R), and so only finitely many possible prime divisors q1, . . . , qm of
these orders. Let α ∈ SL(n,R) be a non-central element of finite order for which φ℘(α) ∈ B℘. It
will suffice to consider the case that α has prime order q say, with q ∈ {q1, . . . , qm}.
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Note that since L is assumed to be real, L, and hence R, contains no roots of unity 6= ±1. Since
α is not central, it cannot be a diagonal element. The eigenvalues of φ℘(α) are q-th roots of unity,
and these lie on the diagonal of φ℘(α). Thus to exclude a non-central element of order q in B℘ we
must choose a prime ℘ for which the finite field R/℘ contains no primitive q-th roots of unity. This
is achieved as follows.

Let M =
∏
qi, and let ζM be a primitive M -th root of unity. Since L does not contain ζM ,

L(ζM ) is a proper Galois extension of L, say [L(ζM ) : L] = d > 1. Now the Tchebotarev Density
theorem implies there are infinitely many L-primes ℘ which are totally inert in L(ζM ). That is,
there is a unique prime P in L(ζM ) for which [RL(ζM )/P : RL/℘] = d, where RK denotes the ring
of integers of the number field K. In particular the finite fields RL/℘ do not contain ζM . This
completes the proof. tu

As remarked in the Example of §2, all Borel subgroups of PSL(n,F) are conjugate. Thus if F is any
of the finite fields R/℘ of Lemma 3.2, any Borel subgroup of PSL(n,F) is conjugate in PSL(n,F) to
PB℘. Hence, in the notation of the proof of Lemma 3.2, for the primes constructed in the proof of
Lemma 3.2, the pre-image of any conjugate of B℘ in SL(n,F) will give rise to a torsion-free subgroup
of finite index in PSL(n,R).

Proof of Theorem 3.1: Let π℘ denote the restriction of φ℘ (as above) to SO(fn;R) and π̂℘ denote
the induced homomorphism into PSO(fn;R/℘). Apart from a finite number of primes, this defines
homomorphisms π̂℘ : Γ → PSO(fn;R/℘). The following result is proved in [9]. It is a special case
of more general results due to Weisfeiler [16] and Nori [12].

Theorem 3.3 In the notation above, let q denote the cardinality of the residue class field RL/℘.
Then for all but a finite number of primes ℘, we have PΩ ≤ π̂℘(Γ) ≤ PO(n+ 1; q).

By Theorem 3.3, for all but a finite number of primes ℘, the group π̂℘(Γ) coincides with exactly
one of PSO(fn;R/℘) or PΩ. Consider a prime ℘ for which R/℘ has odd characteristic and which
satisfies the conclusion of Lemma 3.2 (there are infinitely many such primes).

The existence of a Borel subgroup allows us to argue as follows. Let PB℘ be a Borel subgroup of
π̂℘(Γ). This is contained in some Borel subgroup of PSL(n,R/℘). For any Borel subgroup of π̂℘(Γ) is
solvable by definition, and a Borel subgroup of PSL(n,R/℘) is a maximal solvable subgroup (see [1]
Chapter 11). It therefore follows from Lemma 3.2 and the discussion following it, that the pre-image
of PB℘ in Γ will be torsion-free. Denote this subgroup by ∆0(℘). Furthermore, by Remark 2 of
§2, the subgroup PB℘ is a self-normalizing subgroup of π̂℘(Γ). It follows that NΓ(∆0(℘)) = ∆0(℘).
Indeed, since Γ is non-arithmetic, ∆0(℘) is non-arithmetic and so NPSO0(fn;R)(∆0(℘)) ⊂ Γ. By the
usual correspondence theorem for groups and quotient groups, we deduce that;

NPSO0(fn;R)(∆0(℘)) = NΓ(∆0(℘)) = ∆0(℘).

Corollary 2.2 completes the proof. tu

Note that the proof of Theorem 3.1 makes clear that there are infinitely many such subgroups ∆.

4 Final Remarks

1. The method above does not work for arithmetic groups. For example even in the case of PSL(2,Z)
and ℘ = p is a rational prime, the normalizer of the groups PΓ0(p) in PSL(2,R) properly contains
PΓ0(p). These groups are maximal subgroups in the commensurability class of PSL(2,Z).
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2. Arithmetic constructions can be used to provide asymmetric examples in low dimensions. For
example the work of Chinburg and Friedman [3] constructs maximal arithmetic Kleinian groups
which are torsion free. We do not know whether such examples can be built in higher dimensions.

3. The passage to asymmetric examples seems harder. To make the above proof work, one needs to
construct a non-arithmetic group Γ for which the group C(Γ) is a subgroup of PSO(fn; R). However,
as far as we are aware, the constructions of non-arithmetic lattices known do not afford the control
needed to arrange this. From this we leave as a question:

Question: For every n ≥ 4 does there exist an example of a finite volume non-arithmetic hyperbolic
n-manifold that has no non-orientable quotients?

4. The more general question of whether every finite group acts as the full group of isometries of a
closed hyperbolic n-manifold also seems harder in dimensions ≥ 4. One can use surjections (at least
virtually) from the non-arithmetic groups of [7] onto free groups (see [10]) to easily arrange that
every finite group is a subgroup of the full group of isometries. At present we do not know how to
control this construction so as to obtain the finite group as the full group of isometries.

5. Finally we comment on the situation for other rank 1 symmetric spaces. The proof of Theorem
3.1 can be modified to exhibt +asymmetric complex hyperbolic manifolds (where + denotes the
holomorphic isometries in this case), so long as non-arithmetic manifolds exist. In particular, given
the existence, one can modify Lemmas 3.2 and apply the results of [12] and [16] in the context
of the finite simple groups of PSU-type to generalize Theorem 3.3. At present non-arithmetic
complex hyperbolic manifolds are known to exist of dimension 2 and 3 (see [4]). For the case
of quaternionic hyperbolic n-space (n ≥ 2) and the Cayley hyperbolic plane, all finite co-volume
groups are arithmetic and so our methods do not provide closed +asymmetric manifolds for these
geometries.

Furthermore, since finite co-volume groups acting on quaternionic hyperbolic n-space (n ≥ 2)
and the Cayley hyperbolic plane have Property T, there are no finite co-volume groups admitting
homomorphisms onto non-trivial free groups. Furthermore, if the Congruence Subgroup Property
holds for these groups (this is at present still an open problem), then there will be finite groups that
cannot appear even as subgroups of the full group of isometries of such manifolds.
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