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ESSENTIAL CLOSED SURFACES IN BOUNDED 3-MANIFOLDS

D. COOPER, D. D. LONG, AND A. W. REID

1. Introduction

A question dating back to Waldhausen [10] and discussed in various contexts
by Thurston (see [9]) is the problem of the extent to which irreducible 3-manifolds
with infinite fundamental group must contain surface groups. To state our results
precisely, it is convenient to make the definition that a map i : S # M of a closed,
orientable connected surface S is essential if it is injective at the level of fundamental
groups and the group i∗π1(S) cannot be conjugated into a subgroup π1(∂0M) of
π1(M), where ∂0M is a component of ∂M . This latter condition is equivalent to
the statement that the image of the surface S cannot be freely homotoped into ∂M .

One of the main results of this paper is the following:

Theorem 1.1. Let M be a compact, connected 3-manifold with nonempty incom-
pressible boundary. Suppose that the interior of M has a complete hyperbolic struc-
ture. Then either M is covered by a product F × I, where F is a closed orientable
surface, or M contains an essential surface S of genus at least 2.

Furthermore S can be lifted to an embedded nonseparating surface in a finite
cover of M.

In particular, this gives a complete resolution to Waldhausen and Thurston’s
questions in the context of manifolds with nonempty incompressible boundary:

Corollary 1.2. Let M be a compact, connected irreducible 3-manifold with non-
empty incompressible boundary. Then either M is covered by a product F × I, or
M contains an essential closed surface.

In particular, the case that all the boundary components of M are tori gives a
generalisation of Corollaries 1 & 2 of [2].

Indeed our methods show much more is true. In the course of the proof of Theo-
rem 1.1, in the case when M is hyperbolic, we exhibit a finite cover of M containing
a pair of disjoint nonseparating embedded essential closed surfaces. Combining this
with some 3-manifold topology shows:

Theorem 1.3. Let M be a compact, connected irreducible 3-manifold with non-
empty incompressible boundary. Then either ∂M consists only of tori and is covered
by a product T 2 × I, or π1(M) virtually maps onto a free group of rank 2.
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The method of proof used in the last clause of Theorem 1.1 has a further appli-
cation. Defining the peripheral homology to be the image of the map

incl∗ : H2(∂M ;Z) −→ H2(M ;Z),

a stronger version of Waldhausen’s question is to ask if one can create nonperipheral
homology by passing to a finite sheeted covering. This question was also raised by
Gabai in [3]. The proof of Theorem 1.3 creates this homology:

Corollary 1.4. Let M be a compact, connected 3-manifold with nonempty incom-
pressible boundary. Suppose that the interior of M has a complete hyperbolic struc-
ture. Then given any integer K, either M is covered by a product F 2 × I, or there
is a finite sheeted covering M̃ −→ M so that H2(M̃)/incl∗(H2(∂M̃)) has rank at
least K.

This paper is organised as follows. Since it contains the main ideas and is
perhaps of most interest, §2 is devoted to the proofs in the case that all the boundary
components are incompressible tori. In §3 we prove a technical lemma which enables
the proof in the case of higher genus boundary components.

The results of this paper grew out of attempts to generalise Corollaries 1 & 2
of [2]. In particular, the idea of looking at the closed surface obtained by tubing
together two parallel copies of a bounded surface using a long annulus and then
compressing is contained in [2]. The authors gratefully acknowledge the inspiration
provided by this seminal paper.

2. Proof of the case that all boundary components are tori

Throughout the following, since we may always pass to an orientable cover,
we shall assume that all manifolds are orientable. All homology groups have Z-
coefficients.

Recall that if M is a complete orientable hyperbolic 3-manifold of finite volume,
and noncompact, then the ends of the manifold are all of the form T 2 × [0,∞).

Lemma 2.1. Let M be a 3-manifold with nonempty incompressible boundary, all
of whose components are tori. Suppose that the interior of M has a complete
hyperbolic structure with finite volume. Then there is a finite cover of M which has
at least 3 torus boundary components.

Proof. Fix some torus T in ∂M . Choose an element x not in π1T, and set y = [x2,m]
where m is a nontrivial element of π1T. Since M is hyperbolic, y is nontrivial.

Moreover, since π1M is residually finite, there is a finite group G and an epimor-
phism θ of π1M onto G with θ(y) nontrivial. Then the finite covering Mθ which
corresponds to the kernel of the homomorphism has at least 3 torus components
covering T. To see this, note that the index of H = θ(π1T ) in G equals the number
of pre-images of T in Mθ.

However, if H has index at most 2, then since H is normal in G, θ(x)2 would lie
in H , an abelian group, so that [θ(x2), θ(m)] = θ([x2,m]) = θ(y) would be trivial,
a contradiction.

Definition. An oriented surface F which is properly embedded in a 3-manifold M
is said to meet the boundary efficiently if for each component A of ∂M the following
condition is satisfied. Either F ∩ A = ∅ or F ∩ A 6= ∅, and giving the boundary
components of F the induced orientation, every nonempty subset of components of
F ∩A is nonzero in H1(A).
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In this section, we are primarily interested in the case that ∂M consists of tori,
in which case the condition may be stated as: all the components of ∂F are parallel
circles, oriented the same way, and not bounding a disc in A.

Lemma 2.2. Suppose M is a compact orientable 3-manifold with toroidal boundary
having at least 3 torus boundary components. Then there is a connected, non-
separating properly embedded incompressible surface F in M which is disjoint from
at least one torus boundary component. Furthermore [∂F ] is not zero in H1(∂M)
and F meets the boundary of M efficiently.

Proof. Let T be a torus boundary component of M and ∂−M = ∂M − T. Then
from the long exact sequence of the pair (M,∂M) and Poincaré-Lefschetz duality,
the rank of

K ≡ ker[incl∗ : H1(∂−M) −→ H1(M)]

is at least
β1(∂M)

2
− 2 > 0.

Let α be a primitive class in K; then there is a nonseparating properly embedded
surface F in M with

[∂F ] = α.

We now arrange that F meets the boundary of M efficiently. First, any components
of ∂F which bound discs in ∂M can be capped off. After this, whenever F ∩ ∂M
contains a pair of curves which are adjacent and parallel but are oppositely oriented
on some component of ∂M , we can cap them off with an annulus. This surface is
therefore disjoint from T , and meets the boundary efficiently. Now compress F to
obtain an incompressible surface. The resulting surface represents the same relative
homology class and so there is a component with boundary nonzero in H1(∂M).

� -

X1 Xn

E− E+

F̃0 F̃1 F̃n

Figure 1. The covering MF

Theorem 2.3. Let M be a compact, connected 3-manifold with nonempty incom-
pressible boundary, all of whose components are tori. Suppose that the interior of
M has a complete hyperbolic structure with finite volume. Then M contains an
immersed essential surface S of genus at least 2.

Furthermore S can be lifted to an embedded nonseparating surface in a finite
cover of M.

Proof. By Lemma 2.1, after passing to a finite cover, we may suppose that the
boundary of M contains at least 3 tori.

Now it follows from Lemma 2.2 that we can find F , a 2-sided nonseparating
incompressible surface properly embedded in M, with [∂F ] nonzero in H1(∂M).
We may also suppose that F meets the boundary of M efficiently, and is disjoint
from some torus boundary component of M.
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Set X ∼= M − intN(F ) and let Xi = X × i be a copy of X . Then the infinite
cyclic cover

p : MF −→M

dual to F is MF =
⋃
iXi. Define a submanifold Yn =

⋃n
i=1 Xi. Let F̃i be the

components of p−1F labelled so that F̃i = Xi ∩Xi+1. Since F is incompressible in

M it follows that F̃i is incompressible in MF . Then

MF = E− ∪F̃0
Yn ∪F̃n E+

where E− =
⋃
i≤0Xi and E+ =

⋃
i>nXi. Two applications of Van Kampen’s

theorem then implies that

incl∗ : π1Yn −→ π1MF

is injective, and composing with the covering space projection one sees that

(p|Yn)∗ : π1Yn −→ π1M

is injective.
Partition the boundary of Yn into two parts: G is the component containing

F̃0 ∪ F̃n and is diffeomorphic to the double of F ; and W is the rest of ∂Yn.
Let S be the possibly disconnected surface in Yn obtained by compressing G in

Yn as much as possible. Since [G] + [W ] = 0 in H2(Yn) it follows that [S] = −[W ].
Suppose that some component of S is a sphere; then since M is hyperbolic, S
bounds a ball B in MF . Now E−, E+ are both noncompact, thus B is contained
in Yn. Let S′ be the subsurface of S obtained by deleting the sphere components.
Then [S′] = −[W ] also. Suppose that every component of S′ is parallel to some
component of W. The only relation between the classes in H2(Yn) represented by the
boundary components of Yn is that their sum is zero. Thus the components of W
(which excludes G) freely generate a subgroup of H2(Yn). The equation [S′] = −[W ]
thus implies that S′ has at least as many components as [W ].

Now suppose that we have chosen n so that n > β1(F ). We claim that this
implies that some component S1 of S′ is not parallel to any component of W .

Suppose to the contrary that every component of S′ is parallel to some boundary
component of W in Yn. If we let D be any boundary component of ∂M which is
disjoint from F , then W has at least n such components since each component of
D lifts. However, each component of ∂M is a torus and so the observations of the
previous paragraph show that we have the inequality: β1(S

′) ≥ 2n. But

β1(S
′) ≤ β1(G) = 2β1(F ).

We see that this is a contradiction with our chosen n, so that we have shown
that some component S1 of S′ is an embedded incompressible surface in Yn not
parallel to any component of W .

We must now show that the projection of the surface S1 is not homotopic into the
boundary of M . Suppose to the contrary that it were. Notice that this boundary
component cannot be any of the boundary components which meet F . The reason
is that F meets the boundary of M efficiently, so every such component in ∂M
which meets F is covered by noncompact surfaces, in particular there would be free
homotopy classes on S1 which did not lift, a contradiction.

Then we lift this homotopy back into MF and see a homotopy between an em-
bedded surface S1 and some component ∂WM of the boundary of MF which is
a pre-image of a boundary component not meeting F . Two disjoint embedded
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surfaces in a 3-manifold which are homologous cobound an embedded submanifold
H .

We have already argued that ∂WM cannot lie in Yn. However, this means that
G separates the boundary components of H , so that G lies in the interior of H .
Since G meets ∂MF along some annuli, the interior of H meets these annuli in
∂MF which is absurd. This contradiction shows that the projection of S1 cannot
be homotoped into ∂M .

Notice that it follows from the construction that the surface S1 embeds in a finite
cyclic covering of a finite covering of the manifold M .

Corollary 2.4. Let M be an irreducible compact, connected 3-manifold with non-
empty boundary, all of whose components are incompressible tori. Then either M
is covered by T 2 × I, or M contains an essential surface.

Proof. The manifold M is Haken, so it has a torus decomposition; if this decom-
position contains an essential torus, then we are finished.

So we may assume that all tori in the torus decomposition are boundary parallel.
It follows from Thurston’s geometrization of Haken manifolds that M is either
Seifert fibred or hyperbolic.

If the manifold is Seifert fibred we consider possibilities for the base. This must
have boundary, so that it must be a flat or hyperbolic 2-orbifold. One sees easily
(for example by taking a manifold covering) that if the base is hyperbolic, one
can always find a vertical immersed torus satisfying the conclusion of the corollary.
Thus the only possibility for failure is if the base is a flat orbifold with boundary
which is therefore covered by an annulus. Pulling back gives the case of a virtual
product.

The hyperbolic case is covered by Theorem 2.3 .

A particular case of interest of Corollary 2.4 has been the case of a knot exterior
in S3. We record it separately:

Corollary 2.5. Let K be a nontrivial knot in S3. Then S3 \K contains a closed
essential surface.

We now aim to show that we may find a nonseparating surface in a finite sheeted
covering. We begin with a definition:

Definition. The size of a (possibly disconnected) surface S is β1(S). We will say
a surface A is larger (resp. smaller) than a surface B if A has larger (resp. smaller)
size.

We need:

Lemma 2.6. Suppose that S is an oriented closed surface, not necessarily con-
nected, embedded in the interior of an orientable 3-manifold M. Suppose that S
separates M into two, not necessarily connected, submanifolds M−,M+, so that in

both cases ∂M± − S has size at least 2(β1(S) + 1). Then there is a 4-fold cover M̃
of M to which S lifts, and so that we may choose two lifts S1 and S2 whose union
does not separate M̃.

Proof. We claim that there are two properly embedded surfaces A±, one in each
of M± representing nonzero primitive classes in H2(M±, ∂M±) and both of which
miss S. We temporarily defer the proof of the claim and prove the lemma:
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Let M̃ be the connected 4-fold cover of M constructed as follows. Consider the
dual class to A− ∪A+ lying in H1(M) and use this to define a homomorphism

π1(M) −→ Z4.

It is clear from the construction that there are loops α± ∈ M± which map to 2 in
Z4. We form a single loop β in M as follows. Construct an arc γ which runs from
α− to α+. We may assume that γ never hits any component of S more than once.
Using the arc, we construct β in the obvious way so that it projects to 0 ∈ Z4.

Let S∗ be a component of S which meets γ, so that β meets S∗ in precisely two
points. The loop β lifts, but neither α+ nor α− does, this means we can find a

lift β̃1 which meets a pair of the pre-images of S∗ and another lift β̃2 which only
meets the disjoint pair. Choosing one pre-image from each of these pairs gives the
required surfaces.

To prove the claim, observe that

Ker[ H2(M+, ∂M+) −→ H1(∂M+) −→ H1(S)]

is nonzero since the rank of the domain is at least

β1∂M+

2
≥ β1(S) + 1,

which is greater than β1(S). Here the second map is given by projection using the
direct sum decomposition of H1(∂M+) coming from expressing

∂M+ = S ∪ (∂M+ − S).

Let α be a nontrivial element in the kernel; then α is represented by a properly
embedded surface A+ in M+. We can arrange that A+ meets the boundary of M+

efficiently as follows.
By Poincaré duality, α is dual to a class in H1(M) and this gives an epimorphism

of π1M onto Z. One defines a simplicial map f from M to S1 representing this map.
Start with f defined on ∂M so that the pre-image f−1c of a certain point c in the
interior of some 1-simplex of S1 is efficient. Then extend the map over M. Then
A+ is the pre-image of c, which by transversality is a 2-sided surface.

We have a surface A+ as required by the claim. Similarly one obtains A−.

We recall that a property is said to be virtual if it holds for some subgroup of
finite index.

Theorem 2.7. Let M be a compact, connected irreducible 3-manifold with non-
empty incompressible boundary all of whose components are tori. Suppose that the
interior of M has a complete hyperbolic structure of finite volume. Then π1(M)
virtually maps onto a free group of rank 2.

Proof. By passing to a finite cover N of M with at least 3 boundary components the
proof of Theorem 2.3 finds a possibly disconnected, incompressible nonboundary
parallel surface embedded in some Yn. By choosing a Ym with m much larger than
n, we see that there is a finite cyclic covering Nm of N containing an embedding of
an incompressible nonboundary parallel surface S which separates Nm into compo-
nents each of which contains a number of boundary tori sufficient to apply Lemma
2.6 and find a covering of Nm containing a pair of embedded disjoint incompress-
ible surfaces whose union does not separate; this suffices to find the homomorphism
onto a free group of rank 2.
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Corollary 2.8. Let N be a compact, connected irreducible 3-manifold, with non-
empty incompressible boundary, all of whose components are tori. Then either N
is covered by a product T 2 × I, or there is a finite cover of N which contains an
embedded nonseparating essential closed surface.

Proof. Take a torus decomposition for N . If this contains some nonboundary paral-
lel torus, this may always be promoted to a nonseparating torus in a finite sheeted
covering, for example by results contained in [4] or [6].

We assume then that the only tori in N are boundary parallel, so that N is
either Seifert fibred or hyperbolic. The former case is easily dealt with by the
observation that one can always create nonseparating vertical tori after passage to
a finite sheeted covering except in the case when the base is a Euclidean orbifold.
Since this orbifold has boundary, one deduces that N is virtually a product.

The hyperbolic case is contained in the proof of Theorem 2.7.

The classes provided by Lemma 2.6 are nonperipheral and provide a degree one
map from M onto the wedge of two circles, so that the surfaces Si are pre-images of
points in the interior of edges. By taking coverings of this graph and pulling back
to coverings of M , we see we have shown:

Corollary 2.9. Let M be a finite volume, noncompact hyperbolic 3-manifold.
Then given any integer K, there is a finite sheeted covering M̃ −→ M so that
H2(M̃)/incl∗(H2(∂M̃)) has rank at least K.

3. Higher genus boundary

This section is devoted to the proofs in the presence of higher genus boundary
components. Some partial results in this direction were proved in [1].

Although the idea is very similar, the proof is complicated by the fact that the
topology of the surface G ⊂ Yn does increase as n increases; the strategy is to
carefully arrange a partition of the boundary of some covering of M so that the
growth of the topology of G is not too fast. To this end, we need:

Lemma 3.1. Suppose that M is a compact irreducible 3-manifold with incompres-
sible boundary and some boundary component has genus at least 2. Suppose also
that M is not an I-bundle over a surface. Then there is a finite cover M̃ of M and
a partition of the boundary of M̃ into two disjoint collections of components A,B
such that

β1(B) < β1(A) < β1(B) + (# compts of A).

Proof. Let C be any boundary component. Then we claim that there is a regular
cover of M with C having at least 5 pre-images.

The reason is that the inclusion map of π1(C) into π1(M) must have image
group of infinite index, else standard results imply that M is an I-bundle. (See
[5], Theorem 10.2.) Now [6] implies that π1C is subgroup separable in π1(M), so
there is a homomorphism of π1M onto a finite group G such that π1C maps to a
subgroup H of G of index at least 5. Thus to C we may assign a subgroup G(C)
of π1M , which contains π1C and has finite index at least 5 in π1M. Let G1 be the
intersection over all boundary components C of G(C). Then G1 has finite index in
G. Let G2 be the intersection of all conjugates of G1; then G2 is a normal subgroup
of finite index in G. Let N be the regular cover of M corresponding to G2.
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We recall that we have defined the notion of size and note that we have arranged
that every component of ∂M has at least 5 pre-images, and since the cover is regular
each element in this set of pre-images has the same size.

We will now rename N as M. Thus we may assume that whenever M has a
boundary component, there are at least 5 boundary components of the same size.
Partition the boundary of M into 3 sets of components A,B,C in such a way that
for every size n, the number of components of size n in each of these sets differs
by at most one from each other. In other words, if X is a set of surfaces we define
#n(X) to be the number of connected surfaces in X with size n. Then for all n,
the numbers #n(A),#n(B),#n(C) differ by at most 1. We will assume that C is
at least as large as A and B.

The size of A ∪ B is greater than the size of C; therefore, using the argument
in 2.2 there is an efficient surface F in M with nonempty boundary contained in
A ∪B. Let

π : MF,p −→M

be the p-fold cyclic cover of M dual to F where p is a number much larger than the
size of the boundary of M. Denote by Ã, B̃, C̃ the pre-images of A,B,C under this
covering. Since F is disjoint from C, every component of π−1C maps injectively
under the covering. Thus C̃ is at least as large as Ã and B̃. Thus C̃ has at least p
components, and p is much larger than the size of each of these components. We
may create two new sets Ã+, B̃+ by taking the sets Ã, B̃ and enlarging them by
sharing the components of C̃ between them. We wish to do this so that the sizes
of Ã+, B̃+ differ by at most the size of the largest component of C̃. This is possible
because the size of C̃ exceeds the difference in the sizes of Ã and B̃. The resulting
collection of surfaces Ã+, B̃+ have of order p components each. They differ in size
by at most the size of the largest component of C̃ which equals the size of the
largest component of C. But this is less than the size of the boundary of M which
is very small compared to p. We may assume that B̃+ is strictly smaller than Ã+,
and since the number of components of Ã+ is much larger than the difference in
the size of these two surfaces,

size(B̃+) < size(Ã+) < size(B̃+) + (# compts of Ã+).

Lemma 3.2. Suppose that the compact 3-manifold M has boundary partitioned
into sets A and B such that

β1(B) < β1(A) < β1(B) + (# compts of A).

Then there is a finite covering of M which contains an embedded nonseparating
closed incompressible surface.

Proof. Since ∂M = A ∪B and A is larger, there is an efficient surface F properly
embedded in M with nonempty boundary contained in A. Take any components of
A which are disjoint from F and remove them from A and put then into B. This
makes B larger and A smaller, thus we still have that

β1(A) < β1(B) + (# compts of A).

The idea is the following. One proceeds as in the case that the boundary consists of
tori. However the surface G is no longer the double of F since A is covered by high
genus surfaces. Taking an n-fold cyclic cover multiplies the Euler characteristic by
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n. Thus although A is slightly larger than B the fact that it has many components
and these all unwrap in the cover means that the size of the n-fold cover of A is,
approximately,

n · [size(A)− 2(# compts of A)].

But the size of the n-fold cover of B is n times the size of B since B lifts. Thus for
n large, the pre-image of B is larger than that of A.

Now the details. Let
π : MF −→M

be the infinite cyclic cover of M dual to F. The submanifold X of M is obtained
by cutting M open along F , thus X ∼= M − F × (−1, 1) and ∂X = F+ ∪ F− ∪ A−
where A− is A cut open along F ∩ A. Then MF

∼= ⋃
iXi where Xi is a copy of

X and these copies are glued together along F± = F ×±1. Let Yn =
⋃n
i=1Xi and

partition the boundary of Yn as Yn = G∪W where W = π−1B and G = ∂Yn−W is
the rest. We repeat the analysis done before, the only important difference is that
this time G is not the double of F since the covering π−1A of A is not a collection
of annuli, but has more complicated topology.

We claim that G is connected. This is because each component of π−1A is non-
compact and therefore meets both F̃0, F̃n. But G is the union of F̃0, F̃n together
with the subsurface of π−1A lying in Yn, and so every component of Yn ∩ π−1A
has boundary which is in one or both of F̃0, F̃n. Furthermore, some component of
Yn ∩ π−1A meets both F̃0, F̃n.

Noting that gluing bounded surfaces along circles does not change the Euler
characteristic, we now compute the Euler characteristic of G as χG = 2χF + nχA−
where the surface A− is obtained by deleting annuli from the original surface A ⊂
∂M , so that χA− = χA. Since G is connected we obtain:

χG = 2− β1(G) = 2χF + nχA = 2χF + n(2(#compts of A)− β1(A))

so that
β1(G) = 2− 2χF + n(β1(A)− 2(#compts of A)).

However every component of B lifts, so that β1(W ) = n · β1(B) and a comparison
of growth rates provided by the hypothesis completes the proof as in the torus case:

For G is homologous to W in Yn so that if compression of G results in an
incompressible surface S consisting only of spheres and components parallel to
components of W , then

β1(W ) ≤ β1(S) ≤ β1(G).

But the inequality of the hypothesis together with the remarks of the above para-
graph then give:

n · β1(B) ≤ 2− 2χF + n(β1(A)− 2(#compts of A)) < 2− 2χF + n(β1(B)− 2),

but this is a contradiction for large n.
Thus one obtains an incompressible surface S, not necessarily connected, which

separates W from the rest of ∂MF . Again, using Lemma 2.6, one argues that there
is some finite cover with a component of the pre-image of S nonseparating.

Putting together Lemma 3.1 and Lemma 3.2 we have shown:

Theorem 3.3. Let M be a compact, connected 3-manifold with nonempty incom-
pressible boundary. Suppose that the interior of M admits a complete hyperbolic
structure. Then either M is covered by a product F ×I, or M contains an essential
surface S of genus at least 2.
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Furthermore S can be lifted to an embedded nonseparating surface in a finite
cover of M.

Exactly as in 2.4 we deduce:

Corollary 3.4. Let M be a compact, connected irreducible manifold with nonempty
incompressible boundary. Then either M is covered by a product F × I, or M
contains an essential closed surface.

To deduce the results concerning virtually freeness and increasing nonperipheral
homology stated in the Introduction, we note in the proof of Lemma 3.2 that we
showed, for very large n, the surface G has much smaller size than the rest of the
boundary in Yn, so that we may apply Lemma 2.6. Thus we have shown

Theorem 3.5. Let M be a compact, connected 3-manifold with nonempty incom-
pressible boundary. Suppose that the interior of M admits a complete hyperbolic
structure. Then either M is covered by a product T 2 × I, or π1(M) virtually maps
onto a free group of rank 2.

Observe that if F is a closed surface of genus at least 2, π1(F ) surjects the free
group of rank 2, so that the exclusion of products is unnecessary except for the case
T 2 × I.

Corollary 3.6. Let M be a compact, connected irreducible 3-manifold with non-
empty incompressible boundary. Then either M is covered by a product F 2 × I,
or, given any integer K, there is a finite sheeted covering M̃ −→ M so that
H2(M̃)/incl∗(H2(∂M̃)) has rank at least K.

Remark. The existence of a map to the free group of rank 2 in the higher genus
boundary case is a logical deduction from the case where all boundary components
are tori, as we discuss briefly below. However, the additional feature of the proof
of Theorem 3.5 and Corollary 3.6 is that the essential surfaces are closed and the
homology is nonperipheral.

To see the deduction, assume that M has a boundary component Y of genus
g > 1. Using [7] we can perform a sequence of 2-handle attachments to Y so that
the result is hyperbolic with Y replaced by a disjoint union of some number of tori.
We can repeat this for every such boundary component and then apply Theorem
2.7.

Theorem 3.7. Let M be an irreducible 3-manifold with nonempty incompressible
boundary. Then either M is covered by a product T 2× I, or π1(M) virtually maps
onto a free group of rank 2.

Proof. The proof is similar to that of Corollary 2.8. If the torus decomposition
of M contains a nonperipheral torus, we apply [6]. If all tori are peripheral, then
either M is Seifert fibred or hyperbolic.

In the former case, we virtually get a map onto free group of rank 2 unless the
base is a Euclidean orbifold. The hyperbolic case is covered by Theorem 3.5.
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