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Abstract. D. Gabai, R. Meyerhoff and N. Thurston identified seven families
of exceptional hyperbolic manifolds in their proof that a manifold which is
homotopy equivalent to a hyperbolic manifold is hyperbolic. These families
are each conjectured to consist of a single manifold. In fact, an important
point in their argument depends on this conjecture holding for one particular
exceptional family. In this paper, we prove the conjecture for that particular
family, showing that the manifold known as Vol3 in the literature covers no
other manifold. We also indicate techniques likely to prove this conjecture for
five of the other six families.

1. Introduction

The following important rigidity theorem is proved by D. Gabai, R. Meyerhoff
and N. Thurston in [6]:

Theorem 1.1. Let N be a closed hyperbolic 3-manifold, M a closed irreducible
3-manifold and f : M → N a homotopy equivalence. Then f is homotopic to a
homeomorphism.

This theorem is proved by a rigorous computer-assisted procedure, which has its
origins in an earlier work of Gabai [5], where the above theorem was proven with an
added technical condition concerning the existence of a certain kind of closed geo-
desic (one which satisfies the “insulator condition” defined in [5]) in N . The proof
of Theorem 1.1 is achieved by using several computer programs to show that all
closed hyperbolic 3-manifolds, apart from seven exceptional families, possess such
a closed geodesic. The focus of this note is these seven families. It is conjectured
that these seven families simply consist of seven manifolds. The main aim for us is
to use arithmetic techniques to prove uniqueness for one of these families (denoted
X0 in [6]), and investigate some properties. To state the theorem we recall some
notation from [6], and the relation to traces that we shall use.
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The exceptional manifolds of interest in [6] are specified by a triple (L′, D′, R′) of
approximate complex numbers representing exponentials of various complex lengths
which suffice to geometrically describe a conjugacy class of 2-generator subgroups
(generated by f and w in the notation of [6]) of PGL(2,C).

Such a 2-generator group is completely specified up to conjugacy by a different
triple of complex numbers, namely, the normalized traces (that is, the traces of the
SL(2,C) representatives) of the two generators and their product. In general the
traces themselves are not necessarily in the invariant trace-field (see [10] and §2
below) but the traces of the squares of those generators are. Furthermore, it is an
easy matter to take “square roots” in PGL(2,C) since, if x has determinant one,
(x ± I)2 = (tr x ± 2)x which is equal to x in PGL(2,C). Hence, one may easily
(though not uniquely) recover the triple of traces of 〈x, y〉 from that of 〈x2, y2〉, as
follows:

tr x =
√

2± tr x2,

tr y =
√

2± tr y2,

trxy = (tr x2y2 + tr x2 + tr y2)/(trx tr y).

Therefore, it is most convenient from the arithmetic point of view to work with
the triple

(tr f2, trw2, tr f2w2)

instead of the original (L′, D′, R′) triple. We call this the trace triple associated to
〈f, w〉.

Note that, a priori, there are four possible conjugacy classes of two-generator
subgroups corresponding to a given conjugacy class of two-generator subgroup gen-
erated by squares. However, using the particular correspondence detailed below, it
is easy to check that the original generators correspond to those obtained by using
both positive signs in the formulae above, so that the original generators f and w
are scalar multiples of f2 + I and w2 + I respectively.

The correspondence between the triple of [6] and ours is given by

tr f2 = L′ +
1
L′
,

trw2 =
(R′ + 1

R′ + 2)(D′ + 1
D′ + 2)− 8

4
,

tr f2w2 =
(D′ + 1

D′ + 2)(R′L′ + 1
R′L′ ) + (D′ + 1

D′ − 2)(L′ + 1
L′ )

4
.

With this notation, we prove (see Experimental Theorem 1.30, Proposition 3.1
and Remark 3.3 of [6]):

Theorem 1.2. The triple (L′, D′, R′) associated to X0 occurs for a unique closed
hyperbolic 3-manifold M of volume v0, the volume of the regular ideal simplex in
H3. The relevant trace triple is (−1−

√
−3,−1−

√
−3,−1 +

√
−3).

The main application of Theorem 1.2 (see Theorem 3.1 below) to [6] is that the
manifold M does not cover any other hyperbolic 3-manifold (see Proposition 3.1 of
[6]). The manifold M is what has been called Vol3 in the literature (see §3).

We also discuss five of the other exceptional manifolds.
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2. Arithmetic preliminaries

Here we recall the definition of an arithmetic Kleinian group as well as discuss
some of Borel’s work [2] on maximal elements in the commensurability class of an
arithmetic Kleinian group.

2.1. Arithmetic Kleinian groups. Let k be a field of characteristic different
from 2. The standard notation for a quaternion algebra over k is the following: let
a and b be non-zero elements of k. Then (a,bk ) denotes the quaternion algebra over
k with basis {1, i, j, ij} subject to i2 = a, j2 = b and ij = −ji. (a,bk ) is called a
Hilbert Symbol for the quaternion algebra.

If now k is a number field, and ν a place of k, we say a quaternion algebra A
over k is ramified at ν if A ⊗k kν is a division algebra of quaternions. In the case
when ν is associated to a real embedding of k, A is ramified at ν if A ⊗k kν ∼= H
where H is the Hamiltonian quaternions over R. We shall denote the set of places
(resp. finite places) of k at which A is ramified by Ram(A) (resp. Ramf (A)).

Let Γ be a Kleinian group and let Q(tr Γ) denote the trace-field of Γ. When
Γ has finite co-volume Q(tr Γ) is a finite extension of Q. Following [11] and [10]
we define the invariant trace-field kΓ and invariant quaternion algebra AΓ of Γ as
follows: let Γ(2) = gp{γ2 : γ ∈ Γ}. Then kΓ = Q(tr Γ(2)) and AΓ is the quaternion
algebra over kΓ defined by (see [1])

AΓ =
{∑

aiγi : ai ∈ kΓ, γi ∈ Γ(2)
}
,

where all sums are finite. kΓ and AΓ are invariants of the commensurability class
of Γ. Now AΓ can be explicitly determined from Γ (see [7]):

Lemma 2.1. Let Γ be a co-compact Kleinian group for which kΓ = Q(tr Γ), and
let γ and δ be a pair of non-commuting elements of Γ with order different from 2.
Then,

AΓ ∼=
(

(tr 2(γ)− 4), (tr ([γ, δ])− 2)
kΓ

)
.

We now recall the definition of arithmetic Kleinian groups (see [2], or [13] for
details).

Let k be a number field having exactly one complex place. Let B be a quaternion
algebra over k which ramifies at all real places of k. Let O be an order of B and
let O1 be the group of elements of reduced norm 1 in O. Over an embedding
k ↪→ C inducing the complex place of k one may choose an algebra embedding
ρ : B ↪→ M(2,C) which restricts to an injection ρ : O1 ↪→ SL(2,C). Let P :
SL(2,C)→ PSL(2,C) be the natural projection. Then Pρ(O1) is a Kleinian group
of finite co-volume. An arithmetic Kleinian group Γ is a subgroup of PSL(2,C)
commensurable with a group of the type Pρ(O1). We say Γ is derived from a
quaternion algebra if Γ is actually a subgroup of some Pρ(O1). We call Q = H3/Γ
arithmetic or derived from a quaternion algebra if Γ is arithmetic or derived from
a quaternion algebra.

It is shown in [9] that a Kleinian group Γ of finite co-volume is arithmetic if and
only if the group Γ(2) is derived from a quaternion algebra.
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2.2. Maximal arithmetic Kleinian groups. To describe Borel’s results [2] we
fix the following notation: let B be a quaternion algebra over a number field k
with one complex place. Let Rk denote the ring of integers of k. We shall use the
notation x to denote an element of B∗/k∗ represented by x ∈ B∗.

A Kleinian group Γ ⊂ PGL(2,C) is maximal if it is maximal, with respect to
inclusion, within its commensurability class. Borel [2] proved that any maximal
arithmetic Kleinian group is isomorphic to some group ΓS,O, which we now define.
Let O be a maximal order of B and S a finite (possibly empty) set of primes of k
disjoint from Ramf (B). For each P ∈ S choose a local maximal order EP ⊂ BP
such that [OP : EP ∩ OP ] = Normk/Q(P), where OP = O ⊗Rk RkP . We shall say
that x ∈ B∗P fixes OP (resp., {OP , EP}) if xOPx−1 = OP (resp., either x fixes OP
and EP , or xOPx−1 = EP and xEPx−1 = OP). Borel’s definition is

ΓS,O =
{
x ∈ B∗/k∗

∣∣ x fixes OP for all P /∈ S, and for P ∈ S, x fixes {OP , EP}
}
.

A specific maximal group that will be important to us has the following alter-
native description.

Let O be a maximal order of B and let

ΓO = {x ∈ B∗/k∗|xOx−1 = O}.

Via the complex place of k we get an embedding ρ : B ↪→ M(2,C) and hence a
ρ : B∗/k∗ ↪→ PGL(2,C). For simplicity we identify ΓO with ρ(ΓO). Then ΓO ⊂
PGL(2,C) is an arithmetic Kleinian group giving rise to a hyperbolic 3-orbifold
H3/ΓO of finite volume. In the above description, if we take S to be empty we find
ΓS,O = ΓO (see [2] for further details).

Two maximal orders O and O′ of B are said to be of the same type if they are
conjugate by an element of B∗. In this case ΓS,O is conjugate to ΓS,O′. Thus, to
study all the ΓS,O up to conjugacy, it suffices to select one O from each type. Types
can be parametrized by the group TB defined as the group of fractional ideals of k,
modulo the subgroup generated by squares of ideals, by ideals in Ramf (B) and by
principal ideals (α) generated by an α ∈ k∗ which is positive at all real embeddings
of k. The set of types is in bijection with the elements of TB [13] (recall that we
are assuming that Ram(B) includes all real places).

2.3. Volume formula. We shall make use of a certain volume formula for arith-
metic Kleinian groups (see [2] and [3], Prop. 2.1)

Vol(H3/ΓS,O) =
2π2ζk(2)d

3
2
k

(∏
P∈Ramf (B)

NP−1
2

)∏
P∈S(NP + 1)

2m(4π2)[k:Q]|TB|

for some integer m with 0 ≤ m ≤ |S|. Here ζk denotes the Dedekind zeta function
of k, dk is the absolute value of the discriminant of k, Ramf (B) is the set of finite
places of k at which A is ramified, N denotes the absolute norm, and S and TB are
as defined above.

We remark that the case S = ∅ gives the minimal volume in the commensurability
class.

Notation. If a prime ideal of the field k has norm n, we denote this ideal by Pn.
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3. An arithmetic manifold

3.1. The computer generation of the manifold. We have written a suite of
computer programs for investigating arithmetic hyperbolic 3-orbifolds which are
capable (among other things) of calculating rigorously correct presentations of fun-
damental groups of these orbifolds. See [8] for a fuller discussion of these programs.

For our purposes, these programs may be regarded simply as a means of taking
a group specified by a generating set of elements in a quaternion algebra over a
number field with one complex place, ramified at all real places, and producing
an approximate Dirichlet domain for a particular representation of this group into
PGL(2,C) which has the property that a presentation of the group derived from
the identification pattern on this approximate Dirichlet domain is guaranteed to be
isomorphic to the original group. In addition, the presentation has the property
that any torsion present in the original group will be recognizable as conjugate to
a proper power relator in the presentation – this greatly simplifies the location of
manifolds (as opposed to orbifolds) commensurable with the group.

To apply this machinery to the case of X0, we proceed as follows (recall the
discussion of §1). Examining the data presented in [6] associated to X0, we find
that, at least to the precision specified there, the exceptional manifold being sought
has fundamental group generated by a2 + I and b2 + I where

tr a2 = −1−
√
−3,

tr b2 = −1−
√
−3,

tr a2b2 = −1 +
√
−3.

Note that since the above traces are elements of O3 (the ring of integers of
Q(
√
−3)) it is easy to see that the group 〈a2, b2〉 is discrete. Briefly,

{1, a2, b2, a2b2}

is an O3-basis for an order O of the invariant quaternion algebra of 〈a2, b2〉 (see [4]
or [8]) so that 〈a2, b2〉 is a subgroup of the arithmetic Kleinian group arising from
O1; recall §2.

We now use the program to compute a presentation for the supergroup 〈a, b〉.
This yields the presentation

〈a, b|b−1aba2bab−1a2, bab−1ababa−1ba〉.

This is the fundamental group of the manifold which is referred to as M in
the statement of Theorem 1.2. Arithmetic considerations (the invariant quaternion
algebra is ramified at primes of norm 4 and 3, see below) lead us to the conclusion
that M is closed.

The program also computes the volume of this manifold as 1.0149 . . . (correct to
these five significant figures) and thus by arithmetic considerations detailed below
the volume is exactly equal to v0. We also readily calculate from this presentation
that H1(M ; Z) = Z3 ⊕ Z6.

This group is isomorphic to the presentation obtained in [11] for the fundamental
group of a manifold given by a surgery description, namely, (−1, 2)−Dehn filling
on a once-punctured torus bundle whose monodromy is −R2L in the usual RL
factorization. This presentation is

〈A,B|B2A2B2A−1B−1A−1, B−1ABA3BAB−1A〉
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and the isomorphism between the two is given by a = AB2, b = A−1B−1A−2. In
[12], it is shown that this manifold is arithmetic with volume v0. The relevant
traces for these generators are given by

trA2 = −1 +
√
−3,

trB2 = (−5 +
√
−3)/2,

trA2B2 = (1−
√
−3)/2.

Also using the program, we compute that the orbifold of minimal volume in the
commensurability class of M has the presentation

〈x, y, z|x2 = y2 = z2 = (xyz)4 = (xyxyxz)2 = (yzxz)2 = 1〉

for its fundamental group. We also compute that this orbifold has volume 0.1268 . . .
(correct to these four significant figures). An embedding of 〈a, b〉 into 〈x, y, z〉 is
given by a = xyxzxyzxyxy and b = xyxzxyxzx (this is most readily checked by
calculating traces in 〈x, y, z〉).

Comparing the two (approximate) volumes readily gives an index of 8 for 〈a, b〉
in 〈x, y, z〉. Furthermore, we may define a homomorphism ϕ from 〈x, y, z〉 onto the
dihedral group of order 8 (given by 〈s, t|s2 = t4 = 1〉) by ϕ(x) = t2, ϕ(y) = ts,
ϕ(z) = st2. One easily checks this to be a homomorphism since ϕ(xyz) = t,
ϕ(xyxyxz) = s and ϕ(yzxz) = st. Further,

ϕ(xyxzxyzxyxy) = ϕ(xyxzxyxzx) = 1

so that 〈a, b〉 is contained in the kernel of ϕ. Hence, since the index of 〈a, b〉 in
〈x, y, z〉 is 8, we deduce that 〈a, b〉 coincides with the kernel of ϕ, and so is a normal
subgroup of index 8.

We also remark that 〈x, y, z〉 contains subgroups isomorphic to the dihedral group
of order 8 generated, for example, by yzx and z.

Figure 1 contains a labeled view of the computer-generated polyhedron which is
the fundamental domain for M with its face-pairing indicated. Figure 2 contains a
perspective view (upper-half-space model) of the same polyhedron.

3.2. Arithmetic properties of the manifold. Here, we note that the algebra
A associated to the trace triple used for the construction of M is ramified at two
finite places: P3, associated to

√
−3, and P4, associated to 2 (which is inert).

To see this, we use the trace triple to calculate a Hilbert symbol(
2
√
−3− 6, 6

√
−3− 6

Q(
√
−3)

)
for A, and then observe that the norms of the upper Hilbert symbol entries are
48 and 144, respectively. This immediately rules out any finite ramification other
than the two finite places indicated, since non-dyadic places which ramify an algebra
must divide one of the entries of any Hilbert symbol for that algebra. To complete
this calculation, we localize at the prime P3 and observe that the first entry is
a uniformizer for the localized field, while the second is a non-square. Standard
quaternion algebra techniques (see [13], for example) then show that A is ramified
at P3. Since the ramification set always has even cardinality, and there are no real
places of this field, there must also be a dyadic prime which ramifies A, but P4 is
the unique dyadic prime in this field.
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3.3. The manifold has no manifold quotients. Here we establish the following
theorem.

Theorem 3.1. M has volume v0 and does not properly cover any hyperbolic 3-
manifold.

This theorem is also a direct consequence of the fact that M is arithmetic. For,
as will be shown in the proof, M has volume that of the regular ideal simplex in H3,
and the minimal volume of an arithmetic hyperbolic 3-manifold is approximately
0.94 . . . ([4]). However, we give a direct proof as it will illustrate the techniques to
be applied to some of the other exceptional groups.
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The proof is similar to the proof of Lemma 8 of [12]. Before embarking on the
proof, we make some preliminary observations.

From above, RamA consists of the places P4 and P3 associated to the primes
2 and

√
−3 of Q(

√
−3). As can be checked, the type number of this algebra is

1. Hence up to conjugacy in PGL(2,C) there is a unique group ΓO arising from
maximal orders O of A. From the volume formula in §2.3 we deduce

Vol(H3/ΓO) =
2π2ζQ(

√
−3)(2)3

3
2 (3

2 )
(4π2)2

.

Furthermore using the fact that the volume v0 of a regular ideal simplex in H3 is
given by

35/2ζQ(
√
−3)(2)

2π2
,

we obtain the following.

Lemma 3.2. Vol(H3/ΓO) = v0
8 .

Proof of Theorem 3.1. Note that from above since H1(M,Z) is finite, M cannot
cover a non-orientable hyperbolic 3-manifold. Thus it suffices to rule out orientable
manifolds in the commensurability class determined by the algebra A above.

We aim to locate M in the commensurability class defined by A. Let Γ denote
the faithful discrete representation of π1(M) defined above. As discussed in §3.1, M
covers the orbifold Q = H3/ΓO. By using a volume estimate for M together with
Lemma 3.2 we must have that M is an 8-fold cover of Q, and so has volume v0. Also
as noted above this is the unique orbifold of this volume in the commensurability
class of M . We shall show that the only minimal orbifold that M can cover is Q.
For then if M covers a hyperbolic 3-manifold N say, N must also cover Q, and
the degree of the cover is at most 4. However from §3.1, the group ΓO contains a
dihedral group of order 8, so any manifold cover of Q must have degree at least 8.
This rules out a manifold cover N , and completes the proof of the theorem.

To show that M does not cover any other minimal orbifold we use Borel’s de-
scription of maximal groups in the commensurability class given in §2. This will
involve a simple analysis of primes of small norm in Q(

√
−3) together with the

volume formula for ΓS,O given in §2.3. Thus, assume that Γ is a subgroup (up to
conjugacy) of some maximal group ΓS,O. Then the volume formula in §2.3 gives

Vol(H3/ΓS,O) =
v0

8
·
∏
P∈S(NP + 1)

2m
,

where 0 ≤ m ≤ |S|. Also recall S consists of places different from P4 and P3 at
which A is ramified. Now 5 is inert in Q(

√
−3) giving a place P25, and 7 splits as

a pair of primes P7P ′7. We make some comments on the possibilities for S. Let
T = {P4,P3,P25,P7,P ′7}.

S contains a place not in T . Since 11 is inert and 13 splits, the minimal possible
norm of a place in this case is 13. Thus if P is as stated, then the co-volume of
ΓS,O is at least v0

8 · 7. Then Γ having co-volume v0 cannot be a subgroup of such
a group.

S contains P25. Arguing as above we get a volume estimate of at least v0
8 · 13

which is larger than v0, and hence Γ cannot be a subgroup of such a ΓS,O.
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S contains P7 or P ′7. By definition NP7 = NP ′7 = 7, so that S cannot contain
both of P7 and P ′7, for again as above we get a co-volume estimate of v0

8 · 16 which
is greater than v0. Thus these remarks together with the above imply that the only
possibilities for S (apart from S = ∅ which is dealt with by ΓO) are S = {P7} and
S = {P ′7}. The volume estimates in these cases give v0

8 · 4 = v0/2.
To rule out these cases as giving maximal groups for which Γ is a subgroup we

proceed as follows. From above if Γ were a subgroup ΓS,O the index is 1 or 2. If
the index is 1, then ΓS,O < ΓO and so ΓS,O is not maximal. If the index is 2, then
Γ is normal in ΓS,O. But from §3.1, Γ is normal in ΓO and so ΓO is the normalizer
of Γ in PGL(2,C), since it is a maximal group. Thus as above we deduce that
ΓS,O < ΓO and so ΓS,O is not maximal.

Remark 3.3. It follows from the presentation of ΓO that M is the unique arith-
metic manifold of this volume in the commensurability class, since all other index
8 subgroups have elements of finite order.

4. Other exceptional manifolds

There are six other exceptional manifolds X1, . . . , X6 mentioned in [6]. Follow-
ing the methods in §3, and using the approximations given in [6], it is possible to
construct (as suggested by §3 of [6]) closed arithmetic hyperbolic 3-manifolds asso-
ciated to five of these – the exception being X3. Hence the uniqueness statement
conjectured for the remaining five are susceptible to attack by the methods used
above. We now discuss this.

Two of these, X5 and X6, are homeomorphic by an orientation reversing isom-
etry. To see this, we note that both of these have R′ = 1, and their L′ and D′

parameters are negative conjugates of each other. Complex conjugation of all pa-
rameters is an orientation reversing isometry and it is readily seen from our formulae
above that, when R′ = 1, changing the sign of L′ or D′ (or both) changes the signs
of two traces, resulting in the same representation into PSL(2,C). Hence, we drop
consideration of X6.

The remaining four, however, have significantly larger volume than Vol3 and
hence are more difficult to correlate with previously-known manifolds. In addition,
the index of each of these in the corresponding group of minimal co-volume in the
commensurability class is 24 or 48 (instead of 8), greatly complicating the analysis.

As one example of this complication, we mention that the group of minimal
co-volume commensurable with π1(X5) (in which π1(X5) has index 48) has 140
conjugacy classes of index-48 torsion-free subgroups and 24 conjugacy classes of
index-24 torsion-free subgroups. The problem of establishing that X5 has no mani-
fold quotients then becomes one of identifying the conjugacy class of π1(X5) inside
this maximal group and then verifying that this class does not admit a conjugacy
class of index-24 supergroups.

Hence we limit ourselves here to a few comments and a summary of some of
the relevant arithmetic data on these manifolds. First, note that each of these
manifolds has first betti number equal to zero, so that only orientable quotients
need be considered. Second, note that here there are other maximal groups to be
considered, in addition to the group of minimal co-volume in the commensurability
class. These maximal groups have an alternative description (in addition to Borel’s
notation mentioned above) as normalizers of Eichler orders (intersections of two
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Table 1.

X1 X2 X4 X5

Inv. Trace Field t4 − 2t3 − t2 t2 + 1 t3 − t− 2 t3 − t2
+2t− 1 −t− 1

Ramification Set none P2,P5 P2 P2

Norm of 217 20 176 16
Order Disc.
Index in 48 24 24 48
Max. Group
Volume 4.116968 3.663862 7.517689 3.177293
H1 Z7 ⊕ Z7 Z4 ⊕ Z12 Z4 ⊕ Z12 Z4 ⊕ Z4

Eichler Orders {P7} none {P ′2}, {P11} none
Trace Triple 2t3 − 3t2 − 4t+ 1 −2t− 2 t2 − 2t− 1 2t2 − 2t− 2

2t3 − 3t2 − 4t+ 1 −2t− 2 t2 − 2t− 1 2t2 − 2t− 2
−5t3 + 9t2 + 8t− 8 6t 2t2 + 2t− 6 −2t2 + 4t

maximal orders). Some of these may be ruled out by various means, however,
which reduces the number of Eichler orders which must be computed.

For example, in the case of X1, the index of π1(X1) inside the minimal co-volume
group is 48. Denote this minimal volume by V . Then any other maximal group
containing π1(X1) would have a volume KV where K is a “factor” of 48 (K need
not be an integer, but it is an integer divided by a power of 2). Thus, the norm of
any prime ideals in the corresponding set S must be one of {2, 3, 5, 7, 11, 23, 31, 47}.
Not all of these norms actually exist among the prime ideals of the invariant trace
field. This leaves only {7, 23, 31, 47} to consider.

Furthermore, we need only consider the combinations of distinct primes P in
which the product of (NP + 1)/2 is less than or equal to 24. This leaves only
single-element sets of these four norms to consider.

We can additionally apply Lemma 2.2.3 of [4] to rule out 31 on the grounds that
the normalizer of the corresponding Eichler order must contain 3-torsion, and thus
any torsion-free subgroups would have the same (or larger) volume as X1.

Finally, we rule out any combinations containing prime ideals that do not divide
the discriminant of the order generated by the trace triple of π1(X1) since such
primes cannot appear in the discriminant of an Eichler order containing π1(X1)
(see for example [13], Cor. 4.8, p. 25).

Taking all of this together, we find only one Eichler order, corresponding to
S = {P7} (where P7 is the unique prime of norm 7 in the invariant trace field)
which needs to be considered in addition to the maximal order in checking whether
or not X1 has a nontrivial manifold quotient.

Table 1 summarizes the relevant arithmetic data for the four other unique arith-
metic exceptional manifolds. In this table, the fields are specified by giving a
polynomial, adjoining one root of which to Q gives the field, prime ideals are given
in the form Pn, referring to an ideal of norm n, volumes are given to seven sig-
nificant figures without rounding, and Eichler orders are specified by giving the
corresponding set S of prime ideals. In the description of the Eichler orders of X4,
the notation P ′2 refers to the unique ideal of norm 2 other than the one that ramifies
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the algebra. We note also that all four of these algebras have type number 1 (hence
a unique conjugacy class of maximal orders).

Remark 4.1. The results of [4] can be used to reduce the degree of possible covering
of Xi → N , where N is a conjectural closed hyperbolic 3-manifold quotient. For
instance for X2 the only possible degrees are 2 and 3, reducing the enumeration of
subgroups of finite index to index 12 and 8.
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