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Introduction

A Kleinian group Γ is a discrete subgroup of PSL(2, C), the full group of
orientation-preserving isometries of 3-dimensional hyperbolic space. In the lan-
guage of [T1]Q = H3/Γ is a hyperbolic 3-orbifold; that is a metric 3-orbifold in
which all sectional curvatures are -1, and for whichΓ is the orbifold fundamental
group (see [T1] for further details). AFuchsian groupis a discrete subgroup of
PSL(2, R) and as such acts discontinuously on the hyperbolic plane. We defineΓ
to be of finite co-volume (resp. co-area) if the volume (resp. area) of the quotient
orbifold Q is finite.

By Selberg’s Lemma, ifΓ is a Kleinian (resp. Fuchsian) group of finite co-
volume (resp. co-area) it contains a torsion-free subgroup of finite index. By
definition any torsion-free subgroup cannot contain any finite subgroups ofΓ ,
so the index must be a multiple of the lowest common multiple of all orders
of finite subgroups ofΓ (see [CFJR] for a proof).Γ being of finite co-volume
implies there are only finitely many conjugacy classes of finite subgroups. Thus,
we make the following

Definitions. Let G be a finitely-generated group containing only finitely many
conjugacy classes of finite subgroups and some torsion-free subgroup of finite
index. Then,
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L (G) = the lowest common multiple of the orders of all finite subgroups of
G and

M(G) = the minimum index of a torsion-free subgroup of G.

Now non-trivial finite subgroups of a Fuchsian group are cyclic as follows
from the structure theory of Fuchsian groups, and the only possibilities in the case
of a Kleinian group are cyclic, dihedral,A4, S4 or A5. In [EEK], it is shown that
if Γ is a Fuchsian group of finite co-area, thenM(G)/L (G) ≤ 2. Given that
the structure of Fuchsian groups is well-understood, the proof of this theorem is
remarkably subtle in the case where the underlying space of the quotient orbifold
is the 2-sphere.

The corresponding question as to whether there exists a bound for
M(G)/L (G) in the case of Kleinian groups has been of some interest lately in
the study of small volume hyperbolic 3-orbifolds. In particular if a bound exists,
then this would, for example, allow for simplification in the proofs of [CFJR] in
the identification of the smallest volume arithmetic hyperbolic 3-manifold. How-
ever, in [CFJR], a Kleinian groupΓ was constructed for which it was observed
that M(Γ )/L (Γ ) = 4. The purpose of this paper is to prove

Theorem 1. For k ∈ N, k ≥ 2, there exists a Kleinian groupΓk such that
M(Γk)/L (Γk) > k.

The construction of theΓk involve Generalized Triangle Groups (defined
below). These have attracted some attention recently for a variety of reasons (see
for instance [BMS], [GL], and [HMV]). An extension of our construction of the
groupsΓk provides a partial answer to a question of M. Hagelberg in [G93]
concerning which Generalized Triangle Groups can be the orbifold fundamental
group of a compact orientable 3-orbifold (possibly with boundary). This question
has been studied in special cases recently; see for example [H], [HMR] and
[HMV].

1 Generalized triangle groups and tunnel number 1 links

The construction of the Kleinian groupsΓk is closely connected with the notion
of a Generalized Triangle Group, and tunnel number 1 links, which we now
define:

Definition. A Generalized Triangle Group is a group admitting a presentation of
the form

〈a, b : am, bn, (R(a, b))p〉
where R(a, b) is any cyclically reduced element of the Zm ∗ Zn generated by a
and b which is not conjugate to a proper power and m, n, p are integers greater
than 1.

This group will be denoted∆(m, n, p, R(a, b)).

Let L be a knot or link inS3. An unknotting tunnelfor L is an embedded
arc t in S3 disjoint from L with endpoints onL such that the complement of a
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regular neighbourhood ofL ∪ t in S3 is a genus 2 handlebody. If an unknotting
tunnel forL exists,L is calledtunnel number 1. Note if a link has tunnel number
1 it must have at most two components. Such a decomposition of the knot or
link exterior leads to a 2-generator, 1-relator presentation of the group, the relator
corresponding to a simple closed curve in the boundary of a genus 2 handlebody
to which a 2-handle is attached.

All 2-bridge knots and links are tunnel number 1: a pair of unknotting tunnels
that are easy to see are the so-called “upper” or “lower” tunnels in a 4-plat
projection of the knot or link. (cf. [BM] and [AR] for more on this). Each of
these tunnel decompositions results in a 2-generator, 1-relator presentation for
the fundamental group with a pair of meridians of the link as generators.

Let m, n and p be integers greater than 1. Form the labelled graphΣ =
Σ(m, n, p) in S3 as follows. Using the upper (or lower) tunnelt above, each
2-bridge knot or link yields a graph (with three edges and two vertices) which
is then labelled by labelling the edgesm, n and p, indicating a cone angle of
2π/i wherei is one of{m, n, p} along the edge (we shall takep to be the label
of the tunnel). LetQ = Q(t ; m, n, p) be the orbifold with these specifications
as base and singular set, so thatQ is a compact orientable 3-orbifold (strictly
speaking, we must delete an open neighborhood of the vertices if the labelling
of the incident edges is not spherical). It follows thatπorb

1 (Q) is of the form
〈a, b : am = bn = R(a, b)p = 1〉. With this discussion we have:

Lemma 2. πorb
1 (Q) is a generalized triangle group.�

We now discuss in a little more detail one family of orbifolds that we shall
use below.

j

full-twists

Fig. 1.

Example.For j ≥ 1, let Tj be the 2-bridge torus link withj full-twists (see
Fig. 1), soT1 is the Hopf link. Note that we may take either left or right twists
here as convenient – we will simply get an orientation-reversal between the two
and all orbifold fundamental groups we subsequently obtain will be isomorphic
regardless of which orientation we choose.

Let Oj be the orbifold obtained fromTj as discussed above using the upper
tunnel. Label the edges of the graph using the triple{3, 3, 2} as shown in Fig. 2
below.
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j

full-twists
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3

3

Fig. 2.

Lemma 3.πorb
1 (Oj ) has a presentation〈a, b : a3 = b3 = ((ab)j (a−1b−1)j )2 = 1〉.

Proof. We will use the Wirtinger presentation – refer to Fig. 3, where the case
j = 3 is illustrated.

c

a0 a3 = aj

b0 b3= bj

a1 b1 a2 b2

Fig. 3.

The generators ofπorb
1 (Oj ) arec, a0, a1, . . . , aj , b0, b1, . . . , bj . The relations come

from three sources: torsion relations, vertex relations and crossing relations. The
torsion relations are generated byc2 = a3

0 = b3
0 = 1. The singular set vertices

give the relationsc = b−1
0 bj = a0a−1

j . The crossings give relations

ai = bi −1ai −1b−1
i −1 (i = 1, 2, . . . , j )

bi = ai bi −1a−1
i

Repeatedly using these crossing relations to write all theai and bi in terms
of a0 andb0, we obtain

ai = (b0a0)i −1b0a0b−1
0 (a−1

0 b−1
0 )i −1

bi = (b0a0)i b0(a−1
0 b−1

0 )i

Substituting these into the vertex relations gives the single relationc =
(a0b0)j (a−1

0 b−1
0 )j so that

πorb
1 (Oj ) = 〈a0, b0 : a3

0 = b3
0 = ((a0b0)j (a−1

0 b−1
0 )j )2 = 1〉

�
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2 The construction

In this section we construct the Kleinian groupsΓk advertised in Theorem 1
using the orbifoldsOj given in the Example of Sect. 1.

Theorem 1 will be a consequence of the next two lemmas.

Lemma 4. For j sufficiently large, Oj is a closed hyperbolic 3-orbifold.

Proof. Let Q be the orbifold pictured in Fig. 4. This is an orbifold whose base
is the open solid torus.

J

2 3

3

Fig. 4.

Notice that the orbifoldsOj are obtained by (1, j )-Dehn surgery on the cusp
of Q corresponding to the unknotted componentJ in Fig. 4. We may also use
(−1, j )-Dehn surgery and obtain an isomorphic fundamental group.

2 2

3

Fig. 5.

We shall show thatQ is hyperbolic and so Thurston’s Hyperbolic Dehn
Surgery Theorem implies the Lemma. A proof of the Dehn Surgery Theorem for
orbifolds is given in [DM]. To see thatQ is hyperbolic we proceed as follows.
From [FF] for instance, the orbifold shown in Fig. 5 is the hyperbolic orbifold
B arising asH3/PSL(2, Z[

√−2]). B is 2-fold covered byQ, where the quotient
map is given by the involution on the solid torus which rotates the solid torus
about a core axis (the dashed curve in Fig. 6).

These observations complete the proof.�
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2 3

3

Fig. 6.

In the case ofj = 1, the link in the singular set in this case is simply the Hopf
Link, and the hence the labelled graph describing the singular set in this case is
the Hopf link labelled 3 and the arc labelled 2. This orbifold appears in the list
of spherical orbifolds in Table 8 of [Du1], so the groupGj is finite and henceO1

is certainly not hyperbolic. In fact it has been shown in [LR] that this group has
order 288. In Sect. 3, we shall see that the Thurston Orbifold Conjecture actually
implies thatOj is hyperbolic wheneverj > 1.

DefineΓk to be the Kleinian group which is the orbifold fundamental group
of O(12k)! .

Lemma 5. M(Γk) > 12k for sufficiently large k.

Proof. SupposeH is a torsion-free subgroup of indexm ≤ 12k. The permutation
representation ofΓk on H yields a homomorphism,ϕ : Γk → Sm such thata
andb map to a product of disjoint 3-cycles, and (ab)(12k)! (a−1b−1)(12k)! maps to
a product of 2-cycles. Note that we are making use of hyperbolicity to assert that
all the relators actually have the order that they appear to have in the presentation.
In Sect. 3, we shall see that this is actually independent of hyperbolicity, so that
the hypothesis of “sufficiently large k” is really unnecessary here.

Since Sm embeds as a subgroup ofS12k for all m ≤ 12k, we see that the
order of any element ofSm divides (12k)!. Henceϕ((ab)(12k)! (a−1b−1)(12k)! ) = 1,
since it is the product of two (12k)! powers. Now the kernel ofϕ is a subgroup
of H , and this contradicts the assumption thatH is torsion-free. �

All that remains to complete the proof of Theorem 1 is to note that for all
k, L (Γk) is 12, sinceO(12k)! (indeed anyOj ) contains only singular arcs with
cyclic isotropy of order 2 and 3 and two singular vertices withA4 isotropy. Thus,
Lemma 5 implies Theorem 1.�

It seems worthwhile noting that many “more obvious” constructions of orb-
ifolds do not give examples where the conclusion of Theorem 1 is satisfied.
Indeed for many cases, one can say exactly what the minimal index torsion-free
subgroup is. These considerations, in part, led us to consider the examples above.
The following is quite straightforward, not even requiring hyperbolicity.
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Theorem 6.Let M be a closed orientable 3-manifold, and L= L1 ∪ L2 . . . ∪ Ln a
link embedded in M . Fix a framing(Mi , `i ) for each component. Let Q denote the
orbifold obtained by doing(p1, 0), . . . (pn, 0) orbifold Dehn surgery. Thenπorb

1 (Q)
has a torsion free subgroup of index LCM(p1, . . . , pn).

Proof. This is merely an exercise in branched covers. Letpj1, . . . , pjm be the
distinct prime factors ofL = LCM (p1, . . . , pn). Using the framing given, there
is a map fromπorb

1 (Q) to Zpj1
⊕ . . . ⊕ Zpjm

obtained by factoring the map from
π1(M \ L) through the homomorphism induced by the prescribed orbifold Dehn
surgery. The kernel of this map is necessarily torsion-free.�

The next result is somewhat more involved, but hyperbolicity is not needed
here either. This result states that we cannot construct the orbifolds we desire by
doing orbifold Dehn surgery on successively more complicated punctured surface
bundles.

Theorem 7.Let X be a surface bundle with fiber a surface of genusg with n ≥ 1
punctures. Frame each component of the boundary of X as(Mi , `i ) whereMi

is a component of the pre-image of a point in the fiber and`i is a boundary
component of the fiber. Let O be the orbifold obtained by(mi pi , ni pi ) orbifold
Dehn surgery on component i of X , where mi and ni are relatively prime and
ni and pi are relatively prime. Let G denote the orbifold fundamental group of
O. Then, there is a constant q, depending only ong, n and the pi , such that
M(G)/L (G) ≤ q. In particular, q is independent of the monodromy of X .

Proof. For the sake of clarity, denote the (free) fundamental group of the fiber
of X by F and the mapping class group ofX by MF .

First, consider the case in which allmi are 0 and allni are 1. The orbifold
Dehn surgery in this case induces an orbifold structure on the fiber, which we
denote byOF and its orbifold fundamental group byGF . Furthermore,G is
an HNN-extension ofGF . Denote the HNN-extension element (some power of
which represents all of theMi ) by t . Now, GF has a torsion-free subgroup (of
index at most 2L (G)) which we denote byHF .

Next, we construct another subgroup,KF of GF which is also torsion-free and
of finite index. We do this by pulling backHF to F , yielding a (free) subgroup
H ′

F . Next, we observe thatMF acts onH ′
F , so we intersect all conjugates of

images ofH ′
F under the action ofMF , yielding a finite-index normal subgroup

K ′
F . The key fact here is thatK ′

F is invariant under the action ofMF , hence the
projection homomorphism fromF to F/K ′

F is also invariant under the action of
MF . Let KF be the image ofK ′

F under the projection fromF to GF . SinceKF is
torsion-free, the index ofKF in GF is a multiple ofL (GF ). So, letr = [GF : KF ]
and letq = r /L (G). Now, there is a homomorphismϕ : GF → Sr which is
the subgroup monodromy ofKF (sinceKF is normal, it is in fact the projection
map toGF /KF embedded inSr ). As already observed,ϕ is invariant under the
action of MF on the generators ofGF so thatϕ extends trivially (by sending
t to the identity) to a homomorphism fromG to Sr . Abusing notation slightly,
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denote this homomorphism also byϕ. So, the HNN-extension ofKF by t is a
torsion-free subgroup ofG with index equal toqL (G). Thus, we have proven
our result for the case in whichmi = 0 andni = 1.

For the more general case, we merely remark that the homomorphismϕ
constructed above still works: sinceKF above is torsion-free,ϕ(`i ) is a product
of disjoint pi -cycles. Furthermore, all of theMi are sent to the identity byϕ.
So, the surgery curves are sent toϕ(`i )ni which will still be a product of disjoint
pi -cycles, sinceni andpi are relatively prime.

To actually calculateq for a particular (g, n, {pi }) it suffices to go through
the process outlined in the proof, which is rather tedious, but which could be
easily automated. We have calculated that forg = 1, n = 1, p1 = 2 (the simplest
case) we haveq = 4 (the groupGF /KF is the order 8 group of unit quaternions).
�

3 Geometric structures for generalized triangle groups

In this section we extend our constructions in Sects. 1 and 2 to show that many
generalized triangle groups have realizations as the orbifold fundamental groups
of geometric 3-orbifolds. This has been of some interest recently (see [H], [HMR]
and [HMV]) and gives a partial answer to a question of Hagelberg in [G93].
Our methods of exhibiting a geometric structure use the Orbifold Conjecture of
Thurston (see below).

We commence with a different description of the orbifolds obtained from
2-bridge knots or links and an unknotting tunnel discussed in Sect. 2.

Definition. Let r, s be positive relatively prime integers with r< s and a, b be
generators of a free group G. Then

W(r , s, a, b) =
s−1∏

i =0

a(−1)[(2i +1)r /s]

b(−1)[(2i +2)r /s]

We will also abuse this notation slightly and use W(r , s, a, b) where a and
b are arbitrary elements of an arbitrary group to represent the obvious group
element.

Theorem 8.Let G = ∆(m, n, p, R(a, b)) be a Generalized Triangle Group and let
ρ : Z ∗ Z → Zm ∗ Zn be the canonical homomorphism taking generators(a, b) to
generators(c, d). Let r, s be positive relatively prime integers with r< s such that
ρ(R(a, b)) (or its inverse) is the image of W(r , s, c, d) under an automorphism
of Zm ∗ Zn. Then, G is the orbifold fundamental group of a compact orientable
3-orbifold.

Proof. Assume thatG = ∆(m, n, p, W(r , s, a, b)) is a generalized triangle group
with r and s as in the hypothesis. We shall construct a 3-orbifold whose fun-
damental group is isomorphic toG by taking a genus-two handlebodyH (with
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fundamental group generated bya and b) and adding singular 2-handles (with
central singularities of orderm, n andp, respectively) along disjoint simple closed
curves in the boundary representinga, b andW(r , s, a, b). The curves represent-
ing a andb may be taken to be the standard generating curves. Note thatstandard
here means standard with respect to the usual handlebody picture. This standard
handlebody will be mapped intoS3 in a very nonstandard way in general.

At this point, the only remaining difficulty is in ensuring that a simple closed
curve representingW(r , s, a, b) may be found in the boundary with thea andb
curves removed. But this surface is a four-punctured sphere, and free homotopy
classes of simple closed curves on a four-punctured sphere are represented by
“lines of rational slope on a square pillowcase,” as in the usual classification of
2-bridge links (see, for example, [HT]).

a

b

W(2,3,a,b)=ab-1aba-1b

Fig. 7.

With the conventions that wrapping from front to back on the right edge
corresponds to generatora, wrapping from back to front on the left edge corre-
sponds to generatorb, the lines have non-negative slope and are traversed from
lower left to upper right on the front and the basepoint is located at the low-
est intersection point of the lines with the left edge (see Fig. 7), we read off
W(r , s, a, b) for the element inπ1(H ) corresponding to a line of sloper /s. Note
that the lines may be taken to have non-negative slope less than 1 without loss
of generality since increasing the slope by 1 has the effect of Dehn-twisting the
pillowcase along the vertical bisector (which bounds a disc inH ) and replacing
a by a−1.

Thus, we may attach a singular 2-handle along anr /s curve and obtain a
3-dimensional orbifold (with boundary) whose orbifold fundamental group is the
desired Generalized Triangle Group.�

We should note here that a partial converse to this theorem was incorrectly
asserted in a previous version of this paper. We are indebted to Jim Howie for
pointing this error out.

To make explicit the connection with Sect. 2 we argue as follows: letG be a
generalized triangle group as in Theorem 8 (i.e.G = ∆(m, n, p, W(r , s, a, b)) for
some integersr , s, m, n, p). Then,G is the orbifold fundamental group of a com-
pact orientable 3-orbifold. As discussed in the proof of Theorem 8, we construct
the orbifold by taking a genus 2 handlebodyH and attaching singular 2-handles
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along simple closed curves in the boundary of the handlebody representinga,
b and W(r , s, a, b) where a and b are the standard generating curves in∂H .
Consider then, the 3-manifold obtained by attaching a 2-handle toH along the
curveW(r , s, a, b). Depending on whether the curve representingW(r , s, a, b) is
separating or not (which depends on whethers is even or odd), we get a compact
manifold M with two or one torus boundary components, respectively. Viewing
M as a knot or link complement in a closed 3-manifold, we see that the two gen-
erator presentation forπ1(M ) arising from the above 2-handle attachment, yields
generators which are meridians of the knot or link. By killing these meridians
we see thatM is a knot or link complement in a homotopy 3-sphereΣ.

One explicit way to realize this link complement in a homotopy 3-sphere
is with a 2-bridge link in a 3-sphere, as we will see below. In fact, this is the
only way to realize this, sinceΣ has a genus 2 Heegard splitting, and there are
no Heegard-genus 2 counterexamples to the Poincare Conjecture (see [MB], for
example). Furthermore, [BZ] implies that a link complement which is generated
by two meridians must be a 2-bridge link.

in
ne

r

outer

Fig. 8.

To see precisely which unknottings of 2-bridge links correspond to which
group, we will look a bit more carefully at the handlebodyH : we can see that
the 2-bridge link which is being unknotted is (equivalently) ther /s rational link
with the “inner” unknotting tunnel or the thep/s rational link, wherepr ≡ 1
(mod s), with the “outer” unknotting tunnel (see Fig. 8). To see this, observe
that the nontrivial curve which bounds a disc in a 3-ball with two unknotted
arcs removed is the boundary of a regular neighborhood of the homotopic image
(rel. endpoints) of either arc pushed to the boundary 2-sphere. This is exactly the
relation between the simple closed curve in Fig. 6 and the two arcs in the standard
2-bridge picture (again, see Fig. 8). So, the meridian of the unknotting tunnel
corresponds to the “inner” unknotting in Fig. 8. But, the usual classification of
two-bridge links yields the fact that interchanging the inside and outside of a
rational link diagram convertsr /s to p/s wherepr ≡ 1 (mods).

We now recall some salient definitions from the theory of 3-orbifolds, (cf.
[Du1], [Sc] and [T1]).

A compact 2-dimensional orbifold is said to be respectivelysphericalor toric
if it is the quotient by a finite (smooth) group action of the 2-sphereS2 or the
torusT2. A 2-orbifold is calledbad if it has no manifold cover. Following [Du2]
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we define aturnover to be a 2-orbifold with underlying spaceS2 and three cone
points, and apillow orbifold to be a 2-orbifold with underlying spaceS2 and
having four cone points, all of which have cone angleπ.

A compact orientable 3-orbifoldQ is said to beirreducible if it contains no
bad 2-suborbifold and every spherical 2-suborbifold bounds a BALL, that is, the
quotient of the 3-ball by a finite group of orientation preserving isometries of
S2.

An embedded orientable non-spherical 2-orbifoldS in Q is incompressible
if any 1-suborbifold ofS which bounds a DISC (that is, a 2-orbifold of the form
D2/F whereF is a finite subgroup ofO(2)) in Q \ S bounds a DISC inS.

We define a 2-orbifoldS properly embedded in a 3-orbifoldQ to beessential
if it is not boundary parallel andS is either spherical and does not bound a BALL
or S is non-spherical and is incompressible.

Q is said to besimpleif every incompressible toric suborbifold is boundary
parallel.

The following conjecture of Thurston [T2] (see [Ho] for a discussion and
outline of the proof) provides the existence of a geometric structure.

Thurston’s Orbifold Conjecture. Let Q be a compact irreducible orientable
simple 3-orbifold possibly with boundary. If∂Q /= ∅ assume that it consists of
Euclidean suborbifolds, and that the (nonempty) singular set has dimension1.
Then Q has a geometric structure.

Using this conjecture we shall establish:

Theorem 9. Let Q(m, n, p) be a 3-dimensional orbifold with underlying space
S3 and singular set a 2-bridge knot or link L together with an unknotting tunnel,
labelled m, n and p, with p along the unknotting tunnel (and possibly with vertex
neighborhoods deleted as in Sect. 2). Let r, s denote positive relatively prime
integers with r< s such thatπorb

1 (Q) = ∆(m, n, p, W(r , s, a, b)). Then Q(m, n, p)
is geometric unless L is a link of two unknotted, unlinked components. More
specifically,

(1) if L is a link of two unknotted, unlinked components, then Q is bad.
(2) otherwise, ifπorb

1 (Q) is finite, then Q is spherical
(3) otherwise, if s is odd, p= 2, either m or n= 2, and2r ≡ ±1 (mods) then

Q is Seifert-fibered
(4) otherwise, if r= 0, s = 1 then Q is Seifert-fibered (actually, I-fibered)
(5) otherwise, Q is hyperbolic

Proof. Denote the singular set ofQ by Σ. We need to categorize the spherical
and toric 2-orbifolds inQ. Note that there are no essential spheres or tori inQ
since the complement ofΣ is a handlebody. Nor are there any 2-orbifolds with
boundary reflectors, sinceQ is an orientable orbifold. Thus, we must deal with
the 2-orbifolds having underlying spaceS2 and up to 4 cone points.

Let us examine carefully a few particular types of orbifolds we will need to
recognize. All of these will have underlying space a 3-ball (possibly with some
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Y-ball

I-ball II-ball

Fig. 9.

vertex neighborhoods deleted). We will refer to such an orbifold with singular
set a single vertex and three unknotted singular arcs running out to the boundary
as a “Y-ball,” to an orbifold with one unknotted singular arc as an “I-ball,” and
to an orbifold with two unknotted singular arcs as an “II-ball” (see Fig. 9). In the
case of a Y-ball, the interior vertex will possibly have a neighborhood deleted if
the incident edges are not consistent with the vertex having a spherical link.

We note that each one of these special orbifolds may be recognized up to
isotopy by the combinatorial type of the singular set, together with the funda-
mental group of the complement of any subgraph of the singular set being free
(see [ST]). We also observe that the boundary of any of these special orbifolds
is inessential.

Let us call a 3-orbifoldbasic if it has underlying space a 3-ball, singular set
combinatorially equivalent to one of the 3 special orbifolds in Fig. 9, and if the
fundamental group of the complement of any proper subgraph of the singular set
is free.

Let us suppose a 2-orbifoldO in Q bounds a basic 3-orbifoldB. Then, either
B\Σ has free fundamental group (in which caseB is one of the special orbifolds)
or B \ Σ fails to inject intoQ \ Σ (sinceQ \ Σ is a handlebody) and thus some
essential loopγ in O\Σ bounds a disc inQ\ (Σ∪O). If γ bounds a DISC inO,
then we have a bad 2-orbifold inQ by pasting the DISC and the disc together.
Otherwise,O is compressible inQ. Thus, any 2-orbifold inQ that bounds a
basic 3-orbifold must either be inessential or give rise to a bad 2-orbifold inQ.

Let us next fix some notation: denote byτ the unknotting tunnel, and byK
the 2-bridge knot (if it is a knot) or byL1 and L2 the two components of the
link. In the knot case, denote byK1 andK2 the two arcs ofK between the two
intersections withτ . Let S be an embedded sphere inQ meeting the singular
set in q points, where 1≤ q ≤ 4. Observe that theLi are unknotted circles
and theKi are unknotted arcs. We will show thatQ is geometric (unlessL is a
2-component unlink) by showing thatS can only be bad ifL is a 2-component
unlink, and that otherwiseS bounds a basic orbifold.

Note thatq cannot be 1, unlessL is a two component unlink, since no sphere
can meetL in a single point, and a sphere that meets onlyτ in an odd number
of points must separate the two components ofL (and cannot occur at all ifL is
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a knot). So, except for theQ arising from this particular link, there are no bad
2-suborbifolds inQ.

If q = 2, then eitherS meetsτ twice or one of theLi twice or one of theKi

twice. In either case,S bounds a basic orbifold equivalent to an I-ball.
If q = 3 (turnover), thenS must meetτ exactly once, and either someLi twice

or bothKi once: it cannot meetL (or K ) an odd number of times for homological
reasons, and it cannot meetτ 3 times as observed above. In the knot case, since 2-
bridge knots are prime, one of the balls bounded byS must contain an unknotted
arc of K . This ball will also necessarily contain an unknotted subarc ofτ and so
it is a basic orbifold equivalent to a Y-ball. In the 2-component case, one of the
balls bounded byS will contain the other component ofL and the other one will
not. The ball which does not contain the other component must contain only an
unknotted arc ofLi (sinceLi is in fact an unknot) and an unknotted arc ofτ and
so is also a basic orbifold equivalent to a Y-ball.

If q = 4 (pillow), then there are several combinatorial possibilities, but in
every caseS bounds two balls, one of which contains both vertices and the
other of which contains none. The side containing no vertices is a basic orbifold
equivalent to an II-ball.

This shows thatQ is geometric as long as there are no (deleted) vertices with
link a hyperbolic 2-orbifold. If thereare such vertices, we may perform the usual
trick of doubling along the links of such vertices (denote this double byDQ), and
observing that any essential toric or spherical 2-orbifolds inDQ gives rise to an
essential toric or spherical 2-orbifold inside one of the halves. This is because the
doubling surfaces are 2-spheres with 3 cone points and any essential embedded
2-orbifold placed in general position will intersect the doubling surface at most
in simple closed curves, which all bound a DISC in the doubling surface. Using
an inductive process on innermost such curves, we may decompose the original
2-orbifold into an essential 2-orbifold in one half, together with some (possibly
empty) collection of essential 2-spheres with 2 cone points (again embedded in
one of the halves). Thus, if there are no essential spherical or toric 2-orbifolds
in each half, there are none inDQ.

So, DQ must be geometric. Observe that sinceπorb
1 (DQ) is infinite and con-

tains a Fuchsian triangle group, the geometric structure onDQ cannot be mod-
elled onS3, S2 × R, E3, Nil or Sol. Therefore either the double is hyperbolic or

it is a Seifert fibered orbifold with geometry modelled onH2 × R or ˜SL(2, R).
Note thatDQ admits an orientation-reversing involutionσ0 interchanging the
two copies ofQ. As is well-known, in the hyperbolic case, we can make this in-
volution an isometry, hence forcingQ to be hyperbolic and making the boundary
of Q totally geodesic. In the Seifert fibered cases, sinceπorb

1 (DQ) is residually
finite, we can pass to a regular finite coverDM of DQ which is a manifold and
which admits a liftσ of the orientation reversing involution switching the two
copies ofQ. This induces a covering ofQ by a manifold. Thus we have a finite
groupG acting on the geometric manifoldDM . By Meeks and Scott [MS], since
we are in the Seifert fibered case, theG-action preserves the geometric structure,
and so in particularσ acts as an isometry of the geometric structure onDM .
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Hence we deduce that the involutionσ0 on DQ preserves the geometric structure
and so we deduce thatQ is geometric.

In fact, the only essential hyperbolic 2-orbifolds that exist in a Seifert-fibered
3-orbifold are “horizontal” 2-orbifolds, which cut the 3-orbifold apart into an
I -bundle. Since the doubling surfaces are 2-sided, theI -bundle must in fact be
trivial, so this only occurs whenr = 0, s = 1 (i.e., when the Generalized Triangle
Group is actually a Triangle Group).

Now that Q is geometric, to complete the proof we need to decide which
geometry is possessed byQ. By the above comments we may restrict to the case
in which the doubling argument above wasnot needed.

By Theorem 1 of [Du1]Q must either be spherical (and have finiteπ1),
Seifert-fibered (with either finite or infiniteπ1), one of 12 Euclidean orbifolds
(infinite π1), a solvorbifold (infiniteπ1) or a hyperbolic orbifold (infiniteπ1).
Note that Seifert-fibered orbifolds with finiteπ1 are also spherical.

Now, we can rule out the 12 “special” Euclidean orbifolds by checking Dun-
bar’s list directly. We rule out the Seifert-fibered case by observing that the only
possible vertex stabilizers for Seifert-fibered orbifolds with infinite fundamental
group are cyclic or dihedral (see Sects. 4 and 5 of [Du1]), and that the only
possibleQ(m, n, p) which have vertex stabilizers of this form are the orbifolds
Q(2, 2, p) and Q(2, n, 2) (or Q(m, 2, 2)). The former have finite (dihedral) fun-
damental group and thus are spherical, whether or not they are fibered.

The latter only arise in the 2-bridge knot case (the link case has vertex indices
of (2, 2, 2) and (2, n, n)). Assume for definiteness thatK1 is labelled 2. Observe
that here, the 2-fold cyclic branched cover ofS3 branched over the unknotτ ∪K1

is againS3 and that the union of the two lifts ofK2 is a knotJ . ThenQ is Seifert-
fibered if and only ifJ is a torus knot. We claim that this will happen precisely
when r ≡ ±1 (mods).

To see this, recall the geometric picture ofQ with its vertices deleted which
was given in the proof of Theorem 2, i.e., a genus-two handlebody with singular
discs attached along two standard meridiansa andb and a simple closed curve
representingW(r , s, a, b). The 2-fold branched cover corresponds to a genus-
three handlebody (cover corresponding to index-2 subgroup freely generated by
a2, b, aba−1) with singular discs attached to the lifts ofb and aba−1 and
nonsingular discs attached to the lifts ofa2 and W(r , s, a, b)2. Now, note that
if a has order 2,W(r , s, a, b)2 = W(2r , s, aba−1, b), so that this orbifold is a
punctured realization of the group∆(n, n, 1, W(2r , s, c, d)) (wherec and d are
lifts of aba−1 and b, respectively). In particular,J is a 2-bridge knot and is a
torus knot if and only if 2r ≡ ±1 (mods).

We rule out the solvorbifold case by recalling Theorem 1 of [Du1] which
shows that solvorbifolds fiber overS1 or have a double cover which does. The
abelianization ofπorb

1 (Q) is clearly finite (since both generators have finite order),
so Q itself doesn’t fiber overS1. Furthermore, if there exist any index-2 sub-
groups, they are generated by{a2, b, aba−1}, {b2, a, bab−1} or {a2, ba−1, ab}.
The first two of these also have obviously finite abelianization. To handle the
third subgroup (which only occurs whenm andn are both even and eitherp is
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even orL is a link), let A = a2, B = ba−1 and C = ab. Then, in the abelian-
ization, A, B + C and B − C all have finite order and hence so does 2B and
henceB. Thus, the generating set{A, B, BC} is a set of generators which all
have finite-order in the abelianization.

To see that no cusped orbifolds (those with vertex links that are Euclidean
triangle groups) result in Seifert-fibered (or I-fibered, which we will henceforth
not distinguish) orbifolds, other than the cases mentioned in the theorem, recall
that totally geodesic surfaces in Seifert-fibered spaces are either transverse to the
fibers (in which case they decompose the space into a union of I-bundles) or are
parallel to the fibers (in which case they are fibered themselves).

Now, suppose thatQ is a Seifert-fibered orbifold with either one or two
cusps. If either cusp is transverse, thenQ is an I-bundle (so the other cusp if
it exists must be transverse also). If there are two cusps (note that this always
occurs if the 2-bridge link is a knot), then the I-bundle must be trivial and we are
in case (4) of the conclusion of the theorem. If there is only one cusp, then the
other vertex must be dihedral (as observed earlier) and so the singular locus must
consist of a singular fiber connecting the cusp to itself, another loop of 2-fold
singularity connected to the cusp by the unknotting tunnel. But, this cannot be
an I-bundle, since taking the 2-fold cyclic cover over the singular loop should
produce another I-bundle, but instead produces a two-cusped orbifold with one
singular arc joining the two cusps and a singular arc running from each cusp to
itself (note that the singular arcs are fibers of the I-bundle).

If no cusps are transverse, then there must be a “parallel” cusp (that is, a
cusp that is itself fibered). Such a cusp must have only 2-fold singularities and
so must be a 2-sphere with four 2-fold cone points (pillow cusp), but all the
cusps inQ are 3-cone point (turnover) cusps.�

We note here that the proof of Theorem 9 also yields the fact that all elements
in these Generalized Triangle Groups thatappearto have finite order, actuallydo
have the order that the presentation would imply (this was used in the proof of
Lemma 4 in Sect. 2). The only way for this to fail in a 3-orbifold is for the orbifold
to contain a bad 2-suborbifold, and our analysis rules out such suborbifolds.
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