1. Del Pezzo surfaces

(1) Use the Riemann-Roch theorem for surfaces, together with Castelnuovo’s rationality criterion to show that if X is a nice surface over a field k with ample anticanonical sheaf, then X is geometrically rational.

(2) Let k be an algebraically closed field. Recall that a finite set of k-points $S \subset \mathbb{P}^2_k$ is said to be in general position if

- no three points are colinear,
- no six points lie on a conic, and
- no eight points lie on a singular cubic with a singularity at one of the points.

Let $S \subset \mathbb{P}^2_k$ be a finite set of k-points, and consider the blow-up $X := \text{Bl}_S \mathbb{P}^2_k$. Show that $-K_X$ is ample if and only if S is in general position.

(3) Let $k = \mathbb{F}_p(t)$. Consider the closed subscheme of $\mathbb{P}^2_k = \text{Proj} k[x,y,z]$ given by $S = V(x^p - tz, y)$. Show that $\text{Bl}_S \mathbb{P}^2_k$ is not smooth.

(4) Let k be an algebraically closed field. Recall that an exceptional curve on a nice surface X is an irreducible curve such that $(C,C) = (C,K_X) = -1$. Let $S = \{P_1, \ldots, P_r\}$ be a finite set of distinct k-points in \mathbb{P}^2_k in general position and let $X = \text{Bl}_S \mathbb{P}^2_k$.

(a) Show that the number of exceptional curves of X is finite and depends on $d = 9 - r$ as follows:

<table>
<thead>
<tr>
<th>d</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td># of exceptional curves</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>27</td>
<td>56</td>
<td>240</td>
</tr>
</tbody>
</table>

(b) Let R_r be the set of roots of X, i.e,

$$R_r := \{v \in \text{Pic} X : (v,K_X) = 0, (v,v) = -2\}.$$

Show that R_r is finite and depends on $d = 9 - r$ as follows:

<table>
<thead>
<tr>
<th>d</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td># of R_r</td>
<td>8</td>
<td>20</td>
<td>40</td>
<td>72</td>
<td>126</td>
<td>240</td>
</tr>
</tbody>
</table>

(c) Verify that R_r satisfies the axioms of a root system.
(5) Let \(S = \{ P_1, \ldots, P_r \} \) be a finite set of distinct \(k \)-points in \(\mathbb{P}^2_k = \text{Proj} \ k[x_0, x_1, x_2] \) in general position and let \(X = \text{Bl}_S \mathbb{P}^2_k \). Let \(\mathcal{I} \subseteq \mathcal{O}_{\mathbb{P}^2_k} \) be the coherent ideal sheaf associated to the scheme \(S \) with its reduced-induced subscheme structure.

Show there is an isomorphism of graded \(k \)-algebras

\[
R(X, \omega_X^{-1}) \cong \bigoplus_{m \geq 0} H^0(\mathbb{P}^2_k, \mathcal{I}^m(3m)).
\]

The vector space \(H^0(\mathbb{P}^2_k, \mathcal{I}^m(3m)) \) is the set of homogenous degree \(3m \) polynomials in \(k[x_0, x_1, x_2] \) that have \(m \)-fold vanishing at each \(P_i \).

(6) (Use a computer algebra system for this exercise) We make tacit use of the previous exercise to compute an equation for a cubic surface given 6 points in general position on the plane.

Let \(k = \mathbb{F}_5 \) (or your favorite finite field—this will make the computations instantaneous and the coefficients of the expressions involved manageable).

(a) Write down six \(k \)-points \(P_1, \ldots, P_6 \) of \(\mathbb{P}^2_k = \text{Proj} \ k[x_0, x_1, x_2] \) in general position.

(b) Compute a basis for the vector space of cubic polynomials in \(k[x_0, x_1, x_2] \) that vanish along \(P_i \) (\(i = 1, \ldots, 6 \)) with multiplicity 1. This vector space is 4-dimensional. Call the 4 elements of your basis \(x, y, z \) and \(w \).

(c) Show there is a dependence relation amongst the monomials of degree 3 in \(x, y, z \) and \(w \). This relation gives a cubic surface in \(\text{Proj} \ k[x, y, z, w] \) isomorphic to \(\text{Bl}_\{P_1, \ldots, P_6\} \mathbb{P}^2_k \).

(7) (Use a computer algebra system for this exercise) Let \(X \) be the del Pezzo surface of degree 1 over \(\mathbb{F}_7 \) given by

\[
w^2 = z^3 + 2x^6 + 2y^6
\]

in \(\mathbb{P}(1, 1, 2, 3) = \text{Proj} \mathbb{F}_7[x, y, z, w] \). Let \(F_7 \in \text{Gal}(\overline{\mathbb{F}_7}/\mathbb{F}_7) \) be the Frobenius map \(x \mapsto x^7 \). Let

\[
\phi_X : \text{Gal}(\overline{\mathbb{F}_7}/\mathbb{F}_7) \to O(K_X^{\perp})
\]

be the Galois representation introduced in lecture. Use the Lefschetz trace formula for surfaces to prove that the trace of \(\phi_X(F_7) \) is negative. Conclude that \(X \) cannot be \(\mathbb{F}_7 \)-isomorphic to a blow-up of \(\mathbb{P}^2_{\mathbb{F}_7} \) at points in general position.

(8) Let \(k \) be an algebraically closed field. Describe all the automorphisms of the weighted projective space \(\mathbb{P}_k(1, 1, 2, 3) \).