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KISIN MODULES WITH DESCENT DATA AND
PARAHORIC LOCAL MODELS

 A CARAIANI  B LEVIN

A. – We construct a moduli space Y �;� of Kisin modules with tame descent datum � and
with p-adic Hodge type � �, for some finite extension K=Qp . We show that this space is smoothly
equivalent to the local model for ResK=QpGLn, cocharacter f�g, and parahoric level structure. We
use this to construct the analog of Kottwitz-Rapoport strata on the special fiber Y �;� indexed by the
�-admissible set. We also relate Y �;� to potentially crystalline Galois deformation rings.

R. – Nous construisons un espace de modules Y �;� de modules de Kisin avec donnée de
descente modérée � et type de Hodge p-adique �, pour une extension finie K=Qp . Nous démontrons
une équivalence lisse entre Y �;� et le modèle local pour la restriction de scalaires ResK=QpGLn, co-
caractère f�g et structure de niveau parahorique. Cette équivalence est ensuite utilisée pour construire
l’analogue de la stratification de Kottwitz-Rapoport sur la fibre spéciale de Y �;� , paramétrée par
l’ensemble des éléments �-admissibles. Nous décrivons aussi la relation entre Y �;� et l’espace de
déformations galoisiennes potentiellement cristallines.

1. Introduction

LetK=Qp be a finite extension. Kisin [22] showed that the category of finite flat commuta-
tive group schemes over OK killed by a power ofp is equivalent to the category of Breuil-Kisin
modules of height � 1. While the former do not naturally live in families, one can work with
Breuil-Kisin modules with coefficients and study their moduli. The landmark paper [25] uses
moduli of Breuil-Kisin modules to construct resolutions of flat deformation rings with stun-
ning consequences for modularity lifting theorems and applications to the Fontaine-Mazur
conjecture. The main result of [25] is a modularity lifting theorem in the potentially Barsotti-
Tate case. One of the key points is a rather surprising connection to the theory of local models
of Shimura varieties. Kisin showed that the singularities of the moduli space of Breuil-Kisin
modules of rank n (with fixedp-adic Hodge type) could be related to the singularities of local
models for the group ResK=QpGLn (with maximal parahoric level) which had been studied
by [32].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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182 A. CARAIANI AND B. LEVIN

Kisin’s result is globalized in [33], where Pappas and Rapoport construct a global (formal)
moduli stackX� of Kisin modules withp-adic Hodge type� 2 .Zn/Hom.K;Qp/. They link the
spaceX� via smooth maps with a (generalized) local modelM.�/. When� is non-minuscule,
M.�/ is not related to any Shimura variety but is nevertheless known to have nice geometric
properties by work of Pappas-Zhu [35] and of the second author [28]. M.�/ is constructed
inside a mixed characteristic version of the Beilinson-Drinfeld affine Grassmannian. As a
result, the nice geometric properties of M.�/ transfer to the global moduli stack X�.

While the connection between moduli of Breuil-Kisin modules and local models suffices
for proving modularity lifting theorems in the potentially Barsotti-Tate case, it doesn’t seem
capture some of the more subtle aspects of the geometry of local deformation rings. These
more subtle aspects are connected to the (geometric) Breuil-Mezard conjecture [6, 14], to
the weight part in Serre’s conjecture [8, 18] and to questions about integral structures in
completed cohomology [5, 16]. Therefore, there is considerable interest in generalizing the
results of Kisin and Pappas-Rapoport. This paper extends the relationship with local models
to the case of Breuil-Kisin modules equipped with tame descent data.

We explain the connection to integral structures in completed cohomology. One of the
few situations where we have explicit presentations of local deformation rings is the case of
tamely Barsotti-Tate deformations rings for GL2. SetGK WD Gal. NK=K/ and let IK � GK be
the inertia subgroup. When K=Qp is unramified and � W IK ! GL2.ƒ/ is a (generic) tame
inertial type, then [5, 7, 16] explicitly describe the potentially Barsotti-Tate deformation
ringRBT;�

� for any � W GK ! GL2.F/. These computations provided evidence for the Breuil-
Mézard conjecture and led Breuil to several important conjectures [5]. Perhaps the most
striking is the precise conjecture about which lattices inside the smooth GL2. OK/-represen-
tation �.�/ (determined by � via inertial local Langlands) can occur globally, in completed
cohomology. Breuil’s conjectures were proved by Emerton-Gee-Savitt [16] using the explicit
presentations of tamely Barsotti-Tate deformation rings.

In more general situations (K=Qp ramified or � non-generic), one cannot hope for such
an explicit presentation. In this paper, we construct for arbitraryK=Qp and GLn, resolutions
of tamely Barsotti-Tate deformation rings whose geometry is related to that of local models
for ResK=QpGLn with parahoric level structure. These resolutions are related to the moduli of
Breuil-Kisin modules with descent data. The level structure is determined by the tame inertial
type � . For example, if � consists of distinct characters, then the local model will have Iwahori
level structure, whereas the local models of [25, 33], which have trivial descent data, always
have maximal parahoric level.

Our perspective in this paper is largely global, in the spirit of [33]. Motivated by the moduli
stack of finite flat representations of GK constructed by [15], we study moduli stacks Y �;�

of Kisin modules with tame descent data and p-adic Hodge type � 2 .Zn/Hom.K;Qp/. We
can consider a moduli stack of Kisin modules as above, but in addition equipped with an
eigenbasis compatible with the descent datum; we call this space eY �;� .
4 e SÉRIE – TOME 51 – 2018 – No 1



KISIN MODULES WITH DESCENT DATA AND PARAHORIC LOCAL MODELS 183

T 1.1. – There exists a moduli stack Y �;� of Kisin modules with tame descent data
and p-adic Hodge type �, which fits into the diagrameY �;�

��

||

‰�

##

Y �;� M.�/;

where M.�/ is the Pappas-Zhu local model [35, 28] for .ResK=QpGLn; �/ at parahoric level
.determined by �/ and both �� and ‰� are smooth maps.

R 1.2. – The key step in the construction of the local model diagram is encoded in
diagram 3.1. We decompose a Kisin module .M; �/ according to the descent datum and then
study the interactions between the images of � on different isotopic pieces. This is reminiscent
of the classical definition of local models which involves lattice chains.

R 1.3. – The main idea behind constructing the local model diagram in
Theorem 1.1 comes by observing that there is a correspondence between having descent
datum from the ramified extension L down to K and having a parahoric level structure
defined over K. This relationship also appears in the theory of vector bundles over a curve,
where a vector bundle with descent datum over a ramified cover of a curve corresponds to a
parahoric vector bundle over the curve.

For example, the paper [29] studies the case of vector bundles over smooth projective
curves X over C. Assume X has genus � 2. There exists a simply connected covering of X
ramified at a finite set of points (the points and their ramification indices can be prescribed
in advance) and this covering can be identified with the upper half space H. We can identify
X D H=� , where � is a group of automorphisms of H which does not act freely on H. Giving
a vector bundle of rank n on H with descent datum toX amounts to giving the trivial rank n
bundle on H together with a homomorphism � ! GLn.C/ which induces an action of �
on the trivial bundle. The invariant direct image under the projection to X gives a vector
bundle onX together with a so-called parabolic structure. The parabolic structure consists of
assigning a flag and a set of weights to the fiber at every ramification point. This construction
gives an equivalence between the category of vector bundles on H with descent datum to X
and the category of vector bundles on X with parabolic structure and with rational weights.

We also note that the more recent paper [2] extends the results of [29] to the case where the
structure group is a semisimple simply-connected algebraic group over C (rather thanGLn).

In joint work in preparation with Emerton, Gee and Savitt [10], the first author constructs
a moduli stack of two-dimensional, tamely potentially Barsotti-TateGK-representations and
relates its geometry to the weight part of Serre’s conjecture. In this case, the stack Y �;� will
be a relatively explicit, partial resolution of the moduli stack ofGK-representations. The nice
geometric properties that Y �;� inherits from the local model diagram turn out to be key for
understanding the geometry of the latter moduli stack. From this perspective, the present
paper and the paper in preparation [10] clarify the geometry which underlies a possible
generalization of Breuil’s lattice conjecture in the ramified setting.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



184 A. CARAIANI AND B. LEVIN

In another direction, the local model diagram above allows us to define the analog of
Kottwitz-Rapoport strata inside the special fiber of Y �;� . For example, if K D Qp, we get
locally closed substacks Y

�;�

w of the moduli space of mod p Kisin modules with descent
datum Y

�;�
indexed by certain elements w in the Iwahori-Weyl group of GLn, the so-called

�-admissible elements defined by Kottwitz and Rapoport (cf. [35, (9.17)]).

D 1.4. – A Kisin moduleM 2 Y
�;�

w .Fp/ is said to have shape .or genre/ w.

This generalizes the notion of genre which is crucial in [5] and more recently [12] in describing
tamely Barsotti-Tate deformation rings for GL2.

While Kisin’s resolution was most interesting when K=Qp was ramified, potentially
Barsotti-Tate deformation rings have interesting geometry even when K D Qp. In addition,
when n > 2, there is an advantage to replacing weight by level and considering poten-
tially crystalline deformation rings in questions related to Serre weight conjectures. This
direction is considered in joint work in progress of the second author with B. Le Hung,
D. Le and S. Morra which computes tamely crystalline deformations rings with Hodge-Tate
weights .2; 1; 0/ forK=Qp unramified with applications to Serre weight conjectures for GL3
[26]. The results of [26] suggest close connections between the strata defined by shapes and
Serre weights.

1.1. Overview of the paper

In Section 2, we recall the definition of local models in the sense of Pappas-Zhu, as well
as the results of [35, 28] on the geometry of local models. In Section 3, we define Kisin
modules with decent data, construct the moduli space of Kisin modules with tame descent
data (without imposing any conditions related to p-adic Hodge type) and derive the key
diagram 3.1. In Section 4, we construct the local model diagram (again without imposing
a p-adic Hodge type �) and prove that both arrows are (formally) smooth. In Section 5,
we construct the stack Y �;� , give a moduli-theoretic description of its generic fiber, describe
the Kottwitz-Rapoport stratification of its special fiber and relate it to tamely potentially
Barsotti-Tate Galois deformation rings.

1.2. Acknowledgements

The idea of constructing a moduli stack of Breuil-Kisin modules with tame descent data
originated in joint work of the first author with M. Emerton, T. Gee and D. Savitt, where
this is done for Breuil-Kisin modules corresponding to two-dimensional, tamely Barsotti-
Tate Galois representations. The idea that one should be able to relate this moduli stack to
local models of Shimura varieties was suggested to us by M. Emerton, whom we thank for
many useful conversations. The second author would like to thank B. Bhatt, B. Le Hung,
D. Le, S. Morra for many helpful conversations. We also thank the anonymous referees for
their comments and suggestions, which improved the paper. A. C. was partially supported
by the NSF Postdoctoral Fellowship DMS-1204465 and NSF Grant DMS-1501064.
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1.3. Notation

Fix a finite extension K=Qp with K0 the maximal unramified subextension. Let
f WD ŒK0 W Qp� and eK WD ŒK W K0�. Let k denote the residue field of K, of cardinality pf .
Fix a uniformizer �K ofK. LetL=K be the totally tame extension of degree pf �1 obtained
by adjoining a .pf � 1/st root of �K which we denote by �L. Let W WD W.k/ be the ring of
integers of K0.

Let E.u/ 2 ZpŒu� be the minimal polynomial for �K over Qp of degree e WD f � eK D

ŒK W Qp�. Note that P.v/ WD E.vp
f �1/ 2 ZpŒv� is the minimal polynomial for �L over Qp.

Set� WD Gal.L=K/, which is cyclic of orderpf �1. We takeF to be our coefficient field, a
finite extension of Qp, with ring of integersƒ and residue field F. Let�� WD Hom.�;ƒ�/ be
the character group. Assume thatK0 embeds intoF and fix such an embedding �0 W K0 ,! F

which induces an embedding W ,! ƒ and an embedding k0 ,! F. We will abuse notation
and denote these all by �0.

Let � W �! GLn.ƒ/ be a tame principal series type, i.e., � Š
Ln
iD1 �i with �i 2 ��. We

will take!f W GK ! W � to be the fundamental character of level f given by!f .�/ D
�.�L/
�L

.

2. Local models

In this section, we recall the definition and properties of local models for the group
ResK=QpGLn, at parahoric level and for general cocharacters. These local models are studied
in more detail and for more general groups in [28]. We will review the relevant definitions
and the results we will need. One can think of this construction as a mixed characteristic
version of the deformation of the affine flag variety used by Gaitsgory in [17]. The strategy
in mixed characteristic builds on the work of Pappas and Zhu [35]. For GLn, the construction
originates in work of Haines and Ngo [20].

Since K0 embeds into F , the local models for ResK=QpGLn decompose as products over
the different embeddings of K0 into Qp. For now, it is convenient to fix an embedding
� W K0 ,! F and let Q.u/ WD �.E.u//, an Eisenstein polynomial over ƒ. Later on, we
will allow � D �0 ı '

�j W K0 ,! F , where �0 is the embedding we have fixed above, ' is the
lift of Frobenius on K0 and j 2 Z=f Z.

Fix a parabolic subgroup P of GLn over Spec ƒ. P is the stabilizer of a filtration

0 D V0 � V1 � � � � � Vn�1 � Vn D ƒ
n

on the free rank n ƒ-module. For any ƒ-algebra R and any rank n projective R-module M ,
a P -filtration is a filtration fF i

.M/gg which is (Zariski) locally isomorphic to fVi ˝ƒ Rg.

D 2.1. – For any ƒ-algebra R, define

GrQ.u/.R/ WD fisomorphism classes of pairs .L; ˇ/g;

where L is a finitely generated projective RŒu�-module of rank n, ˇ W LŒ1=Q.u/� Š

.RŒu�n/Œ1=Q.u/�.

For any ƒ-algebra R, define

FlQ.u/P .R/ WD fisomorphism classes of triples .L; ˇ; "/g;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



186 A. CARAIANI AND B. LEVIN

where .L; ˇ/ 2 GrQ.u/.R/ and " is a P -filtration on L=uL. There is a natural forgetful
morphism pr W FlQ.u/P ! GrQ.u/.

We will also need some variations of these objects. There is a local version of GrQ.u/:

D 2.2. – Let dRŒu�.Q.u// denote the Q.u/-adic completion of RŒu�. For any
ƒ-algebra R, define

GrQ.u/loc .R/ WD fisomorphism classes of pairs .bL; b̌/g;
wherebL is a finitely generated projective dRŒu�.Q.u//-module of rank n and b̌is a trivialization

of bLŒ1=Q.u/�.
T 2.3. – The natural map

GrQ.u/ ! GrQ.u/loc

given by Q.u/-adic completion is an isomorphisms of functors.

Proof. – The equivalence follows from the Beauville-Laszlo descent lemma (main
theorem of [3]) since Q.u/ is a regular element of RŒu� for an ƒ-algeba R. A more general
version of the descent lemma appears as Lemma 6.1 of [35] along with more details.

R 2.4. – There is a local version of FlQ.u/P as well but it requires more machinery
to define. One has to work with “parahoric” group schemes over OŒu� as in §4 of [35] or
§3 of [28]. For example, §6.2.1 of [35] defines a local affine Grassmannian associated to
any smooth affine group scheme over OŒu� which includes as a special case a local version
of FlQ.u/P .

We have in fact another description of GrQ.u/ and FlQ.u/P when p is nilpotent in R:

D 2.5. – For any ƒ=prƒ-algebra R, define

GrQ.u/alt .R/ WD fisomorphism classes of pairs .L0; ˇ0/g;

where L0 is a finitely generated projective RŒŒu��-module of rank n and ˇ0 is a trivialization
ofL0Œ1=Q.u/�. We define FlQ.u/P;alt to include the additional data of a P -filtration "0 onL0=uL0.

P 2.6. – Let R be a ƒ=prƒ algebra, there are natural bijections

GrQ.u/.R/
�
�! GrQ.u/alt .R/ and FlQ.u/P .R/

�
�! FlQ.u/P;alt .R/:

Proof. – When p is nilpotent, the u-adic andQ.u/-adic completions ofRŒu� are the same
since Q.u/ D ue C pQ0.u/ and so GrQ.u/alt .R/ D GrQ.u/loc .R/. Thus, the first bijection follows

from Theorem 2.3. If .L; ˇ; "/ 2 FlQ.u/P .R/ maps to .L0; ˇ0; "0/ 2 FlQ.u/P;alt .R/, then L=uL is
canonically isomorphic to L0=uL0 and so the data of " is equivalent to the date of "0.

T 2.7. – The functors GrQ.u/ and FlQ.u/P are represented by ind-schemes which are
ind-projective over Spec ƒ.

Proof. – This follows from Proposition 4.1.4 of [28].

Let L0;R WD RŒu�n � .RŒu�n/Œ1=Q.u/�. In this situation, we can make the ind-structure
very concrete.
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KISIN MODULES WITH DESCENT DATA AND PARAHORIC LOCAL MODELS 187

D 2.8. – For any integers a; b with b � a, define

GrQ.u/;Œa;b�.R/ D f.L; ˇ/ 2 GrQ.u/.R/ j Q.u/�aL0;R � ˇ.L/ � Q.u/�bL0;R:

Similarly, we define FlQ.u/;Œa;b�P D FlQ.u/P �GrQ.u/ GrQ.u/;Œa;b�.

P 2.9. – The functors GrQ.u/;Œa;b� and FlQ.u/;Œa;b�P are represented by projective
ƒ-schemes.

Proof. – See [27, Proposition 10.1.15].

In order to describe the geometry of FlQ.u/P .R/, we recall the definition of the affine Grass-
mannian and affine flag varieties.

D 2.10. – Let � be a field. Let GrGLn be the affine Grassmannian of GLn
over �. GrGLn is the ind-scheme parametrizing, for any �-algebra R, finite projective
RŒŒt ��-submodules LR of R..t//n (we will refer to such an LR as an RŒŒt ��n-lattice in R..t//n).

One can also define the affine Grassmannian GrG for a general connected reductive
group G over �. This is the fpqc quotient of group functors G..t//=GŒŒt ��, where the
loop group G..t// sends a �-algebra R to G.R..t///. The positive loop group GŒŒt �� sends
a �-algebraR toG.RŒŒt ��/. In the case ofGLn, this definition is equivalent to Definition 2.10.
The fpqc quotient GrG is representable by an ind-projective ind-scheme over �. (For a
general group G, the affine Grassmannian parametrizes G-bundles on Spec RŒŒt �� together
with a trivialization on Spec R..t//, where we can think of G-bundles in the Tannakian
sense as tensor functors from Rep�.G/ to vector bundles. See, for example, Proposition 5.2
of [35].) In particular, one can consider GrRes.K˝QpF/=FGLn . Over F , we have a product
decomposition

.Res.K˝QpF /=FGLn/F Š
Y
K,!F

GLn:

The same then holds for the affine Grassmannian, namely,

.GrRes.K˝QpF/=FGLn/F Š
Y
K,!F

.GrGLn/F

and so GrRes.K˝QpF/=FGLn is a twisted form of
Q
K,!F GrGLn .

GrGLn has a stratification by affine Schubert cells, as follows. Fix the diagonal torus T
and the upper triangular Borel B. This induces an Bruhat ordering on the set of dominant
cocharacters f.d1; d2; : : : ; dn/ j di � diC1g of GLn. Let � D .d1; d2; : : : ; dn/ be a dominant
cocharacter. The positive loop group GLn.�ŒŒt ��/ acts on the affine Grassmannian GrGLn . By
the Cartan decomposition for GLn.�..t///, the orbits of this GLn.�ŒŒt ��/-action are indexed
by conjugacy classes of cocharacters of GLn; the orbits are called the affine Schubert cells
attached to the (conjugacy classes of) cocharacters. The affine Schubert variety S.�/ is
defined to be the closure of the open Schubert cell Sı.�/ corresponding to the conjugacy
class of �. It is a finite type closed subscheme of GrGLn . Concretely, S.�/ parametrizes
lattices whose position relative to the standard lattice are less than or equal to � for the
Bruhat-order. In particular, S.�/� is the union of the locally closed affine Schubert cells for
all �0 � � ([36, Proposition 2.8]).
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188 A. CARAIANI AND B. LEVIN

For our chosen parabolic subgroup P � GLn, we recall the definition of the affine flag
variety over F; it will be an ind-projective scheme over F. It will depend on our chosen
embedding � W K0 ,! F ; recall that we have defined Q.u/ WD �.E.u//.

D 2.11. – The affine flag variety FlPF associated to the pair .GLn; PF/ is the
moduli space of pairs .L; F �.L=tL// where L is a lattice in R..t//n and fF �.L=tL/g is a
P -filtration on L=tL for any F-algebra R.

We have a forgetful map FlPF ! GrGLn whose fibers are isomorphic to the flag
variety GLn=PF.

P 2.12. – The functor FlQ.u/P is represented by an ind-projective scheme
over Spec ƒ. Furthermore,

1. the generic fiber FlQ.u/P Œ1=p� is isomorphic to the product GLn=PF�GrRes.K˝K0;�F/=F
GLn

over Spec F ;
2. the special fiber FlQ.u/P ˝ƒF is isomorphic to FlPF .

Proof. – See [28, Proposition 2.2.8].

We now want to consider a version of FlQ.u/P where the embedding of K0 into the coef-
ficient field F is allowed to vary. Recall that we fixed such an embedding �0 W K0 ,! F .
For each 0 � j � f � 1, view K0 as a subfield of F via �j D �0 ı '

�j W K0 ,! F .
(Recall that ' is the lift of Frobenius to the unramified extension K0=Qp and j 2 Z=f Z.)
Fix a geometric cocharacter � of ResK=QpGLn which we write as .�j /where �j is geometric
cocharacter of ResK=K0GLn for each embedding �j . Furthermore, for each embedding �j ,
fix a parabolic subgroup Pj of GLn. Define the following schemes over Spec ƒ:

FlE.u/K WD

Y
j2Z=f Z

Fl
Ej .u/

Pj
;

where Ej .u/ D �j .E.u//, and

FlŒa;b�;E.u/K WD

Y
j2Z=f Z

Fl
Œa;b�;Ej .u/

Pj
:

R 2.13. – For now, the parabolic subgroupsPj are arbitrary and they are allowed
to be distinct. In Section 4, the “shape” of the descent datum on Kisin modules will impose
additional conditions on the Pj , which will ensure that they determine conjugate parahoric
subgroups of GLn.

For the chosen cocharacter �, we define the reflex field FŒ�� as the smallest subfield of F
containing F and over which the conjugacy class of � is defined. Let ƒŒ�� denote the ring
of integers of FŒ��. Since we have chosen F to contain a copy of K0, this is the union
of the corresponding fields for each �j . We will now define the local model as a scheme
over Spec ƒŒ��; a priori it could be defined over the ring of integers in a smaller field (we
just need the conjugacy class of � and the parabolic subgroups Pj to be defined over this
field) but we will only need to consider the base change to Spec ƒŒ��.
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D 2.14. – Let S.�/ � .GrRes.K˝QpF/=FGLn/FŒ�� be the closed affine Schubert
variety associated to f�g. For each j 2 Z=f Z, let 1GLn=Pj denote the closed point of GLn=Pj
corresponding to Pj . Then the local model M.�/ associated to � is defined to be the Zariski
closure of

Q
j2Z=f Z 1GLn=Pj � S.�j / in FlE.u/K . It is a flat projective scheme over Spec ƒŒ��.

The main theorem on the geometry of local models is:

T 2.15. – The local model M.�/ is normal with reduced special fiber. All irre-
ducible components of M.�/˝ƒ F are normal and Cohen-Macaulay.

Proof. – In this level of generality, this is Theorem 1.0.1 of [28]. This builds on Theorem 1.1
of [35], where the only restriction is thatK=Qp must be tamely ramified. When� is minuscule
and P D G, the result goes back to Theorem B of [31].

R 2.16. – The proof of Theorem 2.15 uses the coherence conjecture of Pappas
and Rapoport proven by [39].

R 2.17. – Xuhua He has shown in [21] that the entire local modelM.�/ is Cohen-
Macaulay when the �j (which are defined below in (2.1)) are all minuscule. The local model
is also known to be Cohen-Macaulay when n D 2 (via the argument sketched at the end
of [19], using the Kottwitz-Rapoport stratification below).

R 2.18. – In the case when n D 2 and �j; D .1; 0/ for all j 2 Z=f Z and
 W K ,! NF an embedding extending �j (which is the case corresponding to tamely
Barsotti-Tate Galois representations), it can be shown that the local model coincides with the
standard model, defined in terms of a Kottwitz determinant condition. The key point is that
the standard model at hyperspecial level is flat, as shown in [31]; the same holds at parahoric
level and therefore the standard model coincides with the local model in the sense of [35],
which is obtained by taking flat closure. The upshot is that in this special case, the entire local
model M.�/ has a moduli interpretation. More details on the moduli interpretation and its
relationship with tamely Barsotti-Tate Galois representations will appear in [10].

Although there is no moduli interpretation forM.�/ in general, we can describe its special
fiber in terms of affine Schubert varieties inside the affine flag variety. For each j 2 Z=f Z,
viewK0 as a subfield of F via �j and write �j D .�j; /, where  runs overK0-embeddings
K ,! NF . Assume that each �j; is a dominant cocharacter. Define

(2.1) �j WD
X

 WK,!F

�j; :

We recall the definition of the �j -admissible set, which was introduced by Kottwitz and
Rapoport; we follow the notation and constructions of Section 2 of [28].

Let G0 be the connected reductive group scheme Res. OK� OK0
;�j
ƒ/=ƒGLn over Spec ƒ

whose generic fiber is G. Let G WD G0 ˝ƒ ƒŒu� be the constant extension. If we set
G[ WD GF..u//, then GFŒŒu�� is a reductive model of GF..u// and the parabolic Pj determines
a parahoric subgroup

Pj WD fg 2 G .FŒŒu��/j g mod u 2 Pj .F/g � G[:
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Let eW be the Iwahori-Weyl group of the split group G[
NF..u//, defined as N. NF..u///=T [1 , where

N is the normalizer of a maximal torus T [ in G[ and T [1 is the kernel of the Kottwitz
homomorphism for T [ (see Section 4.1 of [34] for more details). eW sits in an exact sequence

0! X�.T
[/! eW ! W ! 0;

where W is the absolute Weyl group of .G[; T [/. Define

Adm.�j / WD fw 2 eW jw � t�; � 2 W � �j g:
The order � used in the definition of Adm.�j / is the Bruhat order. Let WPj � W be the
subgroup corresponding to the parahoric Pj . Define

AdmPj .�j / WD WPjAdm.�j /WPj :

Note that the Adm.�j / only depends on the geometric conjugacy class of �j .

T 2.19. – The geometric special fiber M.�/ NF can be identified with the reduced
union of a finite set of affine Schubert varieties in the affine flag variety FlE.u/

K; NF . Hence we have
a stratification

M.�/F D
[

.ewj /2Qf�1jD0
AdmPj .�j /

Y
j

Sı.ewj /
by locally closed reduced subschemes, where Sı.ewj / is an open affine Schubert cell and these
are indexed by j and by the admissible set AdmPj .�j /.

R 2.20. – The irreducible components of M.�/F are indexed by the extremal
elements of

Qf �1
jD0 AdmPj .�j / which are in bijection with the orbit of .�j / under the Weyl

group
Q
j WPj .

Proof. – This follows (by taking a product over the embeddings �j ) from Theorem 8.3
of [35] when K=Qp is tamely ramified and Theorem 2.3.5 of [28], when K=Qp is wildly
ramified.

Finally, we recall a generalization of the loop group which acts onM.�j / and on Fl
Ej .u/

Pj
.

Define the pro-algebraic group LC;Ej .u/GLn over Spec ƒ by

LC;Ej .u/GLn.R/ D lim
 �
r

GLn.RŒu�=Ej .u/r / D lim
 �
r

Res.ƒŒu�=Ej .u/r /=ƒGLn.R/:

We define a subgroup of LC;Ej .u/GLn by

LC;Ej .u/ Pj .R/ WD fg 2 L
C;Ej .u/GLn.R/ j g mod u 2 Pj .R/g:

Similarly, for any positive integer r , let

Pj;r WD fg 2 Res.ƒŒu�=Ej .u/r /=ƒGLn.R/ j g mod u 2 Pj .R/g:

P 2.21. – For any positive integer r , the functor Pj;r is represented by a
smooth, geometrically connected, group scheme of finite type overƒ. The functorLC;Ej .u/ Pj is
represented by an affine group scheme .not of finite type/ over ƒ which is formally smooth
over ƒ.
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Proof. – This is consequence of some general properties about Weil restriction along
finite flat morphisms. The fact that Pj;r is smooth is a consequence of Proposition A.5.2(4)
in [13]. The group scheme Pj;r has geometrically connected fibers by Proposition A.5.9
in [13].

P 2.22. – The group
Q
j2Z=f ZL

C;Ej .u/ Pj acts on FlE.u/K . For any cochar-
acter �, M.�/ is stable and the action of

Q
j2Z=f ZL

C;Ej .u/ Pj on M.�/ factors throughQ
j2Z=f Z Pj;N for some N sufficiently large.

Proof. – Choose a; b such that M.�/ �
Q
j2Z=f Z Fl

Ej .u/;Œa;b�

Pj
.

The action of
Q
j2Z=f ZL

C;Ej .u/ Pj on
Q
j2Z=f Z Fl

Ej .u/;Œa;b�

Pj
is through the group schemeQ

j2Z=f Z Pj;r for r D b � a. Since
Q
j2Z=f Z Pj;r is flat (even smooth) over ƒ by Propo-

sition 2.21, stability of M.�/ follows from the fact that the generic fiber S.�/ is a union of
orbits for the loop group of ResK=QpGLn.

R 2.23. – An action of pro-algebraic group on a ind-scheme which satisfies the
property in Proposition 2.22 is “nice” in the sense of [17].

3. Kisin modules with descent datum

In this section, we will consider moduli of Kisin modules of finite height for the field K
together with tame descent datum for L=K. We work over the category Nilpƒ of ƒ-alge-
bras R on which pN D 0 for some N � 0.

If R is such an algebra, then .W ˝Zp R/ŒŒv�� has an R-linear action of ', defined by (the
lift of) Frobenius on W and '.v/ D vp.

Recall that � D Gal.L=K/ is a cyclic group of order pf � 1. For any g 2 � and any
R 2 Nilpƒ, we letbg be the automorphism of .W ˝ZpR/ŒŒv�� given by v 7! .g.�L/=�L˝1/v D

.!f .g/˝ 1/v, which acts trivially on the coefficients.

We have a decomposition W ˝Zp ƒ '
Lf �1
jD0 ƒ, where �j D �0 ı '

�j W W ,! ƒ

corresponds to the projection onto the j th factor in the direct sum decomposition. We will
generally consider j modulo f . For any R 2 Nilpƒ, we get an induced decomposition

.W ˝Zp R/ŒŒv�� Š
M

j2Z=f Z

RŒŒv��:

Under this isomorphism, we have bg.v/ D .�0 ı !f .g/; �1 ı !f .g/; �2 ı !f .g/; : : : ; �f �1 ı

!f .g//v.

Similarly, for any .W ˝Zp R/ŒŒv��-module M , we write

M D
M

j2Z=f Z

M .j /

for the induced decomposition of M . Each M .j / is an RŒŒv��-direct summand of M .
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D 3.1. – Let MR be an .W ˝Zp R/ŒŒv��-module. A semilinear action of �
onMR is collection ofbg-semilinear bijectionsbg WMR !MR for each g 2 � such thatbg ıbh Dcgh
for all g; h 2 �.

Note that P.v/, the minimal polynomial for �L, is fixed by bg for all g. Thus,
..W ˝Zp R/ŒŒv��/Œ1=P.v/� inherits a semilinear action of � for any R 2 Nilpƒ.

D 3.2. – Let R be any ƒ-algebra. A Kisin module (with bounded height)
over R is a finitely generated projective .W ˝Zp R/ŒŒv��-moduleMR, which is Zariski locally
on Spec R finite free of constant rank over .W ˝Zp R/ŒŒv��, together with an isomorphism
�MR

W '�.MR/Œ1=P.v/� ŠMRŒ1=P.v/�.
We say that .MR; �MR

/ has height in Œa; b� if

P.v/aMR � �MR
.'�.MR// � P.v/

bMR

as submodules ofMRŒ1=P.v/�.

D 3.3. – A Kisin module with descent datum over R is a Kisin module
.MR; �MR

/ together with a semilinear action of � given by fbggg2� which commutes
with �MR

, i.e., for all g 2 �,

'�.bg/ ı �MR
D �MR

ıbg:
Fix integers Œa; b� with a � b and a positive integer n. We take X Œa;b� to be the fpqc stack

over Nilpƒ such thatX Œa;b�.R/ is the category of Kisin modules overR of rank nwith height
in Œa; b�, with pullback defined in the obvious way (see §2.a in [33]). Similarly, we define the
fpqc stack Y Œa;b�;�, where Y Œa;b�;�.R/ is the category of Kisin modules of rank nwith descent
datum over R and height in Œa; b�. We will need some auxiliary spaces as well.

D 3.4. – Fix N > b � a. Let eX Œa;b� be the fpqc stack over Nilpƒ given byeX Œa;b�.R/ WD f.MR; ˛R/ jMR 2 X
Œa;b�.R/; ˛R WMR Š RŒŒv��

n mod P.v/N g:

There is also an infinite version:eX Œa;b�;.1/.R/ WD f.MR; ˛R/ jMR 2 X
Œa;b�.R/; ˛R WMR Š RŒŒv��

n
g:

We leave out N from the notation eX Œa;b�, though of course the stack does depend on N .
The natural maps eX Œa;b� ! X Œa;b� (resp. eX Œa;b�;.1/ ! X Œa;b�) are formally smooth. For any
r � 1, set

X Œa;b�r WD X Œa;b� ˝ƒ ƒ=p
r and Y Œa;b�;�r WD Y Œa;b�;� ˝ƒ ƒ=p

r :

T 3.5. – For any r � 1, X Œa;b�r is representable by an Artin stack of finite type
over Specƒ=pr . Furthermore, eX Œa;b�r is represented by a scheme of finite type over Specƒ=prƒ.

Proof. – The first statement follows from [33, Theorem 2.1] as does the fact that eX Œa;b�1 is
represented by a finite type scheme. Since the inclusion eX Œa;b�1 � eX Œa;b�r is a nilpotent
thickening, eX Œa;b�r is also a represented by a scheme by Lemma 87.3.8 of [1] based on the
corresponding fact for algebraic spaces and on the fact that a thickening of a scheme in the
category of algebraic spaces is a scheme, which is Corollary 8.2 of [37].
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We will return to this theorem with descent datum in Theorem 4.7. First, we discuss the
Galois type or tame type of a Kisin module with descent datum. LetMR be a Kisin module
with descent datum over R. Write

MR D

M
j2Z=f Z

M
.j /
R :

We get a semilinear�-action onM.j /
R , on the Frobenius pullback '�.M.j /

R / as well as on the

reduction '�.M.j /
R /=v'�.M

.j /
R /.

D 3.6. – LetMR 2 Y
Œa;b�;�.R/ and set D.j /

R WD M
.j /
R =vM

.j /
R . Then we say

thatMR has type � D
Ln
iD1 �i , with �i 2 ��, if for all j 2 Z=f Z

D
.j /
R Š �

as linear representations of �.

R 3.7. – In Definition 3.6, we require that the type be the same for all
j 2 f0; : : : ; f � 1g. If R D ƒ, the fact that �R commutes with the descent datum implies
that the type must be the same on each component D.j /

R .
However, this need not always hold if R D F. For example, take f D 2;K0 D K D Qp2 ;

L will be a ramified extension of K obtained by adjoining a .p2 � 1/st root of p. Let
M DM.1/˚M.2/ be a rank 1Kisin module overF, with e.i/ a generator forM.i/ for i D 1; 2.
In FŒŒv��, we have P.v/ D vp

2�1. Then we can have Gal.L=K/ act on e.i/ by !i2 and we can
simply take �F.e.1// D vp

2�2 � e.2/ and �F.e.2// D v � e.1/. ThenM is a rank 1Kisin module
with height in Œ0; 1�.

Since we are ultimately interested in relating the Kisin modules with tame descent data to
Galois representations over F (see Section 5.3), we do not lose anything from imposing this
condition.

P 3.8. – IfMR is a Kisin module with descent datum of type � , then
'D

.j /
R WD '

�.M
.j /
R /=v'�.M

.j /
R / Š �:

Proof. – The natural R-linear injection M.j /
R ! '�.M

.j /
R / given by m 7! 1 ˝ m is

�-equivariant and induces an isomorphism modulo v.

P 3.9. – LetMR 2 Y
Œa;b�;�.R/. Consider

D
.j /
R D

M
�2��

D
.j /
R;�

where D.j /
R;� is the �-isotypic piece. Then D.j /

R;� is a finite projective R-module and hence the

rank of D.j /
R;� is locally constant on Spec R.

D 3.10. – Let Y Œa;b�;� be fpqc stack of Kisin modules with height in Œa; b� and
descent datum of type � over Nilpƒ.

C 3.11. – The inclusionY Œa;b�;� � Y Œa;b�;� is a relatively representable open and
closed immersion.
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Proof. – This follows from Proposition 3.9 which says that the type of a Kisin module
with descent is Zariski locally constant.

Define Y Œa;b�;�r WD Y Œa;b�;��ƒƒ=p
rƒ. In the next section, we will construct a smooth cover

of Y Œa;b�;�r and show that it is representable by an Artin stack of finite type (Theorem 4.7). We
will also relate these moduli spaces of Kisin modules with descent datum to the local models
from the previous section.

First, we will need a few preliminaries. Recall that � D
Ln
iD1 �i . We can write �i uniquely

as

�i D .�0 ı !f /
ai

where ai D ai;0 C ai;1p C � � � C ai;f �1pf �1.

D 3.12. – Let ai be as above. For j 2 Z=f Z define

a.j /i D
f �1X
kD0

ai;f �jCkp
k

where the subscript f � j C k is taken modulo f .

We have chosen a global ordering on the characters �1; �2; : : : ; �n. However, it will be
useful to choose a possibly different ordering at each place j 2 Z=f Z.

D 3.13. – An orientation of the type � is a set of elements .sj 2 Sn/j2Z=f Z such
that

a.j/sj.1/
� a.j/sj.2/

� a.j/sj.3/
� � � � � a.j/sj.n/

:

In other words, if we set �.j /a WD .a.j/i / 2 Zn thought of as a cocharacter of the diagonal
torus of GLn, then sj is a permutation such that s�1j .�

.j /
a / is anti-dominant with respect to

the upper triangular Borel subgroup.

R 3.14. – 1. If the characters �i are pairwise distinct, then there is a unique
orientation for � .

2. For a different choice of global ordering, the set of possible orientations changes by
diagonal conjugation by Sn.

3. One may also be interested in studying the case when � is an inertial type overQp which
does not correspond to a principal series type (in the sense of Bushnell and Kutzko)
under the inertial local Langlands correspondence. (See Theorem of [9] for a general
statement of inertial local Langlands, originally due to Henniart in the 2-dimensional
case.)

For such an inertial type � over Qp, one can consider the base change � 0 to Qpf
where the type corresponding to � (in the sense of Bushnell and Kutzko) becomes a
principal series representation. Then � 0 decomposes as a direct sum of characters, so it
is a type in the sense of Definition 3.6. The orientations for � 0 reflect what sort of type �
was (see Example 3.15 below).
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E 3.15. – Here we give the example of 2-dimensional principal series and cusp-
idal tame types over Qp. (These correspond to types in principal series, and respectively
supercuspidal representations, of GL2.Qp/ under inertial local Langlands.) Let 0 � a <

b < p � 1. Consider the two dimensional tame types over Qp given by �1 D !a1 ˚ !
b
1 and

�2 D Ind.!aCpb2 /. The base changes to Qp2 are

� 01 D !
aCap
2 ˚ !

bCbp
2 and � 02 D !

aCpb
2 ˚ !

bCap
2

respectively. The unique orientation for � 01 is .id; id/, and the unique orientation for � 02 is
.s; id/ where s is the non-trivial transposition in S2.

Consider the map RŒŒu�� ! RŒŒv�� given by u 7! vp
f �1. If MR is a Kisin module

overR with descent datum, then for each j ,M.j /
R considered as anRŒŒu��-module has a linear

�-action and so for any � 2 ��, we can consider the submodules

M
.j /
R;� D fm 2M

.j /
R j bg.m/ D �.g/mg

for all g 2 �. Note thatM.j /
R D

L
�2��M

.j /
R;� as RŒŒu��-modules, since the order of � is

prime to p.
Similarly, we can define

'M
.j /
R;� WD fm 2 '

�.M
.j /
R / j bg.m/ D �.g/mg:

Since the descent datum commutes with the Frobenius action, we get linear maps

�
.j�1/
R;� W

' M
.j�1/
R;� !M

.j /
R;�:

R 3.16. – The�-isotypic piece of '�.M.j /
R / is not isomorphic to '�.M.j /

R;�/. Thus,

�
.j /
R does not define a semilinear Frobenius fromM.j�1/

R;� toM.j /
R;�. This is why we denote the

�-isotypic component by 'M.j /
R;�.

P 3.17. – LetMR be a Kisin module overR of rank nwith descent datum. For
any j 2 Z=f Z and � 2 �� the modulesM.j /

R;� are finite projective RŒŒu��-modules of rank n.

Furthermore multiplication by v onM.j /
R induces an injective RŒŒu��-module homomorphism

M
.j /
R;�

v
�!M

.j /

R;.�j ı!f /�
:

Proof. – The module Mj
R;� is finite projective RŒŒu��-module because it is a direct

summand of the finite projective module Mj
R; this also implies that multiplication by v

on Mj
R is injective. By the discussion before Definition 3.1, multiplication by v sends the

�-isotypic piece of Mj
R to the .�j ı !f /�-isotypic piece. The rank computation is imme-

diate.

L 3.18. – LetMR be a Kisin module with descent datum. Let Ej .u/ WD �j .E.u//.
For each � 2 ��, the Frobenius onMR induces an isomorphism �

.j�1/
R;� W' M

.j�1/
R;� Œ1=Ej .u/�!

M
.j /
R;�Œ1=Ej .u/� such that

Ej .u/
aM

.j /
R;� � �

.j�1/
R;� .'M

.j�1/
R;� / � Ej .u/

bM
.j /
R;�

wheneverMR has P.v/-height in Œa; b�.
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Proof. – For each j , the map �.j�1/R W '�.M
.j�1/
R /Œ1=�j .P.v//� ŠM

.j /
R Œ1=�j .P.v//� is a

�-equivariant isomorphism. Using that P.v/ D E.vp
f �1/ D E.u/, we see that multiplica-

tion by E.u/ respects the decomposition into isotypic pieces. The height condition is easy to
verify.

Choose an orientation .sj / for � as in Definition 3.13. We then have the following commu-
tative diagram for each j :
(3.1)
'M

.j�1/
R;�sj .n/

//

�
.j�1/
R;�sj .n/

��

'M
.j�1/
R;�sj .1/

//

�
.j�1/
R;�sj .1/

��

'M
.j�1/
R;�sj .2/

//

�
.j�1/
R;�si .2/

��

� � � // 'M
.j�1/
R;�sj .n�1/

//

�
.j�1/
R;�sj .n�1/

��

'M
.j�1/
R;�sj .n/

�
.j�1/
R;�sj .n/

��

M
.j /
R;�sj .n/

//M
.j /
R;�sj .1/

//M
.j /
R;�sj .2/

// � � � //M
.j /
R;�sj .n�1/

//M
.j /
R;�sj .n/

:

All the maps in the diagram are injective. The composition across each row is multiplication

by u. The first horizontal arrow in each row is induced by multiplication v
pf �1�a.j/sj.n/

Ca.j/sj.1/ .

The other horizontal arrows are induced by multiplication by v
a.j/sj.kC1/�a.j/sj.k/ for each

1 � k � n � 1. If some of the f�ig are equal, some of the maps will be the identity.

The diagram should remind one of the diagrams that appear in the classical definition of
local models for GLn with parahoric level structure, which involve lattice chains (see [32] as
well as Section 2 of [34]). Once we have chosen an appropriate trivialization ofM.j /

R;�sj .n/
in

the next section the above diagram will determine anR-point of an appropriate local model.

4. Smooth modification

We maintain the conventions from the previous section. In particular, we fix an
ordering f�igniD1 of the characters appearing in � . We would like to package the data of
diagram (3.1) in a different way so that the relationship to the local models from §2 becomes
clearer. If D is an R-module, then by a filtration on D, we always mean by submodules
which are direct summands of D. We will work with increasing filtrations.

We continue to work over the category Nilpƒ of ƒ-algebra on which p is nilpotent. We
make the following definition:

D 4.1. – Let X;X 0 be fpqc stacks on Nilpƒ. A morphism f W X ! X 0 is
smooth if f mod pN is smooth for all N � 1.

D 4.2. – Let MR 2 Y Œa;b�;� .R/. An eigenbasis for MR is a collection of

bases ˇ.j / D
n
f
.j /
1 ; f

.j /
2 ; : : : ; f

.j /
n

o
for each M.j /

R such that f .j /i � M
.j /
R;�i

. An eigen-

basis modulo P.v/N is a collection of bases
n
ˇ
.j /
N

o
j2Z=f Z

for each M.j /
R =�j .P.v//

NM
.j /
R

compatible, as above, with the descent datum.

An eigenbasis exists wheneverD.j /
R is free overR since one can lift a basis forD.j /

R toM.j /
R .

In particular, such a basis exists Zariski locally on Spec R for anyMR 2 Y
Œa;b�;� .R/.
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D 4.3. – Fix N > b � a. Let eY Œa;b�;� be the fpqc stack over Nilpƒ given byeY Œa;b�;� .R/ WD n�MR; ˇ
.j /
N

�
jMR 2 Y

Œa;b�;� .R/; ˇ
.j /
N WM

.j /
R Š RŒŒv��

n mod �j .P.v//N
o

where .ˇ.j /N / is an eigenbasis. We also have an infinite version given byeY Œa;b�;�;.1/.R/ WD n�MR; ˇ
.j /
�
jMR 2 Y

Œa;b�;� .R/; ˇ.j / WM
.j /
R Š RŒŒv��

n
o

where .ˇ.j // is an eigenbasis.

We leave out N from the notation eY Œa;b�;� , though of course the stack does depend onN .
See Proposition 4.6 below for a precise statement.

P 4.4. – Let MR 2 Y Œa;b�;� .R/. An eigenbasis
˚
ˇ.j /

	
for MR induces a

trivializationM.j /
R;� Š RŒŒu��

n for any � 2 ��. In particular, we have

 .j / WM
.j /
R;�sj .n/

Š RŒŒu��n:

Similarly, an eigenbasis modulo P.v/N induces trivializations ofM.j /
R;� modulo E.u/N .

Proof. – An eigenbasis forMR induces a �-equivariant trivialization

M
.j /
R Š RŒŒv��f

.j /
1 ˚ � � � ˚RŒŒv��f .j /n Š RŒŒv��˝ƒ �:

We can identify the �-isotypic component on the right side and see that it is naturally
isomorphic to RŒŒu��n. To get the explicit basis for the �-isotypic component, translate the
elements of eigenbasis into the �-isotypic component by multiplying by the smallest non-
negative power of v which is compatible with the descent datum. For example, for �sj .n/, the

basis  .j / will be given by v
a.j/sj.n/
�a.j/sj.1/ � f

.j /

sj .1/
; : : : ; v

a.j/sj.n/
�a.j/sj.n�1/

� f
.j /

sj .n�1/
; f

.j /

sj .n/
.

Let .sj /j2Z=f Z be an orientation of � (Definition 3.13). Furthermore, define a filtration
on ƒn WD � by

Filk.ƒn/ D
X
1�i�k

.ƒn/�sj .i/
:

Let Pj � GLn be the parabolic which is the stabilizer of fFilk.ƒn/g. For example, if all the
characters are distinct then Pj is a Borel subgroup for all j 2 Z=f Z.

R 4.5. – In Definition 3.13, we define �.j /a 2 Zn which express the charac-
ters of � in terms of the fundamental character !f in embedding �j . An orientation is a
collection of permutations .sj / such that s�1j .�

.j /
a / is anti-dominant. Then Pj is the unique

parabolic subgroup containing the diagonal torus and the root groups U˛ for all ˛ satisfying
h˛; s�1j .�

.j /
a /i � 0. In particular, Pj contains the upper triangular Borel B.

Recall the group schemes LC;Ej .u/ Pj and Pj;r defined before Proposition 2.21 with
Pj the parabolic as above. When p is nilpotent in R, the Ej .u/-adic completion and u-adic
completions of RŒu� coincide and so

(4.1) LC;Ej .u/ Pj .R/ D
˚
g 2 GLn.RŒŒu��/ j g mod u 2 Pj .R/

	
:
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P 4.6. – The map �.1/ W eY Œa;b�;�;.1/ ! Y Œa;b�;� .resp. �.N/ W eY Œa;b�;� !
Y Œa;b�;� / is a torsor .for the Zariski topology/ for

Q
j2Z=f ZL

C;Ej .u/ Pj .resp.
Q
j2Z=f Z Pj;N /.

In particular, �.N/ is smooth and �.1/ is formally smooth.

Proof. – We observed after Definition 4.2 that an eigenbasis (resp. eigenbasis mod
P.v/N ) always exists Zariski locally on SpecR. We focus on the case of �.1/ since the other
case is similar. We want to show that for a given moduleMR with descent datum of type �
the set of eigenbases at an embedding �j is a torsor for LC;Ej .u/ Pj .R/.

An eigenbasis ˇ.j / W M.j / Š RŒŒv��n induces, by taking �-invariants, a trivializa-
tion ˇ.j /;� W M.j /;�D1 Š RŒŒu��n. Thus, for any two eigenbases ˇ.j / and ˇ

0.j /, there is
B.j / 2 GLn.RŒŒv��/ such that ˇ

0.j / D B.j /ˇ.j /; and A.j / 2 GLn.RŒŒu��/ such that ˇ
0.j /;� D

A.j /ˇ.j /;�: Concretely, let �.j /a D .a.j /i /i 2 Zn as in Definition 3.13. Then the relationship
between B.j / and A.j / is that

A.j / D
�
v
s�1
j
.�
.j/
a /
��1

B.j /
�
v
s�1
j
.�
.j/
a /
�

where vs
�1
j
.�
.j/
a / is the diagonal matrix with the .i; i/th entry given by v

a.j/
sj .i/ .

The claim is that�
v
s�1
j
.�
.j/
a /
��1

GLn.RŒŒv��/
�
v
s�1
j
.�
.j/
a /
�
\GLn.RŒŒu��/ D LC;Ej .u/ Pj .R/:

This can be checked by a direct computation with root groups which we include below.
For the entries below the diagonal, we have

A
.j /

mk
D v

a.j/
sj .m/

�a.j/
sj .k/B

.j /

mk

for m > k and with our choice of ordering a.j /
sj .m/

� a.j /
sj .k/

� 0 with equality if and only

if �sj .m/ D �sj .k/. Thus, whenever �sj .m/ ¤ �sj .k/, we see that A.j /
mk

mod u D 0. This is
exactly the condition A.j / mod u 2 Pj .R/. The converse is also true.

T 4.7. – For any r � 1, Y Œa;b�;�r WD Y Œa;b�;� ˝ƒ ƒ=p
rƒ is representable by an

Artin stack of finite type over Spec ƒ=prƒ. Furthermore, eY Œa;b�;�r WD eY Œa;b�;� ˝ƒ ƒ=prƒ is
represented by a scheme of finite type over Spec ƒ=prƒ.

Proof. – It suffices to prove the second statement, for which we will use a strategy origi-
nally employed in [10]. Consider the map

� W eY Œa;b�;�r ! eX Œa;b�r

given by forgetting the descent datum. It suffices to show that � is relatively representable and
finite type by Theorem 3.5.

Given .MR; �R; ˇR/ 2 eX Œa;b�r .R/ we see that the data of the additive bijectionsbg W MR ! MR for all g 2 �, which have to commute with �R, satisfy ĝ1 ı g2 D bg1 ı bg2,
be RŒŒv��-semilinear and compatible with ˇR is representable by a scheme of finite type
over R. Indeed, such a bijectionbg has to induce an R..u//-linear automorphism ofMRŒ1=v�

(which can be thought of as an étale '-module over R of rank n � .pf � 1/). By the proof
of Theorem 2.5(b) of [33], the data of an R..u//-linear automorphism of MRŒ1=v� which
commutes with �R is representable by a scheme of finite type over R. Further imposing the
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relationships ĝ1 ı g2 D bg1 ı bg2 and the RŒŒv��-semilinearity cuts out a closed subscheme.
Finally, the requirement that the descent datum preserve the latticeMR �MRŒ1=v� and the
compatibility with ˇR are also closed conditions.

We conclude then that eY Œa;b�;�r ! eX Œa;b�r is relatively representable and finite type and so by
Theorem 3.5 eY Œa;b�;�r is a scheme of finite type over Spec ƒ=prƒ. Since eY Œa;b�;�r ! Y

Œa;b�;�
r is

a smooth cover we deduce that Y Œa;b�;�r is an Artin stack of finite type.

We are now ready to construct the local model diagram for Kisin modules with descent
data: eY Œ0;h�;�;.1/

�.1/

yy

‰

%%

Y Œ0;h�;� FlE.u/K :

To define ‰, we need to associate to any .MR; �R; fbgg; ˇR/ 2 eY Œa;b�;�;.1/.R/ and each
embedding �j , a triple .L.j /; ˛.j /; ".j // 2 Fl

Ej .u/

Pj
.R/. The pair .L.j /; ˛.j // is straightforward

to define and is given by the ‘image’ of Frobenius.

To be precise, we take L.j / D' M
.j�1/
R;�sj .n/

and define the trivialization ˛.j / by the

composition

(4.2) 'M
.j�1/
R;�sj .n/

Œ1=Ej .u/�

�
.j�1/
R;�sj .n/

������!M
.j /
R;�sj .n/

Œ1=Ej .u/�
.j/

���! .RŒŒu��n/Œ1=Ej .u/�

where  .j / is induced by ˇ.j / as in Proposition 4.4. Notice that we are using the alternative
description of Fl

Ej .u/

Pj
from Definition 2.5.

Next, we have to define a filtration ".j / on L.j / mod u. Let

'D.j�1/
�sj .n/

WD
' M

.j�1/
R;�sj .n/

mod u D L.j / mod u:

The filtration is essentially given by the diagram (3.1). Namely for each 1 � i � n, let

!i W
' M

.j�1/
R;�sj .i/

!
' M

.j�1/
R;�sj .n/

be the injective map induced by composition along the upper row of (3.1). Then we get the
inclusions

u
�
'M

.j�1/
R;�sj .n/

�
� !1

�
'M

.j�1/
R;�sj .1/

�
� : : : !n�1

�
'M

.j�1/
R;�sj .n�1/

�
�
' M

.j�1/
R;�sj .n/

:

We can then define the filtration ".j / by

(4.3) Fili
�
'D.j�1/

�sj .n/

�
D !i

�
'M

.j�1/
R;�sj .i/

�
=u
�
'M

.j�1/
R;�sj .n/

�
:

It is not hard to see that the filtration ".j / is a Pj -filtration for Pj defined after Proposi-
tion 4.4.

In summary, we have

‰.MR; �R; fbgg; ˇ.j // D �'M.j�1/
R;�sj .n/

;  .j / ı �
.j�1/
R;�sj .n/

;
n
Fili

�
'D.j�1/

�sj .n/

�on
iD1

�
j2Z=f Z

:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



200 A. CARAIANI AND B. LEVIN

E 4.8. – Let K D K0 D Qp (so f D 1) and L be the ramified extension of Qp
of degree p � 1, such that E.u/ D u C p and P.v/ D vp�1 C p. Let 0 � a < b < p � 1

and consider the two dimensional tame type over Qp given by �1 D !a1 ˚ !b1 . This is a
continuation of Example 3.15.

We defineMF to be the rank 2Kisin module over F given byMF D e1FŒŒv��˚e2FŒŒv��with
� given by:

�.e1/ D e1; �.e2/ D v
p�1e2

and with descent datum �1 given by:

g.e1/ D !
a
1 .g/e1; g.e2/ D !

b
1 .g/e2

for every g 2 Gal.L=Qp/.
Then .e1; e2/ is an eigenbasis forMF and induces the bases .e1; vp�1Ca�be2/ of 'MF;!a

1

and .vb�ae1; e2/ of 'MF;!b
1

as FŒŒu��-modules, as in Proposition 4.4. The matrix of the triv-

ialization of 'MF;!b
1

is
�
1 0
0 u

�
. The map !1 W' MF;!a

1
!' MF;!b

1
is multiplication by vb�a.

Therefore, the induced filtration on 'D!b
1

has Fil1 generated by the image of the basis

element vb�ae1 modulo u. (Fil0 is everything and Fil2 D f0g.)
We leave the case of the base change to Qp2 of the cuspidal type �2 as an exercise.

We now come to the main theorem:

T 4.9. – The morphism ‰ is formally smooth.

Proof. – Roughly, the idea is that the image under ‰ gives the descent datum and the
image of Frobenius. What is left is to choose an isomorphism between '�.MR/ and its image
which is compatible with descent datum. By using the diagram (3.1), we show that it is
enough to choose the isomorphism on the �sj .n/th isotypic pieces and that any choice works,
giving formal smoothness. We now give the details.

We can twist to reduce the case where Œa; b� D Œ0; h� so that the Frobenius is an honest
endomorphism of MR. Let R 2 Nilpƒ and let I be a square-zero ideal of R. Choose
.MR=I ; �R=I ; fbgg; ˇ.i// 2 eY Œ0;h�;�;.1/.R=I /. Assume we are given a lift .L.j /R ; ę.j /; fFili .L.j /

mod v/g/ of ‰.MR=I / to R.
Let MR be a free .W ˝Zp R/ŒŒv��-module of rank n and choose an isomorphism

MR˝RR=I ŠMR=I . By Proposition 4.4,ˇ.j /
R=I

induces a trivialization  .j /
R=I
WM

.j /

R=I;�sj .n/
Š

.R=I /ŒŒu��n. We can then choose trivializations ě.j / ofM.j /
R for each j such that the diagram

M
.j /
R

ě.j/
//

��

RŒŒv��n

��

M
.j /

R=I

ˇ .j/
// .R=I /ŒŒv��n

commutes. Let f .j /
sj .i/

be the preimage of the i th standard basis element under ě.j /. We define

a semilinear �-action of type � on MR by demanding that � act on f .j /
sj .i/

through the

character �sj .i/. This clearly makes ě.j / into an eigenbasis for this descent datum.
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The eigenbasis ě.j / induces a filtration on 'D
.j /
�sj .n/

D

�
'M

.j /
R;�sj .n/

�
=u
�
'M

.j /
R;�sj .n/

�
as

in (4.3) (compatible with reduction modulo I ). Choose an isomorphisme� .j / W' M.j�1/
R;�sj .n/

Š

L
.j /
R compatible with the filtrations on 'D

.j /
�sj .n/

and L.j /R =uL
.j /
R and such that the diagram

M
.j�1/
R;�sj .n/

e�.j/ //

��

L
.j /
R

��

'M
.j�1//

R=I;�sj .n/

�.j/ // L
.j /

R=I

commutes. (The isomorphism � .j / is already compatible with the filtrations on the reductions
modulo u by our assumption that ‰.MR=I / equals L.j /

R=I
together with the induced extra

data.)

Define �.j�1/R;�sj .n/
to be the composition

'M
.j�1/
R;�sj .n/

Œ1=Ej .u/�
e�.j/
��! L

.j /
R Œ1=Ej .u/�

ę.j/
���! .RŒŒu��n/Œ1=Ej .u/�

.e.j//�1
������!M

.j /
R;�sj .n/

Œ1=Ej .u/�:

Observe that the only map which not an isomorphism without inverting Ej .u/ is ę.j /. The
“image” of Frobenius is then determined by the image of ę.j /.

If MR 2 eY Œ0;h�;�;.1/.R/ then the Frobenius �.j�1/R is uniquely determined by �.j�1/R;�sj .n/

by diagram (3.1). Indeed, to construct �.j�1/R it suffices to construct �.j�1/R;�sj .i/
for each

1 � i � n � 1 such that the diagram

'M
.j�1/
R;�sj .i/

!i //

�
.j�1/
R;�sj .i/

��

'M
.j�1/
R;�sj .n/

�
.j�1/
R;�sj .n/

��

M
.j /
R;�sj .i/

!0
i //M

.j /
R;�sj .n/

commutes. The horizontal arrows are induced by multiplication by v
a.j/sj.n/
�a.j/sj.i/ , so they are

injections by Proposition 3.17. The fact that e� .j / was chosen to respect filtrations implies
that the composition �.j�1/R;�sj .n/

ı!i lies in the image of the bottom horizontal map !0i and so

there exists a unique �.j�1/R;�sj .i/
which completes the diagram.

We can refine ‰ to a morphism of finite type.

P 4.10. – Let N > b � a. The map ‰ factors through the finite type closed
subscheme FlŒa;b�;E.u/K . Furthermore, there exists a smooth map ‰N W eY Œa;b�;� ! FlŒa;b�;E.u/K

such that ‰ is the composition of

eY Œa;b�;�;.1/ ! eY Œa;b�;� ‰N

��! FlŒa;b�;E.u/K :
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Proof. – Lemma 3.18 says that image of ‰ factors through Fl
Œa;b�;Ej .u/

Pj
on each factor

and hence through FlŒa;b�;E.u/K .

To show that ‰ factors as ‰N , we have to show that for any .MR; �R; fbgg; ˇ/ 2eY Œa;b�;�;.1/.R/ the image under ‰ only depends on ˇ modulo P.v/N . The image under
‰ is the tuple �

'M
.j�1/
R;�sj .n/

;  .j / ı �
.j�1/
R;�sj .n/

;
n
Fili

�
'D.j�1/

�sj .n/

�on
iD1

�
j2Z=f Z

:

From the construction of the map‰, we see that the eigenbases ˇ.j / only affect the construc-
tion of trivializations  .j / in (4.2). The eigenbasis ˇ.j / has no effect on 'M

.j�1/
R;�sj .n/

or

on the filtration on 'D
.j�1/
�sj .n/

. Furthermore, as we saw in the proof of Proposition 4.6,

changing the eigenbasis ˇ.j / amounts to composing  .j / W M.j /
R;�sj .n/

Š .RŒŒu��/n with an

element of g 2 LC;Ej .u/ Pj .R/. On Fl
Œa;b�;Ej .u/

Pj
, this corresponds to the natural left action

of LC;Ej .u/ Pj defined in Proposition 2.22.

If ˇ.j / and ˇ
0.j / are congruent modulo �j .P.v//

N , then  .j / D g � 
0.j / for

g 2 LC;Ej .u/ Pj .R/ with g � Id mod Ej .u/N . If g is congruent to the identity modulo

Ej .u/
N , then g acts trivially on Fl

Œa;b�;Ej .u/

Pj
(for example, by identifying Fl

Œa;b�;Ej .u/

Pj
with

lattices as in Definition 2.8).

C 4.11. – There is a diagrameY Œa;b�;�
�N

vv

‰N

))

Y Œa;b�;� FlŒa;b�;E.u/K ;

where both �N and ‰N are smooth.

5. p-adic Hodge type

In this section, we define and study a closed substack Y �;� � Y Œa;b�;� which is related to
the notion ofp-adic Hodge type. A similar construction but without descent data was carried
out in [33, §3]. When n D 2 and� 2 .f0; 1gn/Hom.K;Qp/ (i.e.,�minuscule), Y �;� and the local
model diagram are studied in forthcoming work of the first author with Emerton, Gee and
Savitt [10].

Let � be a geometric cocharacter of ResK=QpGLn. For each embedding �j W K0 ! F ,
we get a geometric cocharacter �j of ResK=K0GLn such that � D .�j /�j . Assume that
F D ƒŒ1=p� contains the reflex field of the conjugacy class Œ��, i.e., ƒ D ƒŒ��.

In §2, we defined the local model

M.�/ D
Y

j2Z=f Z

M.�j / �
Y

j2Z=f Z

Fl
Ej .u/

Pj
D FlE.u/K :

By Theorem 2.15,M.�/ is flat and projective overƒwith reduced special fiber. Also,M.�/ is
stable for the action of the “loop group”

Q
j2Z=f ZL

C;Ej .u/ Pj by Proposition 2.22.
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Assume that a; b are integers with a � b such thatM.�/ �
Q
i2Z=f Z Fl

Œa;b�;Ej .u/

Pj
. For any

N > a � b, we saw in Proposition 2.22 that the action of
Q
j2Z=f ZL

C;Ej .u/ Pj on M.�/
factors through the action of the smooth connected group scheme

Q
j2Z=f Z Pj;N .

D 5.1. – Define the closed subschemeeY �;� WD eY Œa;b�;� �FlŒa;b�;E.u/
K

;‰N
M.�/:

We have an induced smooth map

‰� W eY �;� !M.�/:

We would like to show that eY �;� descends to a closed substack Y �;� � Y Œa;b�;� .

P 5.2. – For any r � 1, there exists a closed substack Y �;�r � Y
Œa;b�;�
r such

that the diagram eY �;�r

�� ��

// eY Œa;b�;�r

�.N/��

Y
�;�
r

// Y
Œa;b�;�
r

is Cartesian. Furthermore, Y �;�r �Z=prZ Z=pr�1Z Š Y �;�r�1.

Proof. – By Proposition 4.6, �.N/ W eY Œa;b�;�r ! Y
Œa;b�;�
r is a torsor for the smooth group

G r WD .
Q
j2Z=f Z Pj;N /ƒ=prƒ. Any G r -stable closed subscheme of eY Œa;b�;�r descends by

faithfully flat descent to a closed substack of Y Œa;b�;�r .
Since .M.�//ƒ=prƒ is stable under G r so is eY �;�r and we define the desired Y �;�r by descent.

This construction is clearly compatible with reduction modulo pr�1.

Since the Y �;�r are compatible with reduction modulo pr�1, we can define a stack Y �;�

on Nilpƒ whose reduction modulo pr is Y �;�r .

T 5.3. – We have a local model diagram:

(5.1) eY �;�
��

ww

‰�

''

Y �;� M.�/

where both �� and ‰� are smooth maps.

5.1. Special fiber: Kottwitz-Rapoport strata

In addition to imposing the p-adic Hodge type � via the local model diagram (5.1), we
can also stratify the special fiber of Y �;� by pulling back the stratification in Theorem 2.19.
This is the analog of the Kottwitz-Rapoport stratification in the Shimura variety setting.

Let Y
�;�

denote the special fiber of Y �;� . As in the discussion before Theorem 2.19, we
can write �j D .�j; / where  runs over embeddings  W K ,! F that extend �j and where
each �j; is dominant. We define

�j D
X

 WK,!F

�j; :
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P 5.4. – For each ew D .ewj / 2 Qf �1
jD0 AdmPj .�j /, there is a locally closed

substack Y
�;�ew � Y

�;�
such that

.��/�1
�
Y
�;�ew �
D .‰�/�1

0@Y
j

S0.ewj /
1A :

Furthermore, the closureY
�;�

�ew ofY
�;�ew is the union of the strata for all .ew0j / 2Qf �1

jD0 AdmPj .�j /

such that ew0j � ewj for all j .

Proof. – We would like to define Y
�;�ew by faithfully flat descent from .‰�/�1

�Q
j S

0.ewj /�.

To descend along ��, we need .‰�/�1
�Q

j S
0.ewj /� or equivalently

Q
j S

0.ewj / to be

stable under the action of .LC;Ej .u/ Pj /F. The group scheme .LC;Ej .u/ Pj /F is the para-
horic group scheme Pj corresponding to Pj defined before Theorem 2.19 whose orbits
are exactly the open affine Schubert cells S0.ewj /. Since M.�/ is union of

Q
j S

0.ewj /
for ewj 2 AdmPj .�j / (Theorem 2.19), the same is true for Y

�;�
. The closure relations follow

from smoothness of �� and ‰�.

We now introduce the notion of shape (or genre in French). The genre of Kisin/Breuil
module of rank 2 was first introduced in [5] where it is connected to Serre weights for GL2
over an unramified extension of Qp. It also plays an important role in [7, 16] in computing
tamely Barsotti-Tate deformation rings as well as in the recent work of [12, 11]. The notion
of shape for a rank 3 Kisin modules with p-adic Hodge type .2; 1; 0/ and K=Qp unramified
will be used in forthcoming joint work of the second author [26] to compute potentially
crystalline deformation rings for GL3.

D 5.5. – A Kisin moduleM 2 Y
�;�ew .Fp/ is said to have shape ew.

R 5.6. – The shape of Kisin moduleM 2 Y
�;�
.F/ has a more concrete interpre-

tation as well.M has shape .ewj / if the matrix for the Frobenius �.j /F;�sj .n/
with respect to any

basis compatible with the filtration lies in the double coset LCPj .F/ewjLCPj .F/.

5.2. Generic fiber

We would now like to characterize Y �;� so that we can relate it back to potentially
crystalline representations and Hodge-Tate weights in the next section. SinceM.�/ is defined
by flat closure, this has to be done by working over the “generic” fiber in some suitable sense.

For any complete local Noetherian ƒ-algebra R with finite residue field and maximal
ideal mR, we define the R-points of Y Œa;b�;� as the inverse limit category

Y Œa;b�;� .R/ D f.Mk ; �k/ jMk 2 Y
Œa;b�;� .R=mkRR/; �k WMk ˝R=m

k�1
R R ŠMk�1g:

Similarly, we can define Y �;� .R/.
Given .Mk ; �k/ 2 Y Œa;b�;� .R/, the inverse limit MR D lim

 �
Mk is a module over

.W ˝Zp R/ŒŒv�� equipped with a semilinear Frobenius

�R W '
�.MR/Œ1=P.v/�!MRŒ1=P.v/�

and descent datum of type � .
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We now introduce the notion p-adic Hodge type first for Qp-points and then more gener-
ally. Let F 0=F be a finite extension with ring of integers ƒ0.

P 5.7. – For any Kisin moduleMƒ0 2 Y
Œa;b�;� .ƒ0/, letMF 0 WD Mƒ0 Œ1=p�.

Then the specialization
DF 0 WD '

�.MF 0/=P.v/'
�.MF 0/

is a finitely generated projective L˝Qp F
0-module with a semilinear action of �.

Proof. – This follows from the fact that ..W ˝Zp ƒ
0/ŒŒv��/Œ1=p�=P.v/ Š L ˝Qp F

0 and
thatMF 0 is finitely generated and projective over ..W ˝Zp ƒ

0/ŒŒv��/Œ1=p�.

We can define a filtration on DF 0 as in [23].

D 5.8. – Define

Fili .'�.MF 0// WD fm 2 '
�.MF 0/ j �MF 0

.m/ 2 P.v/iMF 0g:

Define L˝Qp F
0-submodules

Fili .DF 0/ WD Fili .'�.MF 0//=.Fili .'�.MF 0// \ P.v/'
�.MF 0// � DF 0 :

R 5.9. – If MF 0 has height in Œa; b� then it is a decreasing filtration with
Fila.DF 0/ D DF 0 and FilbC1.DF 0/ D 0:

ForMF 0 as in Proposition 5.7 and � 2 ��, we can define D
.j /
F 0;� WD

' M
.j�1/
F 0;� =Ej .u/

'M
.j�1/
F 0;�

together with a filtration defined in an analogous way using �.j�1/MF 0 ;�
and Ej .u/ in place

of �MF 0
and P.v/.

L 5.10. – LetMF 0 be as in Proposition 5.7. Let D
.j /
F 0 be theL˝K0;�j F

0-submodule
of DF 0 corresponding to �j W K0 ,! F 0. There is a natural isomorphism

D
.j /
F 0 Š D

.j /
F 0;�sj .n/

˝K L

of filtered L˝K0;�j F
0-modules.

Proof. – First, note that we have the isotypic decomposition D
.j /
F 0 D ˚�2�� D

.j /
F 0;�

as K ˝K0;�j F
0-modules, which gives an isomorphism D

.j /
F 0 Š D

.j /
F 0;�sj .n/

˝K L of

K ˝K0;�j F 0-modules, since multiplication by v when p is inverted and P.v/ D 0

induces isomorphisms D
.j /
F 0;� Š D

.j /

F 0;.�j ı!f /�
as F 0-modules. This can be upgraded to

an isomorphism D
.j /
F 0 Š D

.j /
F 0;�sj .n/

˝K L of L˝K0;�j F
0-modules, because multiplication

by vp
f �1 is multiplication by u, which is identified with �K ˝ 1 under the isomorphism

..W ˝K0;�j ƒ
0/ŒŒu��/Œ1=p�=Ej .u/ Š K ˝K0;�j F

0. This means that v is identified with

�L ˝ 1 2 L ˝K0;�j F
0. The fact that the isomorphism D

.j /
F 0 Š D

.j /
F 0;�sj .n/

˝K L respects

the filtrations on the two sides follows from the commutative diagram 3.1, where all the
horizontal maps are now isomorphisms.

Recall that we assume the conjugacy class of� is defined overF , i.e.,F D FŒ��. Associated
to �, we then have a Z-graded K ˝Qp F -module V� of rank n. See for example [23, (2.6)].
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D 5.11. – Let F 0=F be a finite extension with ring of integersƒ0. We say that
Mƒ0 2 Y

Œa;b�;� .ƒ0/ has p-adic Hodge type � if

gr�.DF 0/ Š gr�.V� ˝K˝QpF .L˝Qp F
0//

as graded L˝Qp F
0-modules.

We sayMƒ0 has p-adic Hodge type � � ifMƒ0 has p-adic Hodge type �0, for some �0

such that Œ�0� � Œ�� in the Bruhat ordering.

C 5.12. – Let F 0=F be a finite extension and let Mƒ0 be as above. Write
� D .�j /j2Z=f Z, where each �j is a geometric cocharacter of ResK=K0GLn. Given �j , let
V�j be the filtered K ˝K0;�j F -module of rank n corresponding to it as above. ThenMƒ0 has
p-adic Hodge type � D .�j /j2Z=f Z if and only if

gr�.DF 0;�sj .n/
/ Š gr�.V�j /

for every 0 � j � f � 1.

Proof. – This follows directly from Lemma 5.10.

LetMR 2 Y
Œa;b�;� .R/. For any finite extension F 0=F , any homomorphism x W R ! F 0

factors through the ring of integers ƒ0.
We can consider the base changeMx WD .MR ˝R;x ƒ

0/Œ1=p� for which we have defined
the notion of p-adic Hodge type.

We would now like to characterize whenMR 2 Y
Œa;b�;� .R/ lies in Y �;� .R/.

T 5.13. – LetR be a complete local Noetherianƒ-algebra with finite residue field.
Assume R isƒ-flat and reduced. ThenMR 2 Y

Œa;b�;� .R/ lies in Y �;� if and only if for all finite
extensions F 0=F and all homomorphisms x W R ! F 0 the base changeMx has p-adic Hodge
type � �.

Proof. – Let N > a � b. Choose an eigenbasis ez1 WD �
ˇ
.j /
�
j2Z=f Z

for MR;1 2

Y Œa;b�;� .R=mR/. Since the morphism �.N/ W eY Œa;b�;� ! Y Œa;b�;� is smooth, we can
find a compatible system of points ez WD .ezr /r with ezr 2 eY Œa;b�;�;.N/.R=mrR/ such that
�.N/.ezr / DMR;r .

We see then thatMR is in Y �;� .R/ if and only if ‰N .ezr / 2 M.�/.R=mrR/ for all r � 1.
The compatible system ‰N .ezr / defines a map

‰N .ez/ W Spec R! FlŒa;b�;E.u/K :

Since M.�/ is a ƒ-flat closed subscheme of FlŒa;b�;E.u/K , we see that ‰N .ez/ factors through
M.�/ if and only if we have a factorization

Spec RŒ1=p�

**

‰N .ez/Œ1=p�
// FlŒa;b�;E.u/K

M.�/Œ1=p� D
Q
j .1GLn=Pj � S.�j //:
?�

OO

Since RŒ1=p� is reduced and Jacobson, it suffices to show that we have a factorization at the
level of Qp-points.
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Every eigenbasis modulo P.v/N lifts to an eigenbasis, so we can switch from considering
‰N W eY Œa;b�;� ! FlŒa;b�;E.u/K to considering ‰ W eY Œa;b�;�;.1/ ! FlŒa;b�;E.u/K . We are reduced
then to showing that for any x W R ! F 0, Mx has p-adic Hodge type � � if and only
if for any choice of eigenbasis .ˇ.j // the corresponding F 0-point ‰.x/ of FlŒa;b�;E.u/K lies
in
Q
j .1GLn=Pj � S.�j //. We can enlarge the field if necessary so that F 0 contains a splitting

field forK=Qp. This ensures that the generic fiber of FlŒa;b�;E.u/K becomes a product over the
embeddings  W K ,! F 0.

We first show that the projection to GLn=Pj is the identity point. Consider the Frobenius
map

�.j�1/x;�sj .n/
W
' M.j�1/

x;�sj .n/
Œ1=Ej .u/�!M

.j /
x;�sj .n/

Œ1=Ej .u/�

which is a map of modules over .ƒ0ŒŒu��/Œ1=p; 1=Ej .u/�. Since p is inverted, reduction mod u
induces an isomorphism

'M.j�1/
x;�sj .n/

mod u
�
�!M.j /

x;�sj .n/
mod u:

For a choice of eigenbasis ˇ.j / D
�
f
.j /
i

�
, we would like to show that the image of the

filtration on 'M
.j�1/
x;�sj .n/

mod u is the canonical filtration onM.j /
x;�sj .n/

mod u induced by
the trivialization (i.e., induced by the eigenbasis). Concretely, this comes down to the fact
that

�.j�1/x;�sj .n/
.u
a
.j/

sj .n/
�a
.j/

sj .i/ ˝ f
.j /

sj .i/
/ 2 Fili .M.j /

x;�sj .n/
mod u/

which is equivalent to the commutativity of the (3.1). This shows that ‰.x/ 2
Q
j 1GLn=Pj �

GrRes.K˝K0F/=F
GLn.F

0/.

By twisting by some power of E.u/, we can now reduce to the case of Œa; b� D Œ0; h�.
Fix an embedding �j W K0 ! F 0. We have that S.�j / D

Q
 WK!F 0 S.�j; /, where the

product is over all embeddings  W K ,! F 0 which extend �j . Fix such an embedding  and
let � WD  .�K/. We write F 0ŒŒu � � �� for the completion of .ƒ0ŒŒu��/Œ1=p� at u � � .

Let ‰.x/ denote the projection onto the GrGLn factor corresponding to the embed-
ding  . We let L0 be the standard F 0ŒŒu � � ��-lattice in

�
F 0..u � � //

�n
corresponding to

the image ofM.j /
x;�sj .n/

under the trivialization  .j /. Then ‰.x/ 2 S.�j; / if and only if

the lattice L given by the .u � � /-adic completion of

 .j / ı �
.j�1/

x;sj .n/

�
'M.j�1/

x;�sj .n/

�
� ..ƒ0ŒŒu��/Œ1=p�/n

has relative position less than or equal to � relative to L0. (We note that L is contained in
the standard lattice L0 by our assumption that Œa; b� D Œ0; h�.)

The question is essentially reduced to one about open Schubert cells in the affine Grass-
mannian of F 0ŒŒu � � ��-lattices in

�
F 0..u � � //

�n
. We identify an element in GrGLn with

such a lattice via the standard lattice L0. For a cocharacter � of GLn, the Bialynicki-Birula
decomposition [4] gives a retraction from the open Schubert cell Sı.�/ � GrGLn to the flag
variety GLn=P�, where

P� WD

�
g 2 GLnj lim

.u�� /!0
.u � � /

��g.u � � /
� exists

�
:
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More precisely, the retraction Sı.�/! GLn=P� is induced by the evaluation at .u�� / D 0
on any element of theGLnŒŒu�� ��-orbit of .u�� /�. The fact that the evaluation at 0map
sends Sı.�/ to GLn=P� can be deduced from Lemma 2.3 of [30], where the isotropy group
for the orbit of .u � � /� in the affine Grassmannian is expressed as a semidirect product
of P� and a pro-unipotent algebraic group. Moreover, sending a lattice L to the fitration
on L=.u � � / L defined by

Fili . L=.u � � / L / WD . L \ .u � � /
i
� L0/=.u � � / L

corresponds to the evaluation at 0 map which sends the open Schubert cell Sı.�/ to
the flag variety GLn=P� parametrizing filtrations of type �. This can be checked by a
direct computation. In particular, if L corresponds to a point on Sı.�/, then the filtration
Fil�. L=.u � � / L / is of type �.

Let L be the lattice corresponding to ‰.x/ . Since

S.�j; /F 0 D
G

���j; 

Sı.�/F 0 ;

as we have assumed thatF 0 is large enough, the statement that‰.x/ 2 S.�j; / is equivalent
to the filtration Fil�. L=.u�� / L / being of type� �j; . Indeed,‰.x/ 2 S.�j; / if and only
if‰.x/ 2 Sı.�/ for some cocharacter � � �. Then‰.x/ 2 Sı.�/ for some cocharacter �
if and only if Fil�. L=.u � � / L / is of type �. (The if part follows after knowing the only if
part for every cocharacter �, since the Cartan decomposition tells us that ‰.x/ belongs to
some open Schubert cell. The only if part is explained above.)

We are now ready to conclude. Recall that we’ve set Dx;�sj .n/
D' M

.j�1/

x;sj .n/
=Ej .u/

'M
.j�1/

x;sj .n/
.

Then Dx;�sj .n/
is isomorphic to the product over those  extending j of

�
L=.u � � / L

�
.

This is an isomorphism of filtered K ˝K0;�j F 0-modules. We see then that ‰.x/ 2Q
j 1GLn=Pj � S.�j / if and only if gr�.Dx;�sj .n/

/ Š V�0
j
˝F F 0 for some �0j � �j . By

Corollary 5.12, this is equivalent toMx having p-adic Hodge type � �.

R 5.14. – When working with the moduli of Kisin modules, one is forced to
impose the condition � � rather than asking for a constant p-adic Hodge type �. On the
other hand, Kisin shows in [23, Corollary 2.6.2] that, for the family of Kisin modules living
over the generic fiber of a semistable Galois deformation ring, the p-adic Hodge type is
locally constant. However, Kisin’s proof that the p-adic Hodge type is locally constant uses
the comparison with DdR (see also [24, (A.4)], where the proof of [23, Corollary 2.6.2] is
corrected). In particular, the proof relies on the fact that the family of Kisin modules comes
from a family ofGK-representations, rather than GK1 -representations. For general families
of finite height Kisin modules over a complete local ring R as above, the p-adic Hodge type
need not be locally constant on Spec RŒ1=p�.

5.3. Connections to Galois representations

In this subsection, we record two connections to Galois representations in the spirit of [23]
and [25]. This essentially comes down to adding descent datum to the constructions of Kisin
in loc. cit.
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Let R be a complete local Zp-algebra. Fix a compatible system of p-power roots

f�
1
p

L ; �
1

p2

L ; : : :g and let L1 denote the completion of L.�
1
p

L ; �
1

p2

L ; : : :/. We define K1 to
be the completion of the field obtained by adjoining the compatible system of p-power roots

of �K given by f�
e
p

L ; �
e

p2

L ; : : :g. Note that L1 is Galois over K1 with Gal.L1=K1/ Š
Gal.L=K/ D �.

D 5.15. – Let O E ;L be the p-adic completion of .W ŒŒv��/Œ1=v� equipped with
Frobenius and an action of � in the natural way. An étale '-module over R with descent
datum is a finite free Rb̋Zp O E ;L module M equipped with an Frobenius isomorphism
�M W '�.M / Š M and a semilinear action fbgg of � such that �M and bg commute for
all g 2 �.

P 5.16. – There is a functor M dd from the category of continuous represen-
tations of GK1 WD Gal.K=K1/ on finite free R-modules to the category of étale '-modules
overR with descent datum. This functor is an equivalence of categories with quasi-inverse Tdd .

Proof. – The main content is the equivalence given by the theory of norm fields over L1
due to Fontaine-Wintenberger (with coefficients [25, Lemma 1.2.7]). The addition of descent
datum is straightforward (see [12, §2.1.3] for details).

Let F 0 be a finite extension of F with ring of integers ƒ0. Let VF 0 be a potentially
semistable representation of GK with Galois type � and p-adic Hodge type �.

P 5.17. – Let Tƒ0 denote a GK-stable lattice in VF 0 . Then there exists
Mƒ0 2 Y

�;� .ƒ0/ such that

Mƒ0 ˝W ŒŒv�� O E ;L ŠM dd .Tƒ0 jGK1 /:

Proof. – Without descent datum, this is due to Kisin (see Corollary 1.3.15 and Propo-
sition 2.1.5 in [22]). We briefly explain how to extend the result to include decent datum.
Let Mƒ0 DM dd .Tƒ0 jGK1 /.

Applying Kisin’s results to Tƒ0 jGL , we get a finite height latticeMƒ0 � Mƒ0 . The fact
thatMƒ0 inherits a semilinear action of � from Mƒ0 follows from the uniqueness ofMƒ0

([22, Lemma 2.1.6]). The fact thatMƒ0 has type � follows from the Gal.L=K/-equivariance
of the identification

.Mƒ0=vMƒ0/Œ1=p� Š Dst .Tƒ0 Œ1=p�jGL/

from [23, §2.5(1)].
Finally,Mƒ0 Œ1=p� has p-adic Hodge type � via the identification

'�.Mƒ0 Œ1=p�/=P.v/'
�.Mƒ0 Œ1=p�/ Š D

�
dR.VF 0/

from the proof of [23, Corollary 2.6.2].

Let � W Gal.K=K/ ! GLn.ƒ0/ be a lattice in a potentially crystalline representation
of Gal.K=K/ with Galois type � and p-adic Hodge type �. Let � W Gal.K=K/ ! GLn.F0/
denote the reduction of � modulo the maximal ideal of ƒ0.

C 5.18. – Let � be as above. Then there existsM 2 Y �;� .F0/ such that

Tdd .M/ Š �jGal.K=K1/:
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We end by considering resolutions of potentially crystalline deformations rings as in [23].
Let � W Gal.K=K/ ! GLn.F/ be a continuous representation. Let � 2 .Zn/Hom.K;Qp/ be a
cocharacter. Let R�;�;cris

� be the framed potentially crystalline deformation ring with p-adic
Hodge type � and Galois type � , as constructed by Kisin.

Let mR denote the maximal ideal of R�;�;cris
� and let �univ

d
W Gal.K=K/! GLn.R

�;�;cris
� =mdR/

be the reduction of the universal deformation. Set M d WD M dd .�
univ
d

/. Define Y �;�
�;d

to be

the functor on R�;�;cris
� =mdR-algebras B given by

Y
�;�

�;d
.B/ WD f.MB ; ˛/ jMB 2 Y

�;� .B/; ˛ WMB Œ1=u� Š M d ˝ O
E ;R

�;�;cris
�

=md
R

.W ˝Zp B/..v//g:

The functors Y �;�
�;d

are relatively represented by projective schemes over R�;�;cris
� =mdR as

subschemes of the affine Grassmannian for M d using the same argument as in [23]. By
formal GAGA, there is a projective morphism

‚ W Y
�;�
� ! Spec R�;�;cris

�

reducing to Y �;�
�;d

modulo mdR.

T 5.19. – The projective morphism

‚ W Y
�;�
� ! Spec R�;�;cris

�

is an isomorphism on generic fibers.

Proof. – The proof that ‚Œ1=p� is a closed immersion is the same argument as in [23,
Proposition 1.6.4] using uniqueness of finite height lattices when p is inverted. The fact that
‚Œ1=p� is an isomorphism is then a consequence of Proposition 5.17.

C 5.20. – If � 2 .f0; 1gn/Hom.K;Qp/, i.e.,R�;�;cris
� is a potentially Barsotti-Tate

deformation ring, then the forgetful map Y �;�� ! Y �;� is formally smooth.

Proof. – For R a complete local Noetherian ƒ-algebra, the functor Tdd on Y Œ0;1�;� .R/
canonically extends to a functor eTdd valued in representations of GK (not just GK1 ) such
that whenR is finite flat overƒ the representation is potentially crystalline. To construct eTdd ,
one first associates to MR 2 Y

Œ0;1�;� .R/ a strongly divisible module with tame descent as
defined in [16, Definition 7.3.1]. The key point is that the monodromy operator is unique
and so it commutes with the descent datum. There is a functor Tst;L from strongly divisible
modules with tame descent to representations of GK [38, §4].

Formal smoothness is a local property so considerM 2 Y �;�� .F0/ for F0=F finite and the
corresponding deformation groupoids D�;�

�;M
! D

�;�

M
describing the local structure of Y �;��

and Y �;� respectively. As in diagram (2.4.7) of [23] , define D�;�;�
M

to sit in the 2-Cartesian
square

D
�;�;�
M

eT�
dd

��

f:s:
// D

�;�

M

eTdd
��

SpfR�
�

f:s:
// D�;
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whereR�
� is the unrestricted framed deformation ring andD� is the unrestricted deformation

groupoid. (One could also use potentially Barsotti-Tate deformations in place of the unre-
stricted versions.)

Finally, the same argument as in Proposition 2.4.8 of loc. cit. shows thatD�;�;�
M

Š D
�;�

�;M
.

The key points are that eT�
dd

factors through the SpfR�;�;cris
� � SpfR�

� and that Y �;� is flat
over ƒ.

C 5.21. – If � 2 .f0; 1gn/Hom.K;Qp/, then Y �;�� is normal and Y �;�� ˝ F is
reduced.

Proof. – This follows directly from Theorem 2.15, Theorem 5.3 and Corollary 5.20.
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