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EIGENVALUE FIELDS OF HYPERBOLIC ORBIFOLDS
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(Communicated by Linda Keen)

Abstract. In this paper, we prove that if Γ is a non-elementary subgroup of
Oo(n, 1,R), with n ≥ 2, then the eigenvalue field of Γ has infinite degree over
Q.

1. Introduction

We begin by recalling some basic notions. We shall denote hyperbolic n-space by
Hn. For n ≥ 2, the group of isometries of Hn can be identified with Oo(n, 1,R), the
subgroup of index two in O(n, 1,R) that transforms positive time-like vectors into
positive time-like vectors. By a non-elementary subgroup of Oo(n, 1,R) we mean a
subgroup that has more than two limit points for its action on the sphere-at-infinity,
and by a hyperbolic n-orbifold we mean a quotient Hn/Γ, where Γ is a discrete
subgroup of Oo(n, 1,R). Therefore, given a hyperbolic n-orbifold M = Hn/Γ with
n ≥ 2, there exists a discrete faithful representation

ρ : Γ→ Oo(n, 1,R).

We make the following definition:

Definition 1.1. If Γ is a subgroup of GL(n,C), let Q(evΓ) denote the field obtained
by adjoining the eigenvalues of the elements of Γ to Q, and let Q(trΓ) denote the
field obtained by adjoining the traces of the elements of Γ to Q.

In this paper we consider eigenvalue fields when Γ is a subgroup of Oo(n, 1,R).
In the special case when M = Hn/Γ (n ≥ 3) has finite volume, by Mostow Rigidity,
the representation ρ is unique up to conjugation, and we may define the Oo(n, 1,R)
eigenvalue field of M to be Q(ev(ρ(Γ)). One motivation for studying such fields
was [9], which showed:

Theorem 1.2. Let Γ be a non-elementary subgroup of PSL(2,C). Then Q(evΓ)
has infinite degree over Q.

The proof of Theorem 1.2 uses the solution to the Mordell conjecture given by
Faltings. We present an elementary proof of Theorem 1.2 in this paper, which
allows for considerable generalization.
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Specifically, we prove:

Theorem 1.3. Let Γ be a non-elementary subgroup of Oo(n, 1,R) with n ≥ 2.
Then Q(evΓ) has infinite degree over Q.

As a corollary of this we have the following:

Corollary 1.4. Let M be a finite volume hyperbolic n-orbifold with n ≥ 3. Then
the Oo(n, 1,R) eigenvalue field of M has infinite degree over Q.

Note that in contrast, by Mostow Rigidity, if n ≥ 3 and M = Hn/Γ has finite
volume, then Q(trρ(Γ)) has finite degree over Q.

2. Preliminaries

In this section we collect results that will be needed in the proof of Theorem 1.3.

2.1. We begin with the following, which is well known in the case of finite co-
volume groups (see [12], Proposition 6.6), but in this generality appears not to be
in the literature.

Theorem 2.1. Let Γ be a finitely generated non-elementary subgroup of Oo(n, 1,R)
whose traces consist of algebraic numbers. Then Γ is conjugate in Oo(n, 1,R) to a
group whose elements have entries in a number field.

The proof of Theorem 1.3 does not logically need the full statement of Theorem
2.1, since for the proof it suffices to work with complex representations. For exam-
ple, given the hypothesis of Theorem 2.1, we can apply [1] to provide a conjugation
in GL(n+ 1,C) so that the matrices have algebraic entries. However, this conjuga-
tion need not be in Oo(n, 1,R), and it is not clear how to promote this argument
to work in the group Oo(n, 1,R).

Theorem 2.1 seems interesting in its own right and we give a proof below. This
will require some notions from representation varieties. For details see [5] and [8].

The group G = SO(n, 1,R) can be viewed as the R-points of a complex algebraic
group G = SO(n, 1,C). We will use Go to denote the identity component of G. Let
Γ be a finitely generated group, and let Hom(Γ, G) denote the set of representations
of Γ into G. Then Hom(Γ, G) is the real points of the complex algebraic variety
Hom(Γ,G) (which is defined over Q). Now G acts algebraically on Hom(Γ,G) by
conjugation, this action being denoted by g.ρ. This action yields a quotient variety,
denoted by X(Γ,G), which is defined over Q. Let π : Hom(Γ,G) → X(Γ,G)
denote the quotient map, which is also defined overQ. The complex algebraic group
O(n, 1,C) also acts on Hom(Γ,G) by conjugation giving a further quotient variety,
denoted by X ′(Γ,G), and a map π′ (both also defined over Q). Hence, there is a
map

r : X(Γ,G)→ X ′(Γ,G),

also defined over Q with π′ = r◦π. Lemma 3.1 of [8] shows that the trace functions
generate the coordinate ring of X ′(Γ,G). With this discussion we deduce:

Corollary 2.2. Let ρ ∈ Hom(Γ,G) be such that ρ(Γ) has algebraic traces. Then
π(ρ) ∈ X(Γ,G) has algebraic coordinates.

Proof. Since traces generate the coordinate ring of X ′(Γ,G), π′(ρ) has algebraic
coordinates. The map r is defined over Q, and since π(ρ) ∈ r−1(π′(ρ)) the result
follows. �
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We will also make use of the following (see [5], Lemma 3.3 and [8], Corollary
1.2).

Lemma 2.3. Let ρ1, ρ2 ∈ Hom(Γ, G), and assume ρ1(Γ) is Zariski dense. Then
π(ρ1) = π(ρ2) if and only if ρ1 and ρ2 are conjugate in G.

Lemma 2.4. Let ρ ∈ Hom(Γ, G) with image contained in Go. Then the orbit G.ρ
is closed in Hom(Γ,G), unless ρ(Γ) is contained in a parabolic subgroup of G.

Proof of Theorem 2.1. We begin with a well-known lemma.

Lemma 2.5. Let Γ < Go be a finitely generated Zariski dense subgroup of G
consisting of matrices having algebraic entries. Let x ∈ Oo(n, 1,R) normalize Γ.
Then x has algebraic entries.

Proof. Since Γ is finitely generated, we can assume that the field generated by
the entries of Γ is a number field, k say. Thus Γ < M(n + 1, k), and since Γ is
Zariski dense in G, Γ contains a k-basis for M(n + 1, k). Since x normalizes Γ,
we can extend the conjugation action of x using the basis above and obtain an
automorphism φx : M(n+ 1, k)→ M(n+ 1, k), which is given by φx(a) = xax−1.
Since a matrix algebra is a central simple algebra, any such automorphism is inner
by the Skolem-Noether Theorem. Thus there exists y ∈ GL(n+ 1, k) such that

φx(a) = yay−1

for all a ∈M(n+ 1, k). Thus we have

yay−1 = xax−1,

for all a ∈ M(n + 1, k). Thus x differs from y by an element of the center of
M(n + 1, k), that is, x = dy for some d ∈ k. Hence the entries of x are algebraic
numbers. �

We now commence with the proof. By Lemma 2.5 it suffices to prove the result
for Γ < Go.

Thus we assume Γ < Go, and let ρ denote the identity representation of Γ into
Go. By assumption Γ is non-elementary and so is not contained in a parabolic
subgroup. We can assume that Γ is Zariski dense, for if not, then since Γ is non-
elementary, it follows from the classification of Lie subgroups of O(n, 1,R) that the
group leaves invariant a totally geodesic submanifold of Hn (see [3], Theorems 4.4.1
and 4.4.2). Thus Γ < Oo(m, 1,R) for some m < n. Now Γ need not lie in the group
SOo(m, 1,R). However, we can apply the argument below to a subgroup of finite
index of Γ and then finish off the argument for Γ using Lemma 2.5.

By Lemma 2.4, G.ρ is a complex algebraic set. We are assuming that Γ has
algebraic traces, which are real by assumption on Γ. Therefore, by Corollary 2.2,
π(ρ) has real algebraic coordinates. As remarked above, π is defined over Q, thus
G.ρ = π−1(π(ρ)) is defined over a real number field k and G.ρ ∩ Hom(Γ, G) is a
nonempty real algebraic set defined over k. To complete the proof we make use of
the following consequence of the Tarski-Seidenberg Principle (see [2], Chapters 1
and 4):

Theorem 2.6. Let U be a nonempty real semi-algebraic set defined over a number
field K. Then U contains a point with algebraic coordinates.
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By Lemma 2.3, any representation in Hom(Γ, G) G -conjugate to ρ isG-conjugate
to ρ. Thus the representation produced by Theorem 2.6 gives the desired conju-
gate group in G. To pass to a Go-conjugate we note the following. Suppose that
A ∈ G is such that AΓA−1 < SO(n, 1, k) for the real number field k produced
above. We can assume that A /∈ G0. Now choose any B ∈ SO(n, 1, k) \SO0(n, 1, k)
(such an element exists by standard properties of the spinor norm, see [11]). Then
BA ∈ SO0(n, 1, k) has the property that BAΓ(BA)−1 < SO0(n, 1, k). This yields
the final conjugation. �

2.2. We will assume standard terminology and results from algebraic number the-
ory. For reference, see [4]. We fix the following notation:

Notation 2.7. (1) By a number field we mean a finite field extension of Q. If
k is a number field, let O denote the ring of integers of k. If p is a nonzero
prime of Ok, then we complete k at p to obtain the local field kp, with ring
of integers Okp

. The ring Okp
has a unique maximal ideal. The quotient of

Okp
by this maximal ideal is the residue class field of Okp

.
(2) A prime p ∈ Z splits completely in k if the principal ideal in Ok generated

by p factors as a product of n distinct prime ideals of Ok, where n is the
degree of k over Q. If p splits completely in k, then the residue class field
of Okp

is the finite field consisting of p elements.

2.3. We need the following fact from the theory of finite orthogonal groups. For
a discussion, see [6] or [11].

Theorem 2.8. Let F be a finite field of odd characteristic, and let Ω(n, 1, F ) denote
the commutator subgroup of O(n, 1, F ). Then O(n, 1, F )/Ω(n, 1, F ) ∼= Z/2Z⊕Z/2Z.

2.4. The connection between the preliminaries discussed here is the following.
Suppose that Γ is a discrete subgroup of Oo(n, 1,R) of finite co-volume with n ≥ 2,
and that the trace of each element of Γ is an algebraic number (this is automatic
if n ≥ 3). By Theorem 2.1, we can conjugate so that Γ ⊂ Oo(n, 1, k), where k is a
number field. Choose k to be a minimal such field. Let R denote the ring generated
by the coefficients of the generators of Γ over Z. Since Γ has finite co-volume, R is
finitely generated. Therefore, R ⊂ Okp

for all but a finite number of primes p of k.
For each of these primes p, let Fp denote the residue class field of Okp

, and let

πp : Okp
→ Fp

denote the residue map. This map induces a group homomorphism

ρp : O(n, 1,Okp
)→ O(n, 1, Fp).

The following result follows from work of Weisfeiler [13] or Nori [10]. For a proof
in this setting, see Theorem 2.6 of [6].

Theorem 2.9. In the notation above, for all but a finite number of primes p of k,
(1) Ω(n, 1, Fp) ⊂ ρp(Γ) ⊂ O(n, 1, Fp), when n is even, and
(2) PΩ(n, 1, Fp) ⊂ Pρp(Γ) ⊂ PO(n, 1, Fp), when n is odd.

3. Proof of Theorem 1.3

We begin with the proof of Theorem 1.2, since it illustrates the key ideas involved
in the proof of Theorem 1.3.
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Theorem 1.2. Let Γ be a non-elementary subgroup of PSL(2,C). Then Q(evΓ)
has infinite degree over Q.

Proof. Let Γ be a non-elementary subgroup of PSL(2,C). By replacing Γ with
a finitely generated, non-elementary subgroup, if necessary, we assume that Γ is
finitely generated. Suppose that Q(evΓ) is a number field F . Then Q(trΓ) ⊂
Q(evΓ) = F . By Proposition 2.2(e) of [1], we may conjugate Γ in PSL(2,C) to lie
in a finite field extension of Q(trΓ). Therefore, we view Γ ⊂ PSL(2, k), where k is
a finite field extension of F . Let R be the ring generated by the coefficients of the
generators of Γ over Z. Since R is finitely generated, R ⊂ Okp

for all but a finite
number of primes p of k. For each of these primes p, let Fp denote the residue class
field of Okp

, and let

πp : Okp
→ Fp

denote the residue map. This map induces a group homomorphism

ρp : PSL(2,Okp
)→ PSL(2, Fp).

By the proof of Theorem 1.2 of [7], there exist infinitely many primes p of k,
such that ρp(Γ) = PSL(2, Fp). Fix one of these primes such that Fp has odd
characteristic. Choose b ∈ Fp such that b2 − 4 is not a square in Fp. This is
possible since Fp = {4x | x ∈ Fp}, and not every element of Fp is a square. Then
the characteristic polynomial of

A =
(

0 −1
1 b

)
∈ PSL(2, Fp)

is irreducible over Fp. By our choice of p, there exists an element γ ∈ Γ such that
ρp(γ) = A. Let S denote the set of eigenvalues of γ. Since each eigenvalue of γ is
a root of a monic polynomial with coefficients in R, S is integral over R. It follows
that S ⊂ Okp

. Therefore, the characteristic polynomial of γ splits completely over
Okp

. But then the characteristic polynomial of ρp(γ) = A splits completely over
Fp, a contradiction. �

We now proceed with the proof of Theorem 1.3. We prove it in a special case
first and then discuss the modifications needed to complete the proof.

Theorem 3.1. Let Γ be a discrete subgroup of Oo(n, 1,R) of finite co-volume with
n ≥ 2. Then Q(evΓ) has infinite degree over Q.

Proof. Let Γ be a discrete subgroup of Oo(n, 1,R) of finite co-volume with n ≥
2. Note that if there is a transcendental trace, the eigenvalue field is of infinite
degree. Therefore, we can assume that the traces are algebraic—this is automatic
in dimensions ≥ 3 by Mostow Rigidity. By Theorem 2.1, we can conjugate so that
Γ ⊂ Oo(n, 1, k), where k is a number field. Choose k to be a minimal such field.

Suppose that Q(ev(Γ)) is a number field F . Let L be the compositum of F and
k. By adjoining i

√
2 to L, if necessary, we assume that i

√
2 ∈ L. Let R be the

ring generated by the coefficients of the generators of Γ over Z. Since Γ has finite
co-volume, R is finitely generated. Therefore, R ⊂ Okp

for all but a finite number
of primes p of k. For each of these primes p, let Fp denote the residue class field of
Okp

, and let

πp : Okp
→ Fp
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denote the residue map. This map induces a group homomorphism

ρp : O(n, 1,Okp
)→ O(n, 1, Fp).

By the Tchebotarev Density Theorem [4], there exist infinitely many primes p of Z
that split completely in L. By Theorems 2.8 and 2.9, we may fix one of these primes
p, with extension p in Ok, such that {g4 | g ∈ O(n, 1, Fp)} ⊂ ρp(Γ). Moreover, we
may assume that p 6= 2.

Let P be the extension of p in OL, and let EP denote the residue class field of
OLP

. Consider the following diagram:

L ⊂ LP ⊃ OLP
→ EP

| | | |
k ⊂ kp ⊃ Okp

→ Fp

Since p splits completely in L, EP is the finite field of p elements. Since Fp is a
subfield of EP of characteristic p, this implies that Fp = EP. As before, choose
b ∈ Fp such that b2 − 4 is not a square in Fp. Since i

√
2 ∈ L, −2 is a square in

EP = Fp. As is easily checked,

B =

b√−2 b2 + 1 b2

1 −b
√
−2 −b

√
−2

b
√
−2 b2 b2 − 1

 ∈ O(2, 1, Fp).

Hence

A =
(
In−2 0

0 B

)
∈ O(n, 1, Fp),

where In−2 is the (n− 2)× (n− 2) identity matrix. The characteristic polynomial
of A4 is

f(t) = (−1)n+1(t− 1)n−1(t2 + (−b8 + 8b6 − 20b4 + 16b2 − 2)t+ 1).

The discriminant of t2 + (−b8 + 8b6 − 20b4 + 16b2 − 2)t+ 1 is (b2 − 4)b2(b2 − 2)2 ·
(b4 − 4b2 + 2)2. By assumption, b2 − 4 is not a square in Fp. Therefore, t2 +
(−b8 +8b6−20b4 +16b2−2)t+1 is irreducible in Fp[t]. We conclude that f(t) does
not split completely over Fp. By our choice of p, there exists an element γ ∈ Γ such
that ρp(γ) = A4. Let S denote the set of eigenvalues of γ. Since each eigenvalue of
γ is a root of a monic polynomial with coefficients in R, S is integral over R. Since
R ⊂ Okp

, S ⊂ L ⊂ LP, and OLP
is the integral closure of Okp

in LP, this implies
that S ⊂ OLp

. Therefore, the characteristic polynomial of γ splits completely over
OLP

. But then the characteristic polynomial of ρP(γ) = A4 splits completely over
EP = Fp, a contradiction. �

The proof of the main theorem is completed as follows.
For a general non-elementary subgroup, as in the proof of Theorem 3.1, we can

assume that the traces are algebraic, and, by Theorem 2.1, we can conjugate so as
to get a representation with algebraic coefficients. We now proceed as before, the
important point being that the work of Weisfeiler and Nori (see [6] in this setting)
requires only Zariski dense to get the conclusion of Theorem 2.9. In the case when
the group is not Zariski dense, we argue as in the proof of Theorem 2.1, using the
orthogonal group leaving the totally geodesic submanifold invariant.
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