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Abstract. We consider the reduction modulo places of Brauer classes on surfaces, with a

view toward applications to rationality and derived equivalence. We show that a Brauer class

on a very general polarized K3 surface over a number field becomes trivial upon reduction

for a set of places of positive natural density. As a consequence, there are cubic fourfolds

which become rational upon reduction for a positive proportion of places, and there are

twisted derived equivalent K3 surfaces which become derived equivalent upon reduction for

a positive proportion of places.

1. Introduction

Suppose that X is a smooth projective surface over a number field k; write Br(X) :=

H2
et(X,Gm)tors for its Brauer group. For a place p of k of good reduction for X, let Xp

denote the reduction modulo p. Similarly, for α ∈ Br(X), we let αp be the image of α under

the reduction map Br(X)→ Br(Xp). What can we say about the density of the set

S(X,α) := {p : αp = 0 ∈ Br(Xp)}?

We might also ask for algebraicity, i.e., αp = 0 ∈ Br(Xp) on passing to an algebraic closure.

Rationality questions for fourfolds give an impetus for considering problems of this kind

[AIM]. Several papers [Has99, Kuz10, HPT18, AHTVA19] illustrate how the rationality of

complex fourfolds may be controlled by Brauer classes on surfaces: For certain smooth

projective fourfolds Y , there exist a surface X and a Brauer class α on X such that Y is

rational whenever α = 0. When Y is defined over a number field, we may also consider

R(Y ) := {p : Yp is smooth and rational}.

Totaro’s specialization technique [Tot16], applied where rationality is not a deformation

invariant, gives examples where R(Y ) 6= ∅ with Y is irrational. Can R(Y ) be infinite when

Y is not rational? Can it have positive natural density?

1.1. K3 surfaces. Now let X be a K3 surface. Let T(X) be the transcendental cohomology

of X, i.e., the orthogonal complement of the Néron-Severi group NS(XC) ⊂ H2(X(C),Z).
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Since T(X)Q := T(X) ⊗ Q is a rational Hodge structure of K3 type, the endomorphism

algebra E := EndHdg(T(X)Q) is a totally real or a CM field [Zar83, Theorem 1.5.1].

Theorem 1.1. Let X be a K3 surface over a number field k. Assume that E is totally real,

and that dimE(T(X)Q) is odd. Let α ∈ Br(X). Then the set S(X,α) of places p such that

αp ∈ Br(Xp) vanishes has positive natural density.

Remark 1.2. For a very general polarized K3 surface X, we have NS(XC) ' Z, in which case

dimE(T(X)Q) is odd and E is totally real [Huy16, Remark 3.3.14(ii)]. Thus, the conclusion

of Theorem 1.1 holds in this setting.

Without the assumptions that E is totally real and that dimE(T(X)Q) is odd, Theorem 1.1

is false. By [Cha14, Theorem 1(2)], if E is a CM field or dimE(T(X)Q) is even, then

after a finite field extension, there is a set of places S of natural density one for which

rk NS(X) = rk NS(Xp). On the other hand, a jump in the Picard rank upon reduction is

required for a transcendental Brauer class to become algebraic (or vanish). For a prime `,

it is well known that NS(X) ⊗ Z` ↪→ NS(Xp) ⊗ Z`, which by the Kummer sequence forces

a nontrivial kernel for the map Br(X)[`∞] � Br(Xp)[`
∞], so when the Picard rank jumps

upon reduction, the Brauer group must shrink. Thus, there is necessarily a trade-off between

Brauer classes modulo p and algebraic classes in NS(Xp).

Costa and Tschinkel [CT14] found experimentally that the Picard rank may jump over a

positive-density set of places for some K3 surfaces of rank two: jumping occurs at half of

all primes. This was explained by Costa, Elsenhans, and Jahnel [CEJ20] using the concept

of the jump character, which encodes the discriminant of the Galois representation on tran-

scendental cohomology. The finite extension stipulated in [Cha14, Theorem 1(2)] trivializes

this character.

Example 1.3. Let X ′ be the double cover of P2
Q cut out by

w2 = xyz(2x+ 4y − 3z)(x− 5y − 3z)(x+ 3y + 3z),

whose minimal desingularization X is a K3 surface over Q. In [EJ21, Example 5.5] Elsenhans

and Jahnel show that rk NS(X) = rk NS(X) = 16 and E = Q, so that dimE(T(X)Q) is even.

They further show, using [EJ21, Corollary 4.7] and computations for the jump character,

that the finite field extension of [Cha14, Theorem 1(2)] is trivial, so that there is a set of

places S of Q of natural density one for which the Picard rank does not jump upon reduction,

and hence any nontrivial Brauer class remains nontrivial.

Remark 1.4. In light of Example 1.3, it would be very interesting to show that, if one

relaxes the requirement that S(X,α) have positive natural density to the weaker statement

that it is infinite, then Theorem 1.1 holds when E is a CM field or dimE(T(X)Q) is even.

Recent work of Shankar, Shankar, Tang and Tayou [SSTT19] suggests that such a statement

may be within reach.

It would also be interesting to extend Theorem 1.1 to cases where the jump character

explains jumping of the Picard rank.
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1.2. Application: cubic fourfolds. Special cubic fourfolds of certain discriminants com-

prise natural classes of fourfolds Y ⊂ P5
k to which one can associate a pair (X,α), where X is

a K3 surface and α ∈ Br(X). It is expected that a very general such Y is irrational [Kuz10];

however, if α = 0 then in some cases it is possible to show that Y is rational ([HPT18],

[AHTVA19]).

Let h be the restriction to Y of a hyperplane class in P5. We consider Y for which there

exists a saturated lattice Kd ⊂ H2(Y,Ω2
Y ) ⊂ H4(Y,Z) of rank 2 equal to

K8 =
〈
h2, P

〉
'

(
3 1

1 3

)
or K18 =

〈
h2, T

〉
'

(
3 6

6 18

)
.

Write CK8 and CK18 for the respective moduli spaces of pairs (Y,Kd).

Theorem 1.5 (≤ Theorem 5.5). Let Y ⊂ P5
k be a cubic fourfold over a number field. Assume

that Y is a very general fourfold in CK8 or CK18. Then there exists a set of places S of k of

positive natural density for which the reduction Yp is rational for every p ∈ S.

1.3. Application: derived equivalences. Let X be a K3 surface with a polarization h of

degree 2d, and let (r,m, s) ∈ Z3
≥0 be a triple of nonnegative coprime integers. The moduli

space M of Gieseker semi-stable sheaves on X of rank r, first Chern class mh and Euler

characteristic r+s is itself a K3 surface if dm2−rs = 0 and h is sufficiently generic [Muk84].

The space M need not be fine: there is a natural Brauer class α ∈ Br(M) that can obstruct

the existence of a universal sheaf on X×M . However, there is a k-linear derived equivalence

Db(M,α) ' Db(X),

first observed by Căldăraru [Căl02] in the case k = C. We call the pair (M,α) a twisted K3

surface associated to X.

Theorem 1.6 (≤ Theorem 6.3). Let X be a very general K3 surface of degree 2d over a

number field k, and let (M,α) be an associated twisted K3 surface parametrizing geometrically

stable sheaves on X. Then there exists a set of places S of k of positive natural density such

that for p ∈ S, the reduction Mp is a fine moduli space, and there is an Fp-linear derived

equivalence Db(Xp) ∼= Db(Mp).

1.4. Outine of the paper. In §§2–4 we present the proof of Theorem 1.1. It relies on

extracting information on the Picard groups of reductions modulo places from the action of

Frobenius on finite Galois modules. To draw such conclusions, we need information about

the Mumford-Tate groups. Other technical inputs include the integral Tate conjecture for K3

surfaces over finite fields and open image theorems for K3 surfaces over number fields. We

present the two applications above in §§5–6. In §5 we address specialization of rationality for

cubic fourfolds; unfortunately, no smooth complex cubic fourfolds are known to be irrational.

In §6 we illustrate how twisted derived equivalences of K3 surfaces specialize to finite fields.
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Notation. For a field k, we write k for a fixed algebraic closure of k. For a k-variety X, we

let X := X ×k k. When k is a number field, we write kp for the completion of k with respect

to the prime ideal p ⊂ Ok, and Fp for the residue field.

For a number field k, we say that a place p is a place of good reduction for a smooth

proper k-variety X there is a smooth proper morphism X → SpecOkp such that Xkp ' Xkp .

In this case, we write Xp for the closed fiber over Fp. We say that a place is finite if its

residue field is finite.

For an endomorphism f : M →M of a free module M over a ring R, we write E(f, λ) for

the eigenspace of λ ∈ R, where λ is not a zero divisor.

Acknowledgments. We thank Ravi Vakil for asking the third named author whether a

statement like Theorem 1.5 could be true at the 2015 Arizona Winter School. We thank

Nicolas Addington, Edgar Costa, and Yuri Tschinkel for valuable mathematical discussions,

and Isabel Vogt for pointing out the reference [AIM].

2. Ingredients for the proof

2.1. Mumford-Tate groups. Let

S := ResC/RGm,C

be the Deligne torus, and write w : Gm,R → S for the weight cocharacter, which is given on

R-points by the natural inclusion R× = Gm,R(R) ↪→ S(R) = C×. Given a finite-dimensional

Q-vector space V , a Q-Hodge structure of weight m on V determines and is determined by

a representation h : S → GL(VR) such that h ◦ w is given on R-points by a 7→ a−m · IdV . A

Z-Hodge structure is defined analogously, starting with a free Z-module V of finite rank. We

refer to a Q- or a Z-Hodge structure as simply a Hodge structure to avoid clutter.

Example 2.1. For a smooth projective complex variety X, the singular cohomology V :=

Hm(X(C),Q) gives rise to a Q-Hodge structure of weight m. The intersection pairing,

appropriately modified by a sign, defines a polarization on HdimX(X(C),Q). When m = 2n

is even, applying an n-fold Tate twist, we obtain a Hodge structure V := H2n(X(C),Q(n))

of weight 0.

Example 2.2. For a complex K3 surface X the Q-Hodge structure H = H2(X(C),Q(1)) of

weight 0 arising from singular cohomology splits as a direct sum NS(X)Q(1)⊕T(X)Q(1). The

vector space T(X)Q itself carries a polarized Hodge structure, polarized by the restriction

φ to T(X)Q of the cup product on H2(X(C),Q). The ring O := EndHdg(T(X)) of integral

Hodge endomorphisms is an order of the endomorphism algebra E := EndHdg (T(X)Q). In

[Zar83, Theorem 1.5.1], Zarhin shows that E is either a totally real or a CM field.

Definition 2.3. For a Q-Hodge structure V , the Mumford-Tate group MT(V ) of V is the

smallest algebraic subgroup of GL(V ) over Q such that h(S(R)) ⊂ MT(V )(R). For a Z-

Hodge structure V , the integral Mumford-Tate group MT (V ) of V is the group subscheme

of GL(V ) over Z constructed as the Zariski closure of MT(VQ) in GL(V ).
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When V is polarizable, MT(V ) is a reductive connected linear algebraic group over Q
[Sch11, Prop. 2]. When X is a complex K3 surface, MT(H2(X(C),Q)) admits a representa-

tion into an orthogonal group of dimension 22, and MT(H2(X(C),Q)) ∼= MT(T(X)Q).

Theorem 2.4 ([Zar83]). Let X be a complex K3 surface such that the endomorphism algebra

E is a totally real field. Then MT(T(X)Q) is isomorphic to the centralizer of E in the group

of orthogonal similitudes GO(T(X)Q, φ).

Proof. Recall that the Hodge group Hdg(T(X)Q) ⊂ MT(T(X)Q) is the smallest algebraic

subgroup defined over Q containing h(U(R)), where U ⊂ S is the unit circle [Zar83, p. 196]. In

[Zar83, §2.1, Theorem 2.2.1], Zarhin shows that there is a unique E-bilinear form Φ: T(X)Q×
T(X)Q → E such that φ = TrE/Q(Φ), and that Hdg(T(X)Q) is isomorphic to the Weil

restriction of scalars ResE/Q(SOE(T(X)Q,Φ)). This is clearly contained in the centralizer of

E in SO(T(X)Q, φ); Zarhin’s proof shows the reverse inclusion. By [Spr09, Theorem 6.4.7(i)],

the centralizer of E is connected. Thus the assertion for MT(T(X)Q) follows. �

Corollary 2.5. If E is totally real, then the Mumford-Tate group MT(T(X)Q(1)) is isomor-

phic to the centralizer of E in the special orthogonal group SO(T(X)Q, φQ).

Proof. Since T(X)Q(1) is a Hodge structure of weight 0, we know by [Sch11, Proposition

2(i)] that MT(T(X)Q(1)) ⊂ SL(T(X)Q). Now the result follows from Theorem 2.4. �

2.2. `-adic representations and the Mumford-Tate conjecture. Let X be a smooth

projective variety defined over a number field k. Fix a prime `, and let

ρ` : Gal(k̄/k)→ GL(H2i
et(X,Z`(i))) (2.1)

be the `-adic Galois representation arising from the action of the absolute Galois group

Gal(k̄/k) on the cohomology group H2i
et(X,Z`(i)). The Zariski closure of im(ρ`) is the `-adic

algebraic monodromy group, which we denote by G`. Let G` denote the generic fiber of G`,
which is the Zariski closure of the image of the Galois representation for H2i

et(X,Q`(i)). The

Mumford-Tate Conjecture predicts a connection between the Mumford-Tate group of H :=

H2i(X(C),Q(i)), whose formulation is Hodge-theoretic, and the `-adic algebraic monodromy

group, defined arithmetically.

Conjecture 2.6 (Mumford-Tate Conjecture, [Ser86]). Under the comparison isomorphism

H2i
et(X,Q`(i)) ∼= H⊗Q`, the Mumford-Tate group MT(H)×QQ` is isomorphic (as an algebraic

group) to the identity component G◦` of the `-adic algebraic monodromy group.

The conjecture has been proved for K3 surfaces over number fields:

Theorem 2.7 ([Tan90], [Tan95], and independently [And96]). The Mumford-Tate conjecture

holds for K3 surfaces over number fields: that is, for a K3 surface X defined over a number

field, we have

G◦` ' MT(H)×Q Q` for H = H2(X(C),Q(1)). �



6 SARAH FREI, BRENDAN HASSETT, AND ANTHONY VÁRILLY-ALVARADO

2.3. The Integral Mumford-Tate conjecture. For a smooth projective variety X de-

fined over a number field k, the Mumford-Tate conjecture can also be stated integrally:

MT (H2i(X(C),Z(i))×Z Z` is isomorphic to G◦` . This version of the conjecture is equivalent

to statement above: given the isomorphism of Q`-group schemes, taking their Zariski closures

gives the Z`-isomorphism, and given the isomorphism of Z`-group schemes, take the generic

fibers. For a thorough and illuminating discussion of this version of the Mumford-Tate

conjecture, as well as other variants, see [CM20].

2.4. Open image theorems. From the integral version of the Mumford-Tate conjecture for

K3 surfaces over number fields, we would like to make a conclusion about how a component

of the image of ρ` sits inside G◦` ∼=MT (H2(X(C),Z(1)))×Z Z`.
First, as a consequence of the Hodge-Tate decomposition [Fal88], the representation (2.1)

is of Hodge-Tate type. By [Bog80, Theorem 1], it follows that im(ρ`) is open in G`(Q`). Since

there is a finite field extension kc/k for which after base changing to kc, the image of the

Galois representation is connected, we know thatG` has finitely many connected components.

Thus im(ρ`) has a finite index subgroup that is open in G◦`(Q`). By construction G◦`(Q`)

is open in G◦` (Z`), so the integral version of the Mumford-Tate conjecture for K3 surfaces

implies:

Corollary 2.8. If X is a K3 surface over a number field, then im(ρ`) has a finite index

subgroup that is isomorphic to an open subgroup of MT (H2(X(C),Z(1)))×Z Z`(Z`). �

Let X be a K3 surface over a number field. Setting i = 1, the representation ρ` introduced

in §2.2 is the inverse limit of the finite-level representations

ρ`,n : Gal(k̄/k)→ O(H2
et(X,µ`n))

The images of ρ` and the ρ`,n are contained in the orthogonal group because the Galois action

on H2
et(X,Z`(1)) respects cup products. Letting π`n : O(H2

et(X,Z`(1))) → O(H2
et(X,µ`n))

denote the projections of this inverse system, the following diagram

Gal(k̄/k)
ρ` //

ρ`,n ((

O(H2
et(X,Z`(1)))

π`
n

��

O(H2
et(X,µ`n))

commutes for all n. For n′ ≥ n we denote by π`n′,n : O(H2
et(X,µ`n′ )) → O(H2

et(X,µ`n)) the

intermediate projection of the inverse system. In this context, the openness of im ρ` in G`(Z`)
implies the following more explicit statement.

Proposition 2.9 (`-adic open image theorem). There exists an integer n0 > 0 such that

im(ρ`) = (π`n0
)−1(im(ρ`,n0)). In particular, im(ρ`,n) = (π`n,n0

)−1(im(ρ`,n0)) for all n ≥ n0. �

2.5. Frobenius conjugacy classes. Let X be a smooth and proper scheme over a number

field k, and fix a finite place p of good reduction for X. For any choice of inclusion k ↪→ kp,
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the image of Gal(kp/kp) ↪→ Gal(k/k) is a decomposition group Dp. Different choices for

this embedding give rise to conjugate decomposition groups. The kernel of the natural,

continuous surjective map

Gal(kp/kp) � Gal(Fp/Fp),

is the inertia group Ip. The group Gal(Fp/Fp) is topologically generated by the Frobenius

endomorphism, which we call Frob. Via the surjection above, we may pick a lift of this

generator to Dp
∼= Gal(kp/kp), which we call Frobp ∈ Gal(k/k), a lift of Frobenius to

characteristic zero. By [CEJ20, Lemma 2.2.3(a)], the Gal(k/k)-representation is unramified

at p, and so while Frobp is only defined up multiplication by elements in Ip, the resulting

action on H2
et(X,Z`(1)), for ` 6= charFp, does not depend on this choice. However, it does

depend on the choice of embedding k ↪→ kp, which is discussed more below.

The embedding k ↪→ kp induces an isomorphism H2i
et(X,Z`(i)) ∼= H2i

et(Xkp
,Z`(i)) [SGAIV-

1, Exp. XII, Corollaire 5.4] for which the action of Dp on the left agrees via the isomorphism

with the action of Gal(kp/kp) on the right. There is also an isomorphism H2i
et(Xkp

,Z`(i)) ∼=
H2i

et(Xp,Z`(i)) [SGAIV-1, Exp. XVI, Corollaire 2.2] for which the action of Gal(k/k)/Ip ∼=
Gal(knr

p /kp) is compatible with that of Gal(Fp/Fp). Thus we see that via these isomorphisms,

the action of Frobp on H2i
et(X,Z`(i)) and of Frob on H2i

et(Xp,Z`(i)) agree.

We are interested in properties of an element Frobp that may be extracted from its action

on H2i
et(Xp,Z`(i)). If we care only about, e.g., the characteristic polynomial of ρ`(Frobp) then

we can read this off from any element conjugate to ρ`(Frobp) by a linear automorphism of

the cohomology defined over Q`.

However, we might ask for more refined data such as the position of an eigenspace of

ρ`(Frobp) in H2i
et(Xp,Z`(i)) associated with a given root of the characteristic polynomial,

and wish to read that off from the eigenspaces for ρ`(Frobp). Understanding how much this

data depends on the choice of element Frobp requires understanding ρ`(Frobp) up to finer

equivalence relations, e.g., conjugation by linear automorphisms of H2i
et(Xp,Z`(i)), by the

image of Gal(k/k) in this linear group, or by a suitable congruence subgroup for the integral

Mumford-Tate group contained in this image. The open image theorem (Prop. 2.9) permits

this reduction in our situation. There is an extensive literature on classifying elements of

matrix groups over various rings up to conjugacy by prescribed subgroups e.g. [GS80,AO83].

By considering the Galois action on H2
et(X,µ`n) with n large, the representation ρ`,n factors

through Gal(K/k) for K some finite Galois extension of k. We will express our desired

properties so that we may extract the needed information from these finite representations.

We make use of this circle of ideas to identify eigenspaces of Frobp with root-of-unity eigen-

values. By the Tate Conjecture for K3 surfaces over finite fields, which has been proved by

the combined works of [Cha13], [LMS14], [MP15], and [KMP16], and the Integral Tate Con-

jecture [Tat68, Theorem 5.2], these eigenspaces will correspond to subspaces in H2
et(X,Z`(1))

which become algebraic upon reduction modulo p.
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3. Preliminaries

In what follows, we call admissible roots of unity of a free module T of finite rank those

roots of unity of order less than or equal to Φ(rk(T )), where Φ is Euler’s totient function.

We let X be a K3 surface over a number field k. Let H = H2(X(C),Z(1)), which is a

Z-Hodge structure of weight 0. Its corresponding integral Mumford-Tate group MT (H) ⊂
GL(H) is the Zariski closure in GL(H) of the Mumford-Tate group MT(HQ) ⊂ GL(HQ), as in

Definition 2.3. Since T(X)Q(1) and NS(XC)Q(1) are orthogonal direct summands of HQ and

Mumford-Tate groups act trivially on weight-zero Hodge classes, we have an isomorphism

MT(HQ) ' MT(T(X)Q(1)).

Over Z we lack direct sum decompositions but still obtain a homomorphism of group schemes

MT (H)→MT (T(X)(1)). (3.1)

Proposition 3.1. Assume that the Hodge endomorphism algebra E of X is totally real, and

that dimE T(X)Q is odd. Let U ⊆MT (H) be the set of elements ψ such that:

(1) the action of ψ on H2(X(C),Q(1))/ (NS(XC)⊗Q(1)) has a (+1)-eigenspace of dimen-

sion 1 as a vector space over E;

(2) the only admissible root of unity that is an eigenvalue for ψ is 1.

Then U is a Zariski dense open subset of MT (H).

We remark that this proposition is a slight generalization of [Cha14, Proposition 15(2)].

Proof. Let U◦ ⊃ U denote the locus obtained by weakening the first condition, so that (+1)

has algebraic multiplicity ≤ 1 for ψ over E. We show that U◦ is Zariski open. Prescribing

an eigenvalue, or imposing a lower bound on its multiplicity as a root of the characteristic

polynomial, cuts out a Zariski-closed subset, so avoiding certain eigenvalues or imposing

upper bounds on their algebraic multiplicity is a Zariski-open condition.

Next, we show that U◦ = U , i.e., the action of any ψ ∈ U◦ on T(X)Q(1) has a nonzero (+1)-

eigenspace over E. Let T = T(X). There is a unique E-bilinear form Φ: TQ×TQ → E,

compatible with the pairing φ : TQ×TQ → Q, in the sense that TrE/Q(Φ) = φ [Zar83,

§2.1]. Hence, the centralizer of E in SO(TQ, φ) coincides with the Weil restriction of

scalars ResE/Q(SOE(TQ,Φ)), as subgroups of GL(TQ). On the other hand, by Corollary 2.5,

MT(HQ) ∼= MT(TQ(1)) is the centralizer of E in SO(TQ, φ). Since TQ has odd dimension

over E, every element of SOE(TQ,Φ) has 1 as an eigenvalue. We conclude that U◦ = U , as

desired.

To see that U is nonempty, the argument given in [Cha14, Proposition 15(2)] over Q` also

works over Q to produce a Q-point of U . Thus U is Zariski dense, as desired. �

For a prime number ` and positive integer e, let α be a Galois-invariant class in H2
et(X,µ`e)

which is not contained in the image of NS(X)⊗ Z/`eZ. In §4, this will be a choice of lift of

a class in Br(X)[`e].
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We fix, for each n ≥ 1, compatible isomorphisms between the H2
et(X,µ`en) and a system

of standard free (Z/`enZ)-modules P`e,n. The image of each Galois representation

ρ`e,n : Gal(k/k)→ Aut
(
H2

et(X,µ`en)
)
,

then lies in the finite group AutZ/`enZ(P`e,n). Let Γ`e,n ⊆ AutZ/`enZ(P`e,n) denote the image

under this identification. We are interested in Γ`e,n-conjugacy classes of elements of Γ`e,n
that may be realized as images of Frobenius conjugacy classes [Frobp] for X, with p a finite

place of k.

Using the universal coefficient theorem and the comparison results for analytic and étale

cohomology with torsion coefficients, we have reduction morphisms

H2(X(C),Z(1)) � H2(X(C), (Z/`enZ)(1)) ' H2
et(X,µ`en) ' P`e,n,

whence a map

MT (H) ⊂ GL(H)→ Aut
(
H2

et(X,µ`en)
)
.

Let U`e,n ⊂ Γ`e,n denote the elements of Γ`e,n whose preimages under this map all lie in the

set U constructed in Proposition 3.1, i.e., the only eigenvalue that is an admissible root of

unity is 1, with minimal multiplicity. This is nonempty for n � 0 because U is `-adically

open and elements of U`e,n correspond to `-adic open balls in U . Finally, let A`e,n be the set

of elements in P`e,n that are congruent to α mod `e.

Lemma 3.2. There is an n > 0 and a class γ ∈ U`e,n such that any γ̃ ∈ U lying over γ has

(+1)-eigenspace whose reduction mod `e contains α.

Proof. By Proposition 2.9, there exists an n0 > 0 such that im(ρ`e,n) = (π`
e

n,n0
)−1 (im(ρ`e,n0))

for all n ≥ n0, and in particular, the image im(ρ`e,n)

contains all elements of MT (H)(Z/`enZ) that are congruent to the identity mod `en0 .

We claim that for some n ≥ n0 there is an element γ ∈MT (H)(Z/`enZ) equivalent to the

identity mod `en0 , and an α′ ∈ A`e,n, such that γ ∈ U`e,n and γ(α′) = α′.

Take a sufficiently small `-adic open neighborhood W1 of the identity inMT (H)Z`
(Z`), so

that the matrices are congruent to the identity mod `n0 . The set W1 will intersect the Zariski

open set U , and elements in the intersection reduce mod `en to elements in im(ρ`e,n) ' Γ`e,n
for n ≥ n0. Making n larger if necessary, elements in the intersection reduce mod `en to

elements in U`e,n. Take another small `-adic neighborhood of the identity W2, defined by

those elements of MT (H)Z`
(Z`) that fix α mod `e. Then the intersection U ∩W1 ∩W2 is

nonempty, so it contains an element γ̃ whose mod `en reduction γ is in U`e,n and it fixes

some vector α′, which by definition of W2 has the property that α′ ≡ α mod `e.

�

4. Proof of Theorem 1.1

In this section we use the notation of Theorem 1.1. Suppose α ∈ Br(X) has order m, and

consider the image of α ∈ Br(X)[m] under the natural map Br(X)→ Br(X), which we will
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continue to call α. Note that in Br(X), α has order m′ for some m′ dividing1 m. If m′ = 1,

then α is algebraic. We begin the proof of Theorem 1.1 by handling this case.

Lemma 4.1. If the class α ∈ Br(X)[m] is algebraic, then there is a set S of places of k of

positive natural density such that αp = 0 in Br(Xp) for all p ∈ S.

Proof. Let K/k be a finite Galois extension that splits NS(X), i.e., an extension for which

NS(XK) ' NS(X) (that such a Galois extension exists follows from [BLvL20, Lemma 3.1]).

We claim that for p ∈ Ok that split completely in OK , the class αp ∈ Br(Xp) is trivial. The

set of such p has positive natural density, by the Chebotarev density theorem. To see that

αp is trivial for such p, we make use of the following commutative diagram, where P is any

place in OK lying over p:

Br(X)[m] //

��

Br(Xp)[m]

��
Br(XK)[m] // Br(XP)[m].

Since p is completely split, we know that Fp = FP, hence Xp
∼= XP, and so the right vertical

arrow is an isomorphism. Since α is algebraic, the image αK ∈ Br(XK)[m] is already zero,

and so it maps to zero in Br(XP)[m]. Hence α maps to zero in Br(Xp)[m]. �

By Lemma 4.1, it suffices to prove Theorem 1.1 under the assumption that the order m

of α in Br(X) is unchanged upon passage to Br(X).

By the commutativity of the diagram

0 // NS(X)⊗ Z/mZ //

��

H2
et(X,µm) //

��

Br(X)[m]

��

// 0

0 // (NS(X)⊗ Z/mZ)Gal(k/k) // H2
et(X,µm)Gal(k/k) //

(
Br(X)[m]

)Gal(k/k)

with exact rows, we can pick a lift of α ∈ Br(X) to a Galois-invariant class in H2
et(X,µm),

which we will again call α.

Write m = `e11 · · · `err with `i distinct primes, 1 ≤ i ≤ r. Analogous to the notation

introduced in §§2–3, we will write Am,n ⊂ Pm,n for α′ ∈ Pm,n which reduce to α mod m and

Γm,n ⊂ AutZ/mnZ(Pm,n) for the image of ρm,n. By identifying Pm,n with
⊕r

i=1 P`eii ,n, we find

that α = (αi)1≤i≤r for αi ∈ H2
et(X,µ`eii ).

For each αi, 1 ≤ i ≤ r, fix the ni and γi ∈ U`eii ,ni
coming from Lemma 3.2. By taking any

of the ni larger if necessary, we can assume without loss of generality that n1 = n2 = ... = nr,

and we will call this common integer n. By the proof of Lemma 3.2, there is an α′i ∈ A`eii ,n
such that γi(α

′
i) = α′i. Set

α′ := (α′i)1≤i≤r ∈ Am,n, and γ := (γi)1≤i≤n ∈ Γm,n,

1It is possible to have 1 < m′ < m; see, e.g., [GS19]
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so that γ(α′) = α′. We note there is no guarantee that α′ is Galois-invariant. Recall from

§ 2.5 that choosing an embedding k ↪→ kp is equivalent to choosing an element

Frobp ∈ Gal(kp/kp) ↪→ Gal(k/k)

that reduces to Frob ∈ Gal(Fp/Fp), well-defined up to the inertia group Ip.

Since α′ need not be Galois invariant, its mod p image in H2
et(Xp, µmn) depends on the

above choice of element in the conjugacy class [Frobp] ⊂ Gal(k/k). However, α′ reduces to

α ∈ Pm,1 ∼= H2
et(X,µm), which is Galois invariant. As a consequence, the image of α modulo

p is well-defined: call it αp.

Proposition 4.2. Suppose that the Γm,n-conjugacy class ρm,n([Frobp]) coincides with the

Γm,n-conjugacy class of γ. Then αp is algebraic.

Proof. We begin with an outline of the proof. First, we show that there is a choice of element

σ ∈ [Frobp], corresponding to γ, for which α′ maps to an algebraic class under the induced

isomorphism Pm,n ∼= H2
et(Xp, µmn) of cyclic modules. Then we show that, for any other

element in the Γm,n-conjugacy class ρm,n([Frobp]), there is a choice of element in [Frobp] for

which a different class in the orbit Γm,n · α′ maps to an algebraic class in H2
et(Xp, µmn). The

last step is to observe that every class in Γm,n · α′ is equal to α mod m, so independently of

the choice of element in ρm,n([Frobp]), the image of α in H2
et(Xp, µm) is well-defined and α

maps to an algebraic class in H2
et(Xp, µm).

Since γ ∈ ρm,n([Frobp]), choose σ ∈ [Frobp] so that ρm,n(σ) = γ. This choice determines

the horizontal isomorphisms in the following commutative diagram⊕r
i=1 H2

et(X,Z`i(1))
∼ //

����

⊕r
i=1 H2

et(Xp,Z`i(1))

����

H2
et(X,µmn)

∼ // H2
et(Xp, µmn)

(4.1)

in such a way that the action of (
∏r

i=1 ρ`i) (σ) on
⊕r

i=1 H2
et(X,Z`i(1)) is compatible with

the diagonal action of Frob on
⊕r

i=1 H2
et(Xp,Z`i(1)) (see §2.5). The vertical surjections are

induced by the surjection
r∏
i=1

Z`i(1) � µmn ,

so the action of (
∏r

i=1 ρ`i) (σ) on
⊕r

i=1 H2
et(X,Z`i(1)) is compatible via the surjection with

the action of ρm,n(σ) on H2
et(X,µmn).

Since ρ`i(σ) reduces to ρ`eii ,n(σ) and ρ`eii ,n(σ) = γi ∈ U`eii ,n for 1 ≤ i ≤ r, we have

ρ`i(σ) ∈ U(Z`i).
By the Integral Tate conjecture, the classes in H2

et(Xp,Z`i(1)) on which Frob acts by roots

of unity are exactly the algebraic classes. Hence the classes of H2
et(X,Z`i(1)) on which ρ`i(σ)

acts by roots of unity are exactly the classes that map to algebraic classes in H2
et(Xp,Z`i(1)).

Since ρ`i(σ) ∈ U(Z`i), the only eigenvalue of ρ`i(σ) that is an admissible root of unity is 1.
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By the compatibility of the action of (
∏r

i=1 ρ`i) (σ) on
⊕r

i=1 H2
et(X,Z`i(1)) and γ on

H2
et(X,µ`n) in the above diagram, the image of the eigenspace

V := E

((
r∏
i=1

ρ`i

)
(σ), 1

)
⊂

r⊕
i=1

H2
et(X,Z`i(1))

in H2
et(X,µmn) is a subspace of the eigenspace E(γ, 1) ⊂ H2

et(X,µmn). On the other hand,

since ρ`eii ,n(σ) = γi ∈ U`eii ,n and γ projects onto γi for each 1 ≤ i ≤ r, the commutative

diagram

MT (H)

''

// Aut(H2
et(X,µmn))

����

Aut(H2
et(X,µ`eini

))

implies that all of the preimages of γ in MT (H) lie in U . This forces the rank of E(γ, 1) as

a Z/mnZ-module to be minimal, so the image of V in H2
et(X,µmn) must be all of E(γ, 1). In

particular, since γ(α′) = α′, we deduce that the image of α′ in H2
et(Xp, µmn) via (4.1) is the

image of a tuple of algebraic classes in
⊕r

i=1 H2
et(Xp,Z`i(1)). Thus, under the identification

determined by γ ∈ ρm,n([Frobp]), α
′ becomes algebraic modulo p.

Next, consider a different element γ′ = ηγη−1 ∈ ρm,n([Frobp]) for some η ∈ Γm,n, which

fixes η(α′) ∈ Pm,n. Note that η(α′) ∈ Am,n because α is Galois-invariant. By the same

argument as above, it follows that for this choice, the image of η(α′) in H2
et(Xp, µmn) is the

image of a tuple of algebraic classes in
⊕r

i=1 H2
et(Xp,Z`i(1)). Thus, under the identification

determined by γ′ ∈ ρm,n([Frobp]), η(α′) becomes algebraic modulo p.

Now reduce modm, and recall that πmn,1 is the reduction map from level mn to level m.

Observe that

πmn,1(Γm,n · α′) = {α},
since Γm,n ·α′ ⊂ Am,n. Thus for every element in the conjugacy class ρm,n([Frobp]), the image

αp of α in H2
et(Xp, µm) is an algebraic class. Finally, by the Kummer sequence, this means

α maps to zero in Br(Xp)[m]. Therefore, αp is algebraic, as desired. �

Corollary 4.3. There is a set S of places of k of positive natural density such that for each

p ∈ S, αp is algebraic.

Proof. Let S be the set of p such that X has good reduction at p and the Γm,n-conjugacy

class ρm,n([Frobp]) is the Γm,n-conjugacy class of γ. Since Γm,n is a finite group, we know by

the Chebotarev Density Theorem that S has positive natural density. By Proposition 4.2,

αp is algebraic for every p ∈ S. �

Corollary 4.4. For every p ∈ S, αp = 0 ∈ Br(Xp).

Proof. First, the group Br(Fp) is trivial since Fp is a finite field; the long exact sequence of

low-degree terms for the Hochschild–Serre spectral sequence shows that as a consequence,
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for Γ = Gal(Fp/Fp), the natural map

NS(Xp)→ NS(Xp)
Γ

is an isomorphism. In the proof of Proposition 4.2, we see that αp comes from a class in

NS(Xp) ⊗ Z/mZ, and moreover that αp comes from a class on which Frobp acts trivially.

Thus by continuity of the Γ-action, this implies that αp ∈ H2
et(Xp, µm) lifts to (NS(Xp) ⊗

Z/mZ)Γ (note that Γ acts trivially on Z/mZ here). As a consequence, αp lifts further to

NS(Xp)⊗ Z/mZ. By exactness of

0→ NS(Xp)⊗ Z/mZ→ H2
et(Xp, µm)→ Br(Xp)[m]→ 0,

we have that αp ∈ Br(Xp)[m] must actually be zero. �

This completes the proof of Theorem 1.1. �

5. Application: rational reductions of general cubic fourfolds

Let Y ⊂ P5
k denote a smooth cubic hypersurface, a cubic fourfold.

We review the geometry of special cubic fourfolds [Has00]. Let C denote the moduli stack

of cubic fourfolds. Fix h as the hyperplane class and consider saturated sublattices

h2 ∈ K ⊂ H4(YC,Z)

where K has rank two and discriminant d > 0. We consider pairs (Y,K) where K ⊂
H2(YC,Ω

2) parametrizes Hodge classes – indeed, classes of algebraic cycles as the integral

Hodge conjecture is known for cubic fourfolds [Voi07, Th. 18]. These are parametrized by a

moduli space CK . We note basic properties:

• the image of CK → CC depends only on d and is denoted Cd;
• Cd is irreducible, and nonempty if and only if d ≡ 0, 2 (mod 6) and d > 6;

• Cd ⊂ C is defined over Q;

• CK → Cd is birational onto its image if 3 - d and generically of degree two onto its

image if 3 | d.

The last statement reflects the fact that K = Kd admits an involution fixing h2 if and only if

3 | d. In particular, CKd
parametrizes cubic fourfolds with a Galois-invariant lattice of cycle

classes equivalent to Kd. We do not insist that the cycles themselves be defined over k.

Example 5.1. d = 8 [Has99] If Y contains a plane P then

K8 =
〈
h2, P

〉
'

(
3 1

1 3

)
.

The specialization of a cubic fourfold containing a plane must also contain a plane. Thus

C8 equals the cubic fourfolds containing at least one plane. The homology class of a plane

in a cubic fourfold contains a unique plane. (A plane P ⊂ Y yields a Lagrangian plane

P∨ ⊂ F1(Y ) in the variety of lines which is necessarily rigid; a second plane P ′ homologous
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to P is not compatible with the geometry of the projection πP : BlP (X) → P2.) So CK8

equals the space of pairs (Y, P ) where P ⊂ Y is a plane.

d = 18 [AHTVA19] If Y contains T , a smooth projection of a sextic del Pezzo surface,

then

K18 =
〈
h2, T

〉
'

(
3 6

6 18

)
.

Typically, such a surface induces a fibration [AHTVA19, SS1,2]

ψ : Ỹ = BlR(Y )→ P2 (5.1)

with T as a fiber; the center R is residual to T in a complete intersection of two quadrics on

Y . Let W denote the moduli space of such (Y, ψ). Then we have

W → CK18 → C18

where the first morphism has one-dimensional generic fiber and the second morphism is

generically of degree two.

Remark 5.2. We know little about the fibers of W → CK18 , e.g., their genus. It is unclear

whether a given Y ∈ CK18(k) contains a sextic del Pezzo surface defined over k.

We review the rationality construction in discriminant eight:

Proposition 5.3. Consider a smooth cubic fourfold containing a plane (Y, P ) ∈ CK8. As-

sume there is no plane P ′ ⊂ YC intersecting P along a line.

• Projecting from P gives a quadric surface bundle

$ : Ỹ := BlP (Y )→ P2;

Y is rational if $ admits a rational section. [Has99]

• The relative variety of lines for $ factors

F1($)
ϕ→ X → P2

where ϕ is an étale P1-bundle and the second arrow is a double cover branched along

a plane sextic. [HVAV11, §5]

• ϕ has a rational section if and only if $ has a rational section. If α ∈ Br(X)[2] is

the class of the étale P1-bundle ϕ then Y is rational whenever α = 0. [HPT18, §3]

In particular, Y is rational whenever α vanishes. �

The pair (X,α) is a twisted degree two K3 surface cf. [Kuz10].

We have a similar construction in discriminant eighteen:

Proposition 5.4. Let (Y, ψ) denote a cubic fourfold with discriminant 18 with a fibration

in sextic del Pezzo surfaces.

• The generic fiber of ψ is rational if and only if ψ has a rational section or multisection

of degree prime to three [AHTVA19, §3].
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• There exists a K3 surface X of degree two and an element α ∈ Br(X)[3] such that ψ

has a rational section if and only if α = 0 [AHTVA19, Prop. 10].

In particular, Y is rational whenever α vanishes. �

Thus (X,α) is a twisted degree two K3 surface. Combining Propositions 5.3 and 5.4 with

1.1, we arrive at the following:

Theorem 5.5. Let k be a number field. Let Y ⊂ P5
k be a cubic fourfold such that either

• Y ∈ CK8; or

• Y ∈ CK18 has a fibration ψ in sextic del Pezzo surfaces as in (5.1).

Assume that the pair (X,α) arising from Proposition 5.3 or 5.4 satisfies the hypotheses of

Theorem 1.1. Then there exists a set of places S of k of positive natural density for which

the reduction Yp is rational for every p ∈ S. �

Pairs (X,α) arising from the constructions in Proposition 5.3 or 5.4 that satisfy the hy-

potheses of Theorem 1.1 exist. Using Remark 1.2, an example with Y ∈ CK8 is given

in [HVAV11]; an example with Y ∈ CK18 is given in [BVA20]. Note that in both cases, the

Brauer class given is transcendental.

6. Application: reductions of twisted derived equivalences of K3 surfaces

Brauer classes naturally arise in the study of moduli spaces of sheaves on K3 surfaces.

We review the relevant set-up here; a general reference for these moduli spaces of sheaves is

[HL10] or [Huy16, Chapter 10]. Over nonclosed fields, see [Cha16] or [Fre20].

Let X be a K3 surface of degree 2d with polarization h. Fix integers r,m and s with

gcd(r,m, s) = 1, and let M be the moduli space of (Gieseker) semi-stable sheaves on X of

rank r, first Chern class mh, and Euler characteristic r + s. That is, M := Mh(v) with

primitive Mukai vector v = (r,mh, s). Assume that h is v-generic, so that every semi-stable

sheaf is geometrically stable and M is a smooth projective variety. Let us further assume that

M is nonempty (e.g., by taking v to be effective). When v2 = m2h2−2rs = 0, Mukai showed

that M is a K3 surface of degree 2rs/ gcd(r, s)2 [Muk87b, Theorem 1.4]. The relationship

between these two K3 surfaces is sometimes called Mukai duality.

There is a Brauer class α ∈ Br(M), of order dividing the gcd over all Mukai vectors w of

(r,mh, s) ·w (where · means the Mukai pairing), which obstructs the existence of a universal

sheaf on X × M . This Brauer class plays a role in the following equivalences of derived

categories. Let πM : X ×M →M be the projection onto the second factor.

Theorem 6.1. Let X and (M,α) be the K3 surface and twisted K3 surface, respectively,

described above, both defined over an arbitrary field k.

• If α = 0, then M is a fine moduli space, and the universal sheaf on X ×M induces

a k-linear derived equivalence Db(M) ∼= Db(X).
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• More generally, there is always an π∗Mα
−1-twisted universal sheaf on X ×M which

induces a k-linear derived equivalence Db(M,α) ∼= Db(X), where Db(M,α) is the

derived category of α-twisted sheaves on M .

Proof. The first statement is due to Orlov for k = C [Orl97, Theorem 3.11], and the second

statement is due to Căldăraru for k = C [Căl02, Theorem 1.3]. It is well known to experts

that the results also hold over arbitrary fields (e.g., [LO15, Theorem 3.16], [LMS14, Propo-

sition 3.4.2]), but we include a sketch of a proof here for completeness.

Note that the first statement follows from the second when α = 0. By [Orl02, Lemma

2.12], we may assume that k is algebraically closed. Let U be the π∗Mα
−1-twisted universal

sheaf on X ×M , and ΦU : Db(M,α) → Db(X) the Fourier-Mukai transform given by U . It

is enough to show that ΦU is fully faithful [Huy06, Cor. 7.8], and for this we would like to

verify the standard criterion of Bondal-Orlov [BO95]: the functor ΦU is fully faithful if and

only if for any two closed points x, y ∈M ,

Hom(ΦU(k(x)),ΦU(k(y))[i]) =

{
k if x = y and i = 0

0 if x 6= y or i < 0 or i > dimX.

However, the usual proof of this criterion requires k to be a field of characteristic zero. We

follow the proof given in [Huy06, Theorem 7.1], pointing out the necessary changes. First,

the proof only handles the case of a Fourier-Mukai transform between derived categories of

untwisted sheaves, but [Căl00, Theorem 3.2.1] explains the adaptations necessary for twisted

sheaves. Next, we note that the characteristic zero assumption is used only in Step 5, to

verify the additional hypothesis used in Step 3, that for generic x ∈M , the homomorphism

Hom(k(x), k(x)[i])→ Hom(ΦU(k(x)),ΦU(k(x))[i])

is injective for i = 1. For M a moduli space of stable sheaves on X and x ∈ M the point

representing a sheaf F , this map is the Kodaira-Spencer map

TxM ∼= Ext1
M(k(x), k(x))→ Ext1

X(F, F ),

which is an isomorphism because F is stable [Huy16, Proposition 10.1.11].

Finally, since M parametrizes stable sheaves and since for any x ∈M , ΦU(k(x)) is a sheaf

rather than a complex, it is clear that any two points x, y ∈ M satisfy the homomorphism

criterion. This completes the proof. �

Example 6.2. Let X be a complete intersection of three quadrics in P5, so that X is a degree

8 K3 surface, and assume NS(X) = Zh. We consider M := Mh(2, h, 2), which parametrizes

rank 2 geometrically stable sheaves with first Chern class h and Euler characteristic 4.

Note that because gcd(2, 1, 2) = 1, there are no properly semi-stable sheaves. Since v2 =

h2 − 2 · 2 · 2 = 0, M is a K3 surface if it is nonempty. It can be realized via the explicit

geometric construction outlined below, which shows that M is a degree 2 K3 surface. This

example has been thoroughly studied and is worked out in careful detail in [Muk84, Example
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0.9], [Muk87a, Example 2.2], and [IK13, §3]. See also [MSTVA17, §3.2] for an approach using

projective duality. We summarize the key points here.

Let Λ be the net of quadrics containing X, and C := V (det Λ) the degeneracy locus, which

is a plane sextic curve. When the degenerate conics corresponding to points in C are all of

rank 5, C is smooth. In this case, M is isomorphic to the double cover of Λ ∼= P2 branched

along C, where the two sheaves in M lying over a smooth quadric [Q] ∈ Λ are the dual of

the tautological bundle and the quotient bundle corresponding to Q (both restricted to X)

via the isomorphism Q ∼= Gr(2, 4).

The gcd of (2, h, 2) ·w as w varies over all Mukai vectors is equal to 2, so the Brauer class

α ∈ M which obstructs the existence of a universal sheaf on X ×M has order dividing 2.

Moreover, there is a Brauer-Severi variety W → M which represents α. Let $ : Q → P2 be

the universal family of quadric fourfolds in Λ, and F2($)→ P2 be the relative Fano variety

of planes in the fibers of $. This morphism factors as

F2($)
ϕ−→M → P2,

where ϕ is an étale P3-bundle and M → P2 is the double cover branched along C. Then

ϕ : F2($)→M is the Brauer-Severi variety.

For other explicit examples of degree 18/degree 2 and degree 16/degree 4 dualities, in

which the Mukai duality is realized through Projective duality, see [MSTVA17, §3].

For X and (M,α) as above defined over a number field k, there is a finite set of places T
such that there is a smooth proper model X ×M over Ok,T along with a relative twisted

universal sheaf on X × M. For any place p 6∈ T , the relative twisted universal sheaf

specializes to a twisted universal sheaf on the reduction Xp×Mp. For the derived equivalence

Db(Xp) ∼= Db(Mp) that we seek, we need to know that Mp contains only stable sheaves.

This is not guaranteed by Mp being smooth, but the set of places p for which Mp contains

properly semistable sheaves is finite. Indeed, being geometrically stable is an open condition

[HL10, Prop. 2.3.1], so the locus of properly semi-stable sheaves is closed, and the morphism

M→ SpecOk,T is projective [Lan04, Theorem 0.2]. Finiteness follows since by assumption

the generic fiber does not contain any properly semistable sheaves. By Theorems 6.1 and

1.1, we conclude:

Theorem 6.3. Let k be a number field, X a degree 2d K3 surface over k, and M a moduli

space of geometrically stable sheaves on X such that (M,α) is a twisted K3 surface. Assume

that the pair (M,α) satisfies the hypotheses of Theorem 1.1. Then there exists a set of

places S of k of positive natural density for which there is an Fp-linear derived equivalence

Db(Xp) ∼= Db(Mp) for every p ∈ S. �

Pairs (M,α) satisfying the hypotheses of Theorem 1.1 exist. By Remark 1.2, the example

in [MSTVA17, §5.4] gives a K3 surface X/Q with NS(X) ' Zh and h2 = 8, such that

the associated twisted K3 surface (Mh(2, h, 2), α) satisfies the hypotheses of Theorem 1.1.

Moreover, note that α in the example is a transcendental Brauer class.
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in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de
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