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Abstract. We construct infinitely many examples of pairs of isospectral but non-isometric
1-cusped hyperbolic 3-manifolds. These examples have infinite discrete spectrum and the
same Eisenstein series. Our constructions are based on an application of Sunada’s method
in the cusped setting, and so in addition our pairs are finite covers of the same degree of
a 1-cusped hyperbolic 3-orbifold (indeed manifold) and also have the same complex length-
spectra. Finally we prove that any finite volume hyperbolic 3-manifold isospectral to the
figure-eight knot complement is homeomorphic to the figure-eight knot complement.
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1. Introduction

Since Kac [21] formulated the question: Can you hear the shape of a drum?, there has been
a rich history in constructing isospectral but non-isometric manifolds in various settings. We
will not describe this in any detail here, but simply refer the reader to [17] for a survey. The
main purpose of this note is to prove the following result (see also Theorem 2.5 for a more
detailed statement).

Theorem 1.1. There are infinitely many pairs of finite volume orientable 1-cusped hyperbolic
3-manifolds that are isospectral but non-isometric.

Since we are working with cusped hyperbolic 3-manifolds, the statement of the theorem
requires some clarification. Indeed, one can reasonably ask, what does isospectral mean for
cusped hyperbolic 3-manifolds. We address this in Section 2, where we indicate the differences
with the closed case. Our examples appear to be the first examples of 1-cusped hyperbolic
3-manifolds that are known to be isospectral and non-isometric. On the other hand, there
has been considerable interest in this for surfaces (both non-compact finite area, and infinite
area convex cocompact, see [4] and the survey [16]). In fact in [16], they raise the problem
(Problem 1.2 of [16]) of finding such examples in much more generality. Note that these
papers use the terms isoscattering or isopolar, but we prefer to stick with isospectral.

Theorem 1.1 is well-known for closed hyperbolic 3-manifolds, either using the arithmetic
methods of [36], or the method of Sunada ([32] and which we recall below), as in [27,
p.225]. As in this latter setting, our construction also uses Sunada’s method, but we need
some additional control. In addition to proving the existence of infinitely many pairs of
examples of isospectral 1-cusped hyperbolic 3-manifolds, we also give more concrete examples
of isospectral manifolds arising as low degree covers of small volume 1-cusped hyperbolic 3-
manifolds arising in the census of hyperbolic manifolds of Snap and SnapPy [14, 7].

One motivation for Theorem 1.1 was to investigate the nature of the discrete spectrum
of 1-cusped hyperbolic 3-manifolds. There has been considerable interest in this for non-
compact surfaces of finite area (see [23], [20] and [31] to name a few), but little seems known
in dimension 3. We discuss this further in Section 8, and in particular we prove the following.

Theorem 1.2. Let M denote the complement of the figure-eight knot in S3. Suppose that
N is a finite volume hyperbolic 3-manifold which is isospectral with M . Then N is homeo-
morphic to M .

Indeed we also show that the first ten 1-cusped orientable finite volume hyperbolic 3-
manifolds are determined by their spectral data (see Definition 2.1).

2. What does isospectral mean for cusped manifolds?

As remarked upon in the Introduction, since we are in the setting of cusped orientable
hyperbolic 3-manifolds, some clarification about the statement of Theorem 1.1 is required,
and in this section we explain what we mean by isospectral 1-cusped hyperbolic 3-manifolds.
Throughout this paper we will restrict ourselves to only discussing the spectrum for 1-cusped
hyperbolic 3-manifolds. This simplifies things, but much of what is described in this section
holds more generally, and similar statements can be made in the presence of multiple cusps.
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We refer the reader to Chapters 4 and 6 of [10] or [6] for a detailed discussion of the spectral
theory of cusped hyperbolic 3-manifolds.

2.1. The spectrum of the Laplacian in the cusped setting. Let M = H3/Γ be a 1-
cusped, orientable finite volume hyperbolic 3-manifold. The spectrum of the Laplacian on the
space L2(M) consists of a discrete spectrum (i.e. a collection of eigenvalues 0 ≤ λ1 ≤ λ2 . . .
where each λj has finite multiplicity), together with a continuous spectrum (a copy of the
interval [1,∞)). Moreover, the discrete spectrum consists of finitely many eigenvalues in
[0, 1), together with those eigenvalues embedded in the continuous spectrum. However,
unlike the closed setting, in general, it is unknown as to whether the discrete spectrum is
infinite (we address this point in Section 2.3).

The eigenfunctions associated to eigenvalues in the discrete spectrum form an orthonormal
system and the closed subspace of L2(M) that they generate is denoted by L2

disc(M). The
orthogonal complement of L2

disc(M) in L2(M) is denoted by L2
cont(M) and “corresponds” (in

a way that we need not make precise here) to the continuous spectrum (see [10] Chapters 4
and 6).

In the closed case, the Weyl law provides a way to prove that the discrete spectrum is infi-
nite (see [10] Chapter 5). The precise analogue of this in the cusped setting is not available,
and this necessitates understanding a contribution from an Eisenstein series associated to
the cusp of M . To describe this further, conjugate Γ so that a maximal peripheral subgroup
P < Γ fixes infinity. Fixing co-ordinates on H3 = {w = (z, y) : z ∈ C, y ∈ R+}, we define
the Eisenstein series associated to the cusp at infinity by:

E(w, s) =
∑
γ∈P\Γ

y(γw)s,

where y(p) denotes the y co-ordinate of the point p ∈ H3. Now since E(w, s) is P -invariant,
an analysis of the Fourier expansion at ∞ reveals a constant term of the form:

y(w)s + φ(s)y(w)2−s,

where φ(s) is the so-called scattering function. This is defined for Re(s) > 2 and has a
meromorphic extension to the complex plane. The poles of φ(s) are also the poles of the
Eisenstein series and all lie in the half-plane Re(s) < 1, except for at most finitely many
in the interval (1, 2]. Moreover, if t ∈ (1, 2) is a pole, the residue ψ = Ress=tE(w, s) is an
eigenfunction with eigenvalue t(2 − t) (see [6]). In addition, if there is a pole at s = 2, the
residue will be an eigenfunction with eigenvalue 0 ([6]). This subset of the discrete spectrum
arising from residues of poles of the Eisenstein series is called the residual spectrum. If t is
a pole of E(w, s) (equivalently φ(s)) we define the multiplictity at t to be the order of the
pole at t, plus the dimension of the eigenspace in the case when t contributes to the residual
spectrum as described above.

The following definition is, in part, motivated by what spectral information is required to
determine the geometry in the cusped setting; e.g. the role of the scattering function and
its poles is natural in the analogue of the Weyl law for cusped manifolds(see [10] Theorem
6.5.4).
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Definition 2.1. Let M1 and M2 be 1-cusped orientable hyperbolic 3-manifolds of finite vol-
ume with associated scattering functions φ1(s) and φ2(s). Assume that the discrete spectrum
of M1 is infinite. Say that M1 and M2 are isospectral if:

• M1 and M2 have the same discrete spectrum, counting multiplicities;
• φ1(s) and φ2(s) have the same set of poles and multiplicities.

Remark 2.2. (1) For a 1-cusped orientable finite volume hyperbolic 3-manifold M , its dis-
crete spectrum, counting multiplicities, together with the set of poles and multiplicities of the
scattering function will be referred to as its spectral data.

(2) For a multi-cusped orientable finite volume hyperbolic 3-manifold M , the scattering func-
tion is a matrix (the scattering matrix), and in this case one takes the determinant of the
scattering matrix to obtain a function τM(s) that plays the role of φ(s) above.

(3) Continuing with the discussion of the role of the scattering function in determining the
geometry from spectral data, it is shown in [23] that an analogue of Huber and McKean’s
results for compact surface holds. Namely, the spectral data in Definition 2.1 (in the con-
text of a non-compact hyperbolic surface of finite area), determines the length spectrum of
the surface and vice versa (see Section 8 for a discussion of this for 1-cusped hyperbolic 3-
manifolds). Moroever, there are only finitely many hyperbolic surfaces with the given spectral
data.

(4) In general the scattering determinant is hard to compute explicitly. However, for arith-
metic manifolds (and orbifolds) the scattering determinant is related to Dedekind zeta func-
tions of number fields. For example, for PSL(2,Z) the poles of the scattering function are
related to the zeroes of ζ(s) (see [20]), whilst for the Bianchi orbifolds with one cusp, the
scattering function is expressed in terms of the zeta function ζK(s) attached to the quadratic
imaginary number field K (see [9] or [10, Chpt.8.3]).

2.2. Manifolds with the same Eisenstein series. The following lemma will be useful
in our construction. We fix some notation. Let M = H3/Γ be a 1-cusped orientable finite
volume hyperbolic 3-manifold with finite covers Mi = H3/Γi (i = 1, 2) both with one cusp
and of same covering degree, n say. Conjugate Γ so that a maximal peripheral subgroup
P < Γ fixes ∞, and let Pi = Γi ∩ P . Denote the Eisenstein series associated to M , M1 and
M2 constructed in Section 2.1 by E(w, s), E1(w, s) and E2(w, s) respectively.

Lemma 2.3. Let M , M1 and M2 be as above. Then E1(w, s) = E2(w, s). In particular M1

and M2 have the same scattering function.

Proof. We begin the proof with a preliminary remark. Suppose that N = H3/G is 1-cusped
and is a finite covering of M . We claim that a set of distinct coset representatives for G in Γ
can be chosen from elements of P . Briefly, since the preimage of the cusp of M is connected
(i.e. is the single cusp of N), we have must equality of indices [Γ : G] = [P : P ∩G]. Thus a
collection of coset representatives for P ∩G in P also works as coset representatives G in Γ.

Given this, let S = {δ1, . . . , δn} ⊂ P be a set of distinct (left) coset representatives for Γ1

in Γ and S ′ = {δ′1, . . . , δ′n} ⊂ P be a set of distinct coset representatives for Γ2 in Γ.
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Now any term in E(w, s) has the form y(γw)s for γ ∈ Γ not fixing ∞. Using the above
decomposition of Γ as a union of cosets of both Γ1 and Γ2, there exists γ1 ∈ Γ1, γ2 ∈ Γ2 and
δj ∈ S, δ′k ∈ S ′ so that:

δjγ1 = γ = δ′kγ2.

Since δj, δ
′
k ∈ P and γ /∈ P , it follows that γ1 /∈ P1 and γ2 /∈ P2 (otherwise γ ∈ P , contrary

to the definition of the Eisenstein series). Using the coset decomposition of Γ, it follows that
E(w, s) can be decomposed as a sum of terms of the form:

(∗)
∑

g∈P1\Γ1

y(δjgw)s and
∑

h∈P2\Γ2

y(δ′khw)s.

Since δj, δ
′
k ∈ P , they act by translation on H3, and in particular the y-cordinate is

unchanged by this; i.e. y(δjgw) = y(gw) and y(δ′khw) = y(hw). Hence the terms in (∗)
above reduce to ∑

g∈P1\Γ1

y(gw)s and
∑

h∈P2\Γ2

y(hw)s.

So, putting all of this together, we have the following:

nE1(w, s) = E(w, s) = nE2(w, s),

which proves the lemma. tu

2.3. Ensuring the discrete spectrum is infinite. In this section we address the issue of
ensuring that the discrete spectrum is infinite. In particular we state a result that can be
proved using the methods of [34] (see also the comments in [10] at the end of Chapter 6.5).
To state the result we need to recall the following.

A fundamental dichotomy of Margulis for a finite volume hyperbolic manifold M = H3/Γ,
is whether M is arithmetic or not. In the commensurability class of a non-arithmetic mani-
fold, there is a unique minimal element in the commensurability class. This minimal element
arises as H3/Comm(Γ), where

Comm(Γ) = {g ∈ Isom(H3) : gΓg−1 is commensurable with Γ}
is the commensurator of Γ.

The following can be proved following the methods in [34]. Note that in the statement
of [34] Theorem 2, a certain matrix determinant is assumed to be non-vanishing. In our
setting, since the manifold has one cusp, this matrix coincides with a function and can be
shown to not be identically zero.

Theorem 2.4. Let M = H3/Γ be an orientable finite volume 1-cusped non-arithmetic
hyperbolic 3-manifold that is not the minimal element in its commensurability class (i.e.
Γ 6= Comm(Γ)). Then the discrete spectrum of M is infinite.

We will make some further comments on the nature of the discrete spectrum (when it is
known to be infinite) in Section 8.
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2.4. The complex length spectrum. Let M = H3/Γ be an orientable finite volume
hyperbolic 3-manifold. Given a loxodromic element γ ∈ Γ, the complex translation length of
γ is the complex number Lγ = `γ + iθγ, where `γ is the translation length of γ and θγ ∈ [0, π)
is the angle incurred in translating along the axis of γ by distance `γ. The complex length
spectrum of M is defined to be the collection of all complex translation lengths counted with
multiplicities.

Given the discussion of the previous subsections, we now give a more detailed statement
of Theorem 1.1.

Theorem 2.5. There are infinitely many pairs of finite volume orientable 1-cusped hyperbolic
3-manifolds that are isospectral but non-isometric. In addition, our pairs have the following
properties:

• cover a 1-cusped hyperbolic 3-manifold of the same degree,
• have infinite discrete spectrum,
• have the same Eisenstein series,
• have the same complex length spectra.

3. The Sunada construction in the 1-cusped setting

Let G be a finite group and H1 and H2 subgroups of G. We say that H1 and H2 are almost
conjugate if they are not conjugate in G but for every conjugacy class C ⊂ G we have:

|C ∩H1| = |C ∩H2|.
If the above condition is satisfied, we call (G,H1, H2) a Sunada triple, and (H1, H2) an

almost conjugate pair in G. We prove the following using Sunada’s method [32] (cf. [1, 2, 3,
26]).

Theorem 3.1. Let M = H3/Γ be a 1-cusped finite volume orientable hyperbolic 3-manifold
that is non-arithmetic and the minimal element in its commensurability class. Let G be a
finite group, (H1, H2) an almost conjugate pair in G, and assume that Γ admits a homomor-
phism onto G. Assume that the finite covers M1 and M2 associated to the pullback subgroups
of H1 and H2 have 1 cusp. Then M1 and M2 are isospectral, have the same complex length
spectra and are non-isometric.

Proof. First, note that the manifolds M1 and M2 cannot be isometric, since if there exists
g ∈ Isom(H3) with gΓ1g

−1 = Γ2, then this implies that g ∈ Comm(Γ). However, by
assumption, Comm(Γ) = Γ, and so projecting to the finite group G, we effect a conjugacy
of the almost conjugate pair (H1, H2), a contradiction.

To prove isospectrality, there are two things that need to be established; that both M1 and
M2 have the same infinite discrete spectrum with multiplicities, and that their scattering
functions have the same poles with multiplicities. Since M1 and M2 are 1-cusped, and
[Γ : Γ1] = [Γ : Γ2], the latter follows immediately from the fact that their Eisenstein series
are the same by Lemma 2.3.

Regarding the former statement, Theorem 2.4 shows that the discrete spectrum is infinite
for both M1 and M2, and we deal with remaining statement about the discrete spectra in a
standard way following [32]. For completeness we sketch a proof of this.
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Now it can be shown that to prove that M1 and M2 have the same discrete spectra with
multiplicities, it suffices to show that L2

disc(M1) ∼= L2
disc(M2). To see this we find it convenient

to follow [26] and we refer the reader to that paper for details. We need a lemma from [26]
and this requires some notation. Let G be a finite group, and V is a G-module. Denote by
V G the submodule of V invariant under the G-action. The following is Lemma 1 of [26]:

Lemma 3.2. Suppose G is a finite group, (H1, H2) an almost conjugate pair in G and suppose
that G acts on the complex vector space V . Then there is an isomorphism ι : V H1 → V H2,
commuting with the action of any endomorphism ∆ of V for which the following diagram
commutes.

V H1
ι−→ V H2

∆
y y∆

V H1
ι−→ V H2

Now let M0 be the cover of M corresponding to the kernel of the homomorphism to G.
Taking V to be L2

disc(M0) in Lemma 3.2, ∆ to be the Laplacian, and noting that for i = 1, 2,
L2
disc(Mi) = L2

disc(M0)Hi , it follows that L2
disc(M1) ∼= L2

disc(M2).
The proof that the manifolds have the same complex length spectra follows that given in

[32]. tu

Remark 3.3. As noted above, the method of Sunada [32] also produces pairs of finite volume
hyperbolic 3-manifolds with the same complex length spectrum. More generally, in the case
of closed hyperbolic 3-manifolds, the complex length spectrum is known to determine the
spectrum of the Laplacian, see [30, Thm.1.1]. This also holds for cusped hyperbolic manifolds,
as can be seen from [22, Thm.2] for example.

Example 3.4. For p a prime, we denote by Fp the finite field of p elements, and denote by
PSL(2, p) the finite group PSL(2,Fp) (which of course are simple for p > 3). It is known
that (see [19] for example) for p = 7, 11 the groups PSL(2, p) contain almost conjugate pairs
of subgroups of index 7 and 11 respectively.

Remark 3.5. In [19], it is shown that there are no examples of almost conjugate (but not
conjugate) subgroups of a finite group of index less than 7. Hence, 7-fold covers are the
smallest index covers for which the Sunada construction can be performed.

Given the previous set up, we can now prove the following straightforward proposition
that is the key element in our construction. We require a preliminary definition. Following
Riley [29] if M = H3/Γ is an orientable finite volume 1-cusped hyperbolic 3-manifold, P < Γ
a fixed maximal peripheral subgroup and ρ : π1(M)→ PSL(2, p) a representation, then ρ is
called a p-rep if ρ(P ) is non-trivial and all non-trivial elements in ρ(P ) are parabolic elements
of PSL(2, p). In which case, ρ(P ) is easily seen to have order p. More generally if M has
more than 1-cusp we call ρ a p-rep of π1(M) if the image of all maximal peripheral subgroups
satisfies the same condition as above.

Proposition 3.6. Let M = H3/Γ be an orientable non-arithmetic finite volume 1-cusped
hyperbolic 3-manifold that is the minimal element in its commensurability class. Suppose
that ρ is a p-rep of Γ onto G = PSL(2, 7) or PSL(2, 11). Then M has a pair of 1-cusped
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isospectral but non-isometric covers of degree 7 or 11 respectively. In addition this pair of
manifolds have the same complex length spectra.

Proof. Let Mi = H3/Γi (i = 1, 2), be the covers of M corresponding to the almost conjugate
pair in Example 3.4 above in either of the cases p = 7, 11.

Once we establish that M1 and M2 both have 1 cusp, that M1 and M2 are isospectral and
non-isometric follows from Theorem 3.1. This also shows that they have the same complex
length spectra. We deal with the case of p = 7, the case of p = 11 is exactly the same.

Let P denote a fixed maximal peripheral subgroup of Γ. For i = 1, 2, let Pi = Γi ∩P . We
claim that for i = 1, 2, [P : Pi] = 7. This implies that the covers M1 and M2 have one cusp,
for then the degree of the cover on a cusp torus of Mi to the cusp of M is 7 to 1, ie Mi can
have only one cusp.

To prove the claim, since the epimorphism ρ is a p-rep, the image of P consists of parabolic
elements of PSL(2, p), and as remarked upon above, such subgroups have order 7. On the
other hand, H1 and H2 have index 7 in PSL(2, 7), and since PSL(2, 7) has order 168, the
subgroups H1 and H2 both have order 24, which is co-prime to 7. It follows from this that
ρ(Pi) = 1, so that [P : Pi] = 7, and this completes the proof. tu

We close this section by making the following observation. This will be helpful in compu-
tational aspects carried out in Section 7.

Suppose that M is a 1-cusped hyperbolic 3-manifold and ρ : π1(M)→ PSL(2, p) a repre-
sentation. We will say that ρ is a p-good-rep if ρ is an epimorphism and there exists a pair
of non-conjugate p-index subgroups Hi of PSL(2, p) with the following property: if Mi is the
cover of M obtained from Hi, then Mi is 1-cusped for i = 1, 2 and M1 is not isometric to
M2. We are interested in p = 7, 11.

Lemma 3.7. Fix p = 7, 11. If H1 and H2 are non-conjugate index p subgroups of PSL(2, p),
then (H1, H2) is a Sunada pair in PSL(2, p).

Proof. This can be done efficiently in magma, since a computation reveals that for p = 7, 11,
the group PSL(2, p) has only two subgroups of index p, up to conjugation. Since PSL(2, p)
has a Sunada pair, if follows that the above pair of subgroups is the unique Sunada pair, up
to conjugation. Moreover, H1 and H2 are interchanged by the outer automorphism group
Out(PSL(2, p)) = Z/2Z. tu

Corollary 3.8. Every p-good rep for p = 7, 11 is a p-rep.

4. An example: covers of a knot complement in S3

In the next section we will prove Theorem 1.1. It is instructive in this section to present
an example of Proposition 3.6, as some of the methods used in this example will be employed
below. We discuss the method in a more general framework in Section 6.

Let K be the knot K11n116 of the Hoste-Thistlethwaite table shown in Figure 1. K is
known as 11n114 in the Snap census [14], 11298 in the LinkExteriors table, t12748 in the
OrientableCuspedCensus and K8297 in the CensusKnots.

Using Snap, the manifold M = S3\K = H3/Γ has a decomposition into 8 ideal tetrahedra,
has volume 7.754453760202655 . . . and invariant trace field k = Q(t) where t = 0.0010656−
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Figure 1. The knot K11n116.

0.9101192i is a root of the irreducible polynomial

p(x) = x8 − 3x7 + 5x6 − 3x5 + 2x4 + 2x3 + 2x+ 1.

Note that the discriminant of this polynomial is 156166337, a prime, and so this is the
discriminant of k. Hence the ring of integers of k (denoted Rk) coincides with Z[t].
Snap shows that the geometric representation of Γ has traces, lying in Rk (see below). In

[15] it is shown that Γ = Comm(Γ), and so we are in a position to apply Proposition 3.6.

4.0.1. 7-fold covers. From above 7 is unramified in k/Q (since 7 does not divide the discrim-
inant of k), and using Pari [33] for example, it can be shown that the ideal (7) = 7Rk factors
as a product P1P2P3 of prime ideals Pi for i = 1, 2, 3 of norm 7, 72 and 75 respectively. k
has class number 1, so all ideals are principal, and in the above notation, the prime ideal P1

coincides with (t− 1).
We will use the prime ideal P1 (henceforth denoted simply by P) to construct a p-rep as

in Proposition 3.6. To that end, we need to identify a particular conjugate of Γ with matrix
entries in Rk. Snap yields the following presentation of Γ:

Γ = 〈a, b, c | aaCbAccBB, aacbCbAAB〉
with peripheral structure

µ = CbAcb, λ = AAbCCbacb ,

where, as usual A = a−1, B = b−1 and C = c−1. Using Snap it can shown that Γ can be
taken to be a subgroup of PSL(2, Rk) represented by matrices as follows (note that from the
irreducible polynomial of t we see that t is a unit):

a =

(
−t2 + t− 1 t7 − 3t6 + 4t5 − t4 + t2 − t
−t2 + t− 1 0

)

b =

(
−t7 + 2t6 − 2t5 − 3t3 + 2t2 − 3t− 1 t6 − 2t5 + t4 + 3t3 − 2t2 + 3t+ 2

−t7 + 3t6 − 5t5 + 4t4 − 4t3 + 2t2 − 2t− 1 t7 − 3t6 + 5t5 − 4t4 + 4t3 − t2 + t+ 2

)

c =

(
−t6 + 4t5 − 8t4 + 7t3 − 5t2 − t −2t7 + 7t6 − 14t5 + 15t4 − 12t3 + t2 + 3t− 1

t5 − 3t4 + 4t3 − 3t2 + t −t7 + 4t6 − 9t5 + 11t4 − 9t3 + 3t2 + t− 2

)
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The meridian and longitude are given by

µ =

(
t7 − 4t6 + 8t5 − 8t4 + 5t3 − 2t −t7 + 2t6 − 3t5 + t4 − 2t3 − 4t2 − 2t− 1

t7 − 4t6 + 9t5 − 11t4 + 10t3 − 3t2 + 3 −t7 + 4t6 − 8t5 + 8t4 − 5t3 + 2t− 2

)

λ =

(
−2t7 + 6t6 − 10t5 + 7t4 − 7t3 + 3t2 − 8t− 1 2t7 − 9t6 + 18t5 − 19t4 + 15t3 − 11t2 + 3t+ 6
6t7 − 20t6 + 38t5 − 35t4 + 31t3 − t2 − t+ 18 2t7 − 6t6 + 10t5 − 7t4 + 7t3 − 3t2 + 8t− 1

)
Now let ρ7 : Γ→ PSL(2, 7) denote the p-rep obtained by reducing entries of these matrices

modulo P . A computation gives:

ρ7(a) =

(
6 1
6 0

)
ρ7(b) =

(
1 6
3 5

)
ρ7(c) =

(
3 4
0 5

)
and

ρ7(µ) =

(
0 4
5 5

)
ρ7(λ) =

(
2 5
1 3

)
We now check that ρ7 is onto. To see this, note that T = ρ7(aB) =

(
−1 0
2 −1

)
and

performing the conjugation ρ7(a)Tρ7(A) gives the matrix

(
−1 2
0 −1

)
.

Finally, after taking powers of these elements we see that ρ7(Γ) contains the elements(
1 0
1 1

)
and

(
1 1
0 1

)
. These clearly generate PSL(2, 7), and we are now in a position to

apply Proposition 3.6 to complete the construction of examples.

4.0.2. 11-fold covers. 11 is also unramified in k/Q and (11) = Q1Q2Q3 where Qi for i =
1, 2, 3 are prime ideals of norm 11, 11 and 116. Moreover, we can take Q1 = (t + 1) and
Q2 = (t2 − t− 1).

Let ρ′11, ρ
′′
11 : Γ −→ PSL(2, 11) denote the p-reps obtained by reducing entries of these

matrices modulo Q1 and Q2 respectively. A computation gives:

ρ′11(a) =
(

8 4
8 0

)
ρ′11(b) =

(
1 9
9 5

)
ρ′11(c) =

(
9 3
10 1

)

ρ′11(µ) =
(

9 6
9 0

)
ρ′11(λ) =

(
9 6
9 0

)
and

ρ′′11(a) =
(

9 6
9 0

)
ρ′′11(b) =

(
4 36
12 12

)
ρ′′11(c) =

(
32 12
28 4

)

ρ′′11(µ) =
(

32 0
32 32

)
ρ′′11(λ) =

(
32 0
28 32

)
Note that ρ′11 and ρ′′11 are not intertwined by an automorphism of PSL(2, 11) since ρ′11(µ) =
ρ′′11(λ) but ρ′11(µ) 6= ρ′′11(λ).
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Remark 4.1. The construction of closed examples in [27] arise from Dehn surgery on the
knot 932 (a construction that we extend below). Proposition 3.6 can be applied to show that
examples of isospectral 1-cusped manifolds arise as 11-fold covers of S3 \ 932. The examples
constructed above have much smaller volume and so are perhaps more interesting.

5. Proof of Theorem 1.1: Infinitely many examples

In this section we complete the proof of Theorem 1.1 by exhibiting infinitely many exam-
ples. This builds on the ideas of [27, Sec.3] and Section 4.

5.1. A lemma. Using ideas from [27] together with Proposition 3.6, we will prove the
following. This will complete the proof of Theorem 1.1, given the existence of a 2-cusped
manifold as in Lemma 5.1 (which we exhibit in Subsection 5.2).

Lemma 5.1. Let M = H3/Γ be an orientable non-arithmetic finite volume 2-cusped hyper-
bolic 3-manifold that is the minimal element in its commensurability class. Suppose that ρ
is a p-rep of Γ onto G = PSL(2, 7) or PSL(2, 11). Then there are infinitely many Dehn
surgeries r = p/q on one cusp of M so that the resultant manifolds M(r) are hyperbolic and
have 1-cusped covers that are isospectral but non-isometric.

Proof. We will deal with the case of G = PSL(2, 7), the other case is similar. Associated
to the two cusps of M we fix two peripheral subgroups P1 and P2, and we will perform
Dehn surgery on the cusp associated to P2, thereby preserving parabolicity of the non-trivial
elements of P1 after Dehn surgery.

Fix a pair of generators µ and λ for P2. By p/q-Dehn surgery on the cusp associated to P2

we mean that the element µpλq is trivialized. We denote the result of p/q-Dehn surgery by
M(p/q). Note that for sufficiently large |p|+ |q|, the resultant surgered manifolds will be 1-
cusped hyperbolic manifolds and will still be the minimal elements in their commensurability
class (see Theorem 3.2 of [27]).

Since ρ is a p-rep, ρ(P2) is non-trivial. Performing p/q-Dehn surgery on the cusp associated
to P2, if we can arrange that ρ(µpλq) = 1, then the p-rep ρ will factor through π1(M(p/q)),
thereby inducing a p-rep of π1(M(p/q)).

Now ρ(P2) is a cyclic subgroup C = 〈x〉 of order 7. Hence there are integers s, t ∈
{0,±1,±2,±3} (not both zero) so that ρ(µ) = xs and ρ(λ) = xt. Hence we need to find
infinitely many co-prime pairs (p, q) which satisfy ps + qt = 7d with s, t as above and for
integers d. This is easily arranged by elementary number theory. For example, if exactly one
of ρ(µ) or ρ(λ) is trivial (say ρ(λ)), then we can choose integers p = 7n and q coprime to 7n
will suffice to prove the lemma in this case. If both s, t 6= 0, a simlar argument holds. For
example suppose that s = t = 2. Then choosing q = 1 and p an integer of the form 7a − 1
will work.

Thus we have constructed infinitely many 1-cusped hyperbolic 3-manifolds with a p-rep
onto PSL(2, 7) and so the proof is complete by an application of Proposition 3.6. tu

5.2. A 2-component link–92
34. From [15] the 2-component link L = 92

34 of Rolfsen’s table
(which is the link 9a62 in the Snap census and L9a21 in the Hoste-Thistlethwaite table) shown
in Figure 2 has the property that M = S3 \L is the minimal element in its commensurability
class.
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Figure 2. The link 92
34.

The link complement has volume approximately 11.942872449472 . . . and invariant trace-
field k generated by a root t of:

p(x) = x10 − x9 − x8 − x7 + 6x6 + x5 − 3x4 − 4x3 + 2x2 + 2x− 1.

As can be checked using Pari, (7) = P1P2P3P4P5 where Pi for i = 1, . . . , 5 are prime ideals
of norm 7, 7, 72, 73 and 73. Moreover, we can take P1 = (t + 1). The fundamental group
has presentation

Γ = 〈a, b, c | aBACbccabCCBcabAcb, abAcbaCCBccABC〉
with peripheral structure

(µ1, λ1) = (b, BBAcbaCC), (µ2, λ2) = (BC, aBACbccaCCbccBACb) .

Following the ideas above it can be shown that the faithful discrete representation of π1(M)
can be conjugated to lie in PSL(2, Rk) and that reducing modulo P1 provides a p-rep onto
PSL(2, 7) given by

ρ(a) =

(
3 5
0 5

)
, ρ(b) =

(
3 1
5 2

)
, ρ(c) =

(
3 6
6 3

)
ρ(µ1) =

(
3 1
5 2

)
, ρ(λ1) =

(
4 6
2 5

)
, ρ(µ2) =

(
5 6
2 4

)
, ρ(λ2) =

(
3 6
2 2

)
Moreover, fixing a cusp, ρ can be conjugated to a representation such that the meridian and

longitude pair of both map to

(
1 −1
0 1

)
Choosing p = −(7n + 1) (sufficiently large) and

q = 1 provides explicit Dehn surgeries as given by Lemma 5.1.

6. Two methods to construct Sunada pairs

We now discuss two methods for implementing Proposition 3.6. In Section 4, an example
of a minimal knot complement was used to build examples (we will refer to this example
as Example 1). The framework for this was to reduce the geometric representation, defined
over a localization of the ring of integers of a number field, modulo a prime of norm 7 or
11. We shall call this Method G. A second method (which we refer to Method R), mentioned
at the end of Section 3, is to compute all p-good reps for p = 7, 11. Each method has
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its own merits. Method R can be implemented efficiently by magma and SnapPy to search
over lists of manifolds. Method G (which involves exact arithmetic computations) requires a
combination of Snap, SnaPy, pari and sage and a lot of cutting and pasting, but produces
infinitely many 1-cusped examples.

Let us describe Method G in more detail. We start with a cusped orientable hyperbolic
3-manifold M . Its geometric representation

π1(M) −→ PSL(2, R)

can be defined over a subring R of an extension of the invariant trace-field. In many cases,
this is actually contained in the invariant trace-field k (e.g. for knots in integral homology
3-spheres). If we can find a prime ideal P in R of norm 7 or 11 which is not inverted in R,
then we can reduce the geometric representation of M to get a representation ρ : π1(M) −→
PSL(2, p) for p = 7 or p = 11. We can further check that ρ is a p-rep. If we can also compute
the commensurator of π1(M), then we can apply Proposition 3.6.

Before we get into the details, let us recall that (Hoste-Thistlethwaite and Rolfsen) tables
of hyperbolic knots are available from SnapPy [7] and from Snap [14]. A consistent conversion
between these tables is provided by SnapPy [7].

7. More examples

7.1. Example 1 via Method R. Consider the knot K = K11n116 from Figure 1 of Section
4.

Setting M = S3\K, magma computes that π1(M) has 4 epimorphisms in PSL(2, 7) and two
of them are 7-good reps. (corresponding to those we found in Section 4). The corresponding
pair M1 and M2 of index 7 covers are isospectral and non-isometric. We can also confirm
that M1 and M2 are not isometric using the isometry signature (a complete invariant) of
[11]. As shown by magma both have common homology Z/2 + Z/110 + Z.
SnapPy computes that M has 42 11-fold covers. Of those, 8 have a total space with one

cusp, and among those, we find 11-good covers: there is one pair of covers with homology
Z/2 + Z/210 + Z and another pair with homology Z/2 + Z/406 + Z and non-isometric total
spaces for either pair. These pairs (M ′

1,M
′
2) and (M ′′

1 ,M
′′
2 ) are built from the epimorphisms

ρ′11 and ρ′′11. (M ′
1,M

′
2) and also (M ′′

1 ,M
′′
2 ) are isospectral.

7.2. Example 2: covers of the manifold v2986 via Method G. Let M = H3/Γ denote
the manifold from the Snap census v2986. SnapPy confirms that M is not a knot complement
in S3 (since it can be triangulated using 7 ideal tetrahedra and is not isometric to a manifold
in CensusKnots, the complete list of hyperbolic knots with at most 8 tetrahedra) but it does
have H1(M ; Z) = Z. The volume of M is approximately 6.165768948 . . . (which is less than
the previous example). Again from [15], we have that Γ = Comm(Γ). Snap gives the the
following presentation of the fundamental group Γ

Γ = 〈a, b, c | acbCBaBAc, abcbbAAC〉

with peripheral structure

µ = C, λ = BCabAA .
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From Snap we see that Γ has integral traces and has invariant trace-field generated by a root
of the polynomial

p(x) = x8 − 2x7 − x6 + 4x5 − 3x3 + x+ 1

Using Pari, we get a decomposition (7) = P1P2P3 into prime ideals P1, P2 and P3 of norm
7, 73 and 74. Moreover, we can take P1 = (t3 − t− 1). The geometric representation is still
defined over Rk, and its reduction ρ7 : Γ −→ PSL(2, 7) modulo P1 is given by:

ρ7(a) =

(
10 4
4 8

)
ρ7(b) =

(
0 8
6 12

)
ρ7(c) =

(
4 2
6 12

)
and

ρ7(µ) =

(
12 12
8 4

)
ρ7(λ) =

(
8 6
4 4

)
As before, one can check that ρ7 is onto, and thereby construct isospectral covers with one
cusp using Proposition 3.6.

7.3. Example 3: covers of knot complements with at most 8 tetrahedra via
Method R. Of the 502 hyperbolic knots in CensusKnots with at most 8 ideal tetrahe-
dra, SnapPy computes that the following 11 have trivial isometry group:

K8226, K8252, K8270, K8277, K8287, K8290, K8292, K8293, K8296, K8297, K8301

Note that K8297 is the knot of Example 1. Snap confirms that all of these knots have no
hidden symmetries. Of the above 11 knots, magma finds that the following 8 have at least
one 7-good-rep:

K8252, K8270, K8277, K8290, K8292, K8293, K8297, K8301

and all 11 have at least one 11-good-rep.

7.4. Example 4: the list of 1-cusped manifolds of [15] via Method R. [15] gave a list
of 13486 hyperbolic manifolds with at least one cusp, along with their hidden symmetries.
Of those with no hidden symmetries, 1252 have one cusp, 1544 have two cusps and 106 have
four cusps.

There are 6 manifolds with one cusp and no hidden symmetries and with at most 7 ideal
tetrahedra in the above list:

v2986, v3205, v3238, v3372, v3398, v3522

magma computes that all 7 of those manifolds have 7-good reps, and that the following 3

v3205, v3238, v3522

have 11-good reps.
LetM denote the list of 1252 one cusped manifolds with no hidden symmetries, andMp

the sublist of those with p-good reps for p = 7, 11. If |X| denotes the number of elements of
a set X, a computation shows that

(1) |M7∩M11| = 809, |M7\M11| = 165, |M11\M7| = 220, |M\(M7∪M11)| = 58 .
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The manifolds in M7 ∩M11 with at most 10 ideal tetrahedra are

v3205, v3238, v3522, K10n10, K11n27, K11n116, K12n318, K12n644.

The complete data (in SnapPy readable format) is available from [13].

8. Final comments

In this final section we discuss further the nature of the discrete spectrum for 1-cusped
hyperbolic 3-manifolds. As described in Section 2, one issue in the cusped setting is whether
there is any interesting discrete spectrum. Theorem 2.4 gives conditions when the discrete
spectrum is infinite, and we will take this up here for 1-cusped hyperbolic 3-manifolds.
In what follows M = H3/Γ will denote a 1-cusped orientable finite volume hyperbolic 3-
manifold with discrete spectrum λ1 ≤ λ2 . . ..

8.1. Essentially cuspidal manifolds. As was mentioned previously, there is no direct ana-
logue of the Weyl law for cusped hyperbolic 3-manifolds, however the following asymptotic
that takes account of a contribution from the continuous spectrum can be established using
the Selberg trace formula (see [10] Chapter 6.5 and [31]). To state this, we introduce the
following notation:

For T > 0 let A(Γ, T ) = |{j : λj ≤ T 2}| and M(Γ, T ) = − 1
2π

∫ T
−T

φ′

φ
(1 + it)dt, then

A(Γ, T ) +M(Γ, T ) ≈ 1

6π2
vol(M)T 3 as T →∞ .

Therefore, getting good control on the growth of M(Γ, T ) implies a Weyl law

(†) A(Γ, T ) ≈ 1

6π2
vol(M)T 3, as T →∞ .

In [31], Sarnak defines Γ or M to be essentially cuspidal if the Weyl law (†) holds. Thus
the issue as to whether M is essentially cuspidal is, which of the terms A(Γ, T ) or M(Γ, T )
dominates in the expression (†) above. It is known that congruence subgroups of Bianchi
groups are essentially cuspidal (see [28]); in this case M(Γ, T ) = O(T log T ). An example of
a non-congruence subgroup of a Bianchi group that is also essentially cuspidal is given in [8].

In this regard, Sarnak [31] has conjectured, in a much broader context than discussed
here, that if M is essentially cuspidal then M is arithmetic. In fact, in the case of surfaces,
it is conjectured (see [20]) that the generic Γ in a given Teichmüller space is not essentially
cuspidal, and indeed (apart from the case of the 1-punctured torus) the generic case should
have only finitely many discrete eigenvalues. This is based on work of Philips and Sarnak
[25] on how eigenvalues dissolve under deformation.

8.2. Knot complements. Even though Theorem 2.4 produces non-arithmetic 1-cusped
hyperbolic 3-manifolds for which A(Γ, T ) is unbounded, the contribution from M(Γ, T ) is
conjecturally enough to violate the Weyl law. Now there is no analogue of the Philips
and Sarnak result in dimension 3, but it seems interesting to understand how the discrete
spectrum behaves, for example for knot complements in S3.
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To that end, the generic knot complement will be the minimal element in its commensu-
rability class, and so will likely have only finitely many discrete eigenvalues. In particular,
we cannot apply Theorem 2.4 to deduce an infinite discrete spectrum.

The figure-eight knot complement is the only arithmetic knot complement, and it is also
known to be a congruence manifold. Hence, the complement of the figure-eight knot is
essentially cuspidal. Thus, given Sarnak’s conjecture, the figure-eight knot should be the
only knot complement that is essentially cuspidal. We cannot prove this at present, but we
can prove Theorem 1.2 which we restate below for convenience.

Theorem 8.1. Let M denote the complement of the figure-eight knot in S3. Suppose that
N is a finite volume hyperbolic 3-manifold which is isospectral with M . Then N is homeo-
morphic to M .

Proof. Since N is isospectral with M , N cannot be closed since the poles of the scattering
function are part of the spectral data. The result will follow once the following two claims
are established.

Claims: (1) Vol(N) = Vol(M).

(2)N and M have the same set of lengths of closed geodesics (without counting multiplicities).

Deferring discussion of these for now, we complete the proof. From Claim (1) and [5] the only
possibility for N is the so-called sister of the figure-eight knot. However, as can be checked
by Snap for example the shortest length of a closed geodesic in the sister is approximately
0.86255 . . . and for the figure-eight knot complement it is 1.08707 . . .. In Section 8.3 we
include a theoretical proof of the fact that the shortest geodesic in the sister has length
0.86255 . . . and that the figure-eight knot complement contains no closed geodesic of that
length. tu

Note that both (1) and (2) are standard applications of the Weyl Law and trace formula
in the setting of closed hyperbolic 3-manifolds (see for example [10] Chapter 5.3). This is
the approach taken here, however, as we have already remarked upon, the cusped setting
provides additional challenges. The proof of Claim (2) is given in subsection 8.4 and was
kindly provided by Dubi Kelmer.

For Claim (1), the Weyl Law in the cusped setting takes the form (see [6] Chapter 7)

A(Γ, T ) +M(Γ, T ) =
1

6π2
vol(M)T 3 +O(T 2) +O(T log T ).

In the case at hand, for both M and N the left hand side is the same, and so it follow that
we can read off the volume (on letting T → ∞). A different proof of equality of volume is
given in Section 8.4. tu

Using Snap and [12] we can prove the following by a similar method. We begin by recalling
Theorem 7.4 of [12].
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Theorem 8.2. There are only ten finite volume orientable 1-cusped hyperbolic 3-manifolds
with volume ≤ 2.848. These are (in the notation of the original SnapPea census):

m003,m004,m006,m007,m009,m010,m011,m015,m016,m017.

Note that m003 and m004 are the sister of the figure-eight knot and the figure-eight knot
respectively, m006 and m007 have the same volume (approximately 2.56897 . . .), m009 and
m010 have the same volume (approximately 2.66674 . . .) and m015, m016, and m017 have
the same volume (approximately 2.82812 . . .).

Theorem 8.3. Let M be any one the ten manifolds stated in Theorem 8.2. Then if N is an
orientable finite volume hyperbolic 3-manifold isospectral with M than N is homeomorphic
to M .

Proof. As in the proof of Theorem 8.1, the manifold N must have cusps, and by [22, Thm.2]
N must have 1 cusp. As before N also has the same volume as M . Note that all 10 manifolds
in the above list have fundamental group that is 2-generator, and so the manifolds admit
an orientation-preserving involution. Hence Theorem 2.4 applies to show that the discrete
spectrum in all these cases is infinite. If N is isospectral to any one of the manifolds in
the list then N has the same volume. Theorem 8.1 deals with m004, and also m003. Since
m011 is the unique manifold of that volume, then this one is also accounted for. The only
possibilities that remain to be distinguished are the pairs (m006,m007), (m009,m010) and
the triple (m015,m016,m017). This can be done using snap to compute the start of the
length spectrum. To deal with m006 and m007, and m009 and m010 one can use the second
shortest geodesic. To distinguish m015 from m016 and m017 one can use the second shortest
geodesics, and m016 and m017 are distinguished by the shortest geodesic. tu

Note that m015 is the knot 52 in the standard tables and m016 is the (−2, 3, 7)-pretzel
knot, and so these knots, like the figure-eight knot, have complements that are determined
by their spectral data.

8.3. Shortest length geodesics in the sister of the figure-eight knot. Here we give
a theoretical proof of the distinction in the lengths of the shortest closed geodesic in M (as
above) and its sister manifold N . In what follows we let M = H3/Γ1 and N = H3/Γ2 As is
well known Γ1,Γ2 < PSL(2,Z[ω]) of index 12, and where ω2 + ω + 1 = 0.

As can be easily shown (see for example [24, Thm.4.6]), the shortest translation length
of a loxodromic element in PSL(2,Z[ω]) occurs for an element of trace ω or its complex
conjugate ω (up to sign) and is approximately 0.8625546276620610 . . .; i.e. the length of the
shortest closed geodesic in N .

Fix the following elements of trace ω and ω (up to sign):

γ0 =

(
0 1
−1 ω

)
, γ′0 =

(
0 −1
1 ω

)
and

γ1 =

(
0 1
−1 ω

)
, γ′1 =

(
0 −1
1 ω

)
.

As can be checked for i = 0, 1, γi and γ′i are not conjugate in PSL(2,Z[ω]) (e.g. using
reduction modulo the Z[ω]-ideal <

√
−3 >).
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Lemma 8.4. For i = 0, 1, γi and γ′i are representatives of all the PSL(2,Z[ω])-conjugacy
classes of elements of trace ω or ω (up to sign).

Proof. Suppose that t+ t−1 = ω with t = (ω + θ)/2 where θ =
√
−9−

√
−3

2
and let k = Q(θ).

It can be checked that k has discriminant 189 and has class number one. Using this and
the formulae in Chapter III.5 of [35] one deduces that the number of conjugacy classes of
elements of PSL(2, O3) of trace ω is 2.

Since an element of trace ω simply gives a conjugate of k given by Q(t), the same argument
applies to also give two conjugacy classes in this case. tu

The claim about the lengths will follow once we establish that none of the PSL(2,Z[ω])-
conjugacy classes of γi and γ′i for i = 0, 1, meet Γ1 and at least one meets Γ2. This can be
done efficiently using magma as we now describe. We begin with a preliminary observation.

Suppose that M = H3/Γ → Q = H3/Γ0 is a finite sheeted covering of finite-volume
orientable hyperbolic 3-orbifolds. Denoting the covering degree by d, the action on cosets
of Γ in Γ0 determines a permutation representation ρ : Γ0 → Sd with kernel K. Suppose
that [g1], . . . , [gr] denote the conjugacy classes of loxodromic elements in Γ0 of minimal
translation length `. Then M contains an element of length ` if and only if Γ ∩ [gi] 6= ∅ for
some i ∈ {1, . . . , r}, and this happens if and only ρ(Γ) ∩ [ρ(gi)] 6= ∅ for some i ∈ {1, . . . , r}.

We apply this in the case that N is the Bianchi orbifold Q = H3/PSL(2,Z[ω]) and M is
either the figure-eight knot complement or its sister. In the former case, the permutation
representation has kernel the congruence subgroup Γ(4) < PSL(2,Z[ω]) (of index 1920) and
in the latter case the permutation representation has kernel the congruence subgroup Γ(2)
(of index 60). To implement the magma routines we use the the presentation of PSL(2,Z[ω])
from [18], and express the subgroups Γ1 and Γ2 in terms of these generators. Setting

a =

(
1 1
0 1

)
, b =

(
0 −1
1 0

)
, and c =

(
1 ω
0 1

)
,

we have

PSL(2,Z[ω]) =< a, b, c|b2 = (ab)3 = (acbC2b)2 = (acbCb)3 = A2CbcbCbCbcb = [a, c] = 1 >

Γ1 =< a, bcb >

Γ2 =< a2, bcabaCbCb > .

The elements γi and γ′i for i = 0, 1 are described in terms of these generators as:

γ0 = bC, γ′0 = bc, γ1 = bac, γ′1 = bAC.

Below we include the magma routine that executes the above computation showing no
conjugates lie in Γ1 but at least one does in Γ2.

g<a,b,c>:=Group<a,b,c| b^2, (a*b)^3, (a*c*b*c^-2*b)^2,

(a*c*b*c^-1*b)^3, a^-2*c^-1*b*c*b*c^-1*b*c^-1*b*c*b, (a,c)>;

h1:= sub<g|a,b*c*b>;

h2:= sub<g|a^2, b*c*a*b*a*c^-1*b*c^-1*b>;

print AbelianQuotientInvariants(h1);

\\[0]

print AbelianQuotientInvariants(h2);
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\\[ 5, 0 ]

x0:=g!b*c^-1;

x1:=g!b*c;

y0:=g!b*a*c;

y1:=g!b*a^-1*c^-1;

f1,i1,k1:=CosetAction(g,h1);

print Order(i1);

\\1920

f2,i2,k2:=CosetAction(g,h2);

print Order(i2);

\\60

l:=Class(i1,f1(x0)) meet Set(f1(h1));

print #l;

\\0

l:=Class(i1,f1(x1)) meet Set(f1(h1));

print #l;

\\0

l:=Class(i1,f1(y0)) meet Set(f1(h1));

print #l;

\\0

l:=Class(i1,f1(y1)) meet Set(f1(h1));

print #l;

\\0

k:=Class(i2,f2(x0)) meet Set(f2(h2));

print #k;

\\2

8.4. Determining the length set.

Proposition 8.5. Let M1 and M2 be finite volume orientable 1-cusped hyperbolic 3-manifolds
that are isospectral. Then they have the same set of lengths of closed geodesics (without
counting multiplicities).

Before commencing with the proof we recall the version of the trace formula given in
[10] Chapter 6 Theorem 5.1. This needs some notation. Let M = H3/Γ be 1-cusped finite
volume orientable hyperbolic 3-manifold. Given a loxdromic element γ ∈ Γ of complex length
`γ + iθγ, we denote by γ0 the unique primitive element such that γ = γj0. For convenience,
we denote the discrete spectrum by λk = 1 + r2

k, and by φ(s) is (as before) the scattering
function. The trace formula in this case then states ([10] Chapter 6 Theorem 5.1):
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Theorem 8.6. For any even compactly supported test function g ∈ C∞c (R) let h(r) denote
it’s Fourier transform. Then∑

k

h(rk)−
1

4π

∫
R
h(r)

φ′

φ
(ir)dr =

vol(M)

4π2

∫
R
h(t)r2dr

+ 4π
∑
γ∈Γlox

`γ0g(`γ)√
2 sinh( `γ+iθγ

2
)

+ aΓg(0) + bΓh(0)

− 1

2π

∫
R
h(r)

Γ′

Γ
(1 + ir)dr

where the constants aΓ and bΓ are explicit constants depending only on Γ and the summation
on the right-hand side is over Γlox which represents conjugacy classes of loxodromic elements
in Γ.

Remark 8.7. Our notation is slightly different from [10] and there are less terms due to our
assumptions of only one cusp and no torsion. Also, the Γ(s) in the last integral denotes the
Γ-function and is not related to the Kleinian group Γ.

We now prove Proposition 8.5.

Proof. For our purposes it will be helpful to rewrite the sum over the loxodromic classes and
collect all the classes with the same `γ together. That is,

∑
γ∈Γlox

`γ0g(`γ)√
2 sinh( `γ+iθγ

2
)

=
∑
`

 ∑
γ∈Γlox

`γ=`

`γ0√
2 sinh( `γ+iθγ

2
)

 g(`)

=
∑
`

mΓ(`)g(`)

where we defined the twisted multiplicities mΓ(`) by

mΓ(`) =
∑
γ∈Γlox

`γ=`

`γ0√
2 sinh( `γ+iθγ

2
)
,

and the sum on the right is over the set of lengths of closed geodesics in M (in fact we can
take the sum over all ` > 0 since mΓ(`) = 0 if ` is not a length of a closed geodesic).

We can thus rewrite the trace formula as∑
k

h(rk)−
1

4π

∫
R
h(r)

φ′

φ
(ir)dr =

vol(M)

4π2

∫
R
h(t)r2dr + 4π

∑
`

mΓ(`)g(`)

+ aΓg(0) + bΓh(0)− 1

2π

∫
R
h(r)

Γ′

Γ
(1 + ir)dr

Noting that mΓ(`) 6= 0 if and only if ` is a length of a closed geodesic in M , the result will
follow from the next proposition.
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Proposition 8.8. With M1 and M2 as in Proposition 8.4, then Vol(M1) = Vol(M2), aΓ1 =
aΓ2, bΓ1 = bΓ2, and mΓ1(`) = mΓ2(`) for any ` > 0.

Proof. Let ∆V = Vol(M1) − Vol(M2), ∆a = aΓ1 − aΓ2 , ∆b = bΓ1 − bΓ2 , and ∆m(`) =
mΓ1(`) −mΓ2(`). Taking the difference between the two trace formulas, the left hand side
cancels and we get that for any even test function g ∈ C∞c (R)

∆V

4π2

∫
R
h(t)r2dr + 4π

∑
`

∆m(`)g(`) + ∆ag(0) + ∆bh(0) = 0

We can first take a test function g to be supported away from all the lengths in the length
spectrum of both manifolds and from 0 (e.g., make it supported in the interval between zero
and the shortest length), and satisfy that h(0) =

∫
g(x)dx = 0 but

∫
R h(t)r2dr 6= 0. Using

such a test function we can deduce that ∆V = 0 (which was already deduced from Weyl’s
law). The difference of the trace formula hence simplifies to

4π
∑
`

∆m(`)g(`) + ∆ag(0) + ∆bh(0) = 0

Next, taking g supported away from all lengths and 0 but this time with h(0) = 1 we conclude
that ∆b = 0, and then taking g supported on a small neighborhood of 0 (smaller than the
length of the shortest geodesic) we conclude that ∆a = 0 as well. From this we get that for
any test function ∑

`

∆m(`)g(`) = 0

Finally, for each ` > 0 we can take g to be supported in a small enough neighborhood of
`, such that no other length in the length spectrum are in the support (except ` itself if it
happens to be in the length spectrum of one of the manifolds). This implies that ∆m(`) = 0
as well for any ` > 0, thus concluding the proof. tu

The proof of Proposition 8.5 is now complete. tu
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