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We determine rational Kisin modules associated with 2-dimensional, irreducible, crys-

talline representations of Gal(Qp/Qp) of Hodge–Tate weights 0, k−1. If the slope is larger

than �k−1
p �, we further identify an integral Kisin module, which we use to calculate

the semisimple reduction of the Galois representation. In that range, we find that the

reduction is constant, thereby improving on a theorem of Berger, Li, and Zhu.

1 Introduction

Let p be a prime number and Qp be an algebraic closure of the p-adic numbers Qp. The

aim of this paper is to study 2-dimensional, irreducible, crystalline representations of

GQp
= Gal(Qp/Qp) and their reductions modulo p. Examples of such representations

arise in the arithmetic of modular forms. Fontaine first calculated the corresponding

reductions in the late 1970s for modular forms whose weights are small with respect

to p. (The proof was never published; Edixhoven provided a proof in [19].) Spurred

on by the p-adic local Langlands correspondence for GL2(Qp), there has recently

been considerable attention paid to local questions, often without qualification on

weights.
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2 J. Bergdall and B. Levin

1.1 Main result

To make our discussion precise, write vp for the valuation on Qp normalized by

vp(p) = 1. Then, for each k ≥ 2 and each ap ∈ Qp satisfying vp(ap) > 0, there exists

a unique 2-dimensional, irreducible, crystalline representation Vk,ap
whose Hodge–

Tate weights are 0 and k − 1 and such that the characteristic polynomial of the

crystalline Frobenius is X2 − apX + pk−1. Up to one-dimensional twists, these are all

the two-dimensional, irreducible, crystalline representations of GQp
. So, calculating the

reductions in general reduces to the two-parameter family Vk,ap
.

Let Vk,ap
be the semisimple reduction modulo p of Vk,ap

. For k fixed, it is known

that ap �→ Vk,ap
is locally constant (see [5], for example). So, focusing near to ap = 0,

there exists the smallest real number δp(k) for which Vk,ap
∼= Vk,0 whenever vp(ap) >

δp(k). In terms of controlling δp(k), Berger, Li, and Zhu proved 15 years ago that δp(k) ≤
� k−2

p−1� ([6]). Our main theorem improves that result:

Theorem 1.1.1 (Corollary 5.2.3). Let k ≥ 2. Then, Vk,ap
∼= Vk,0 for all vp(ap) > �k−1

p �.

This theorem advances our understanding of Vk,ap
when vp(ap) � 0. It

complements many papers focusing on small vp(ap) ([1, 7, 8, 13, 14, 21, 27]). Those

works employ a strategy, pioneered by Buzzard and Gee, that leverages the p-adic local

Langlands correspondence. By contrast, the earlier work by Berger–Li–Zhu uses Wach

modules, which more directly determine lattices in crystalline Galois representations.

Our approach belongs to that tradition, though we replace Wach modules with another

tool from integral p-adic Hodge theory: Kisin modules.

Despite their theoretical importance, there are few examples of explicit calcula-

tions with Kisin modules like we give here. Those that do exist are recent and limited

to small Hodge–Tate weights ([16, 24, 25]). One advantage of Kisin modules is their

availability beyond 2-dimensional representations of GQp
, unlike approaches via p-adic

local Langlands (see the generalizations of [6] in [18, 30]), and their availability beyond

crystalline situations, unlike Wach modules (cf. [17]). For instance, the method outlined

below was recently applied by the authors and Tong Liu in order to calculate reductions

of some semi-stable, non-crystalline, representations of GQp
([3]).

Finally, Theorem 1.1.1 can be improved. Computational evidence ([28]) and global

considerations ([15, 22]) suggest that δp(k) ≤ � k−1
p+1�, though precise predictions of local

constancy phenomena related to Galois representations and modular forms have been

wrong before (cf. [12]). After the release of this article, Arsovski ([2]) provided further

evidence that δp(k) ≤ � k−1
p+1� by showing δp(k) ≤ � k−1

p+1� + �logp(k)� as long as p > 3 and
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Reductions of Some Crystalline Representations 3

k �≡ 1 mod p+1. Arsovski uses a p-adic local Langlands approach, so they do not recover

neither the more specific Theorem 1.2.1 below nor Theorem 5.2.1, which applies to

any ap.

1.2 Method

The rest of the introduction is devoted to summarizing our method. We write F for a

finite extension of Qp, � for its ring of integers, and mF for the maximal ideal of �. The

field F will play the role of linear coefficients. Write E(u) = u + p. Define OF ⊂ F[[u]]

to be the subring of series converging on the disk |u|p < 1. We will consider ϕ-modules

over OF and S� = �[[u]]. A finite height ϕ-module over OF is a finite-free OF-module

M equipped with an operator ϕ : M → M, called a Frobenius, that is semi-linear for

u �→ up on OF and for which the cokernel of the linearization ϕ∗M → M is annihilated

by Eh, for some non-negative integer. (We say M has height ≤ h). A Kisin module is a ϕ-

module over S� satisfying the same height condition. We regularly describe a ϕ-module

(or Kisin module) by fixing a basis {ei} of M and giving the matrix C of ϕ in that basis.

Now let k ≥ 2 and ap ∈ mF . By [23], one may associate to Vk,ap
a unique

ϕ-module Mk,ap
over OF with height ≤ k − 1. More precisely, Mk,ap

is constructed

from the (contravariant) weakly admissible filtered ϕ-module D∗
cris(Vk,ap

). By the general

theory, one may descend Mk,ap
to a Kisin module Mk,ap

and, though Mk,ap
depends on a

Galois stable lattice in Vk,ap
, the mod p Galois representation Vk,ap

is completely deter-

mined by the ϕ-module Mk,ap
/mFMk,ap

. In this way, Kisin modules provide a theoretical

tool for calculating Vk,ap
. Unfortunately, both the passage from filtered ϕ-modules to

finite height ϕ-modules over OF and the descent to S� are difficult to navigate from the

point of view of direct calculation, except in very special circumstances.

Suppose, however, that we have defined a rank two Kisin module M and we want

to argue it is one of the Mk,ap
. Consider, first, any finite height ϕ-module M over OF .

It is canonically equipped with a meromorphic differential operator N∇ satisfying the

relation

N∇ ◦ ϕ = p
E(u)

E(0)
ϕ ◦ N∇ .

We say M satisfies the monodromy condition provided N∇ is without poles, which is

equivalent to N∇ being without a pole at u = −p it turns out. In [23], an equivalence

M ↔ D(M) is constructed between finite height ϕ-modules over OF that satisfy the

monodromy condition and effective filtered ϕ-modules. Returning to M, if M = M ⊗S�

OF satisfies the monodromy condition (we abuse language and say M itself satisfies

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa240/5909524 by guest on 22 Septem

ber 2020



4 J. Bergdall and B. Levin

the monodromy condition), then D(M) is weakly admissible. In practice, it is easy to

determine if D(M) = D∗
cris(Vk,ap

), and thus to calculate Vk,ap
from M. For vp(ap) > �k−1

p �,

this strategy can be enacted. We prove the following theorem.

Theorem 1.2.1 (Proposition 5.2.2). Let k ≥ 2 and suppose vp(ap) > �k−1
p � and k ≥ 2p+1.

Then, there exists a polynomial P ∈ mF [u] of degree at most k − 1 with P(0) = ap such

that M = S
⊕2
� equipped with ϕ =

(
P −1

Ek−1 0

)
satisfies the monodromy condition and

M ⊗S�
OF

∼= Mk,ap
.

Theorem 1.1.1 follows in weights k ≥ 2p + 1 since M/mFM is independent

of ap (the theorem is known in small weights by prior work). We stress the content

of Theorem 1.2.1 is entirely contained in finding an M that satisfies the monodromy

condition. The polynomial P in Theorem 1.2.1 is p-adically near to the truncation of

ap(1 + up/p)k−1 to degree k − 1, which we note lies in mF [u] when vp(ap) > �k−1
p �.

We end by describing the conceptual part of the strategy used to prove

Theorem 1.2.1. Since we first prove a more general statement for any vp(ap) > 0,

we will ignore the issues of integrality and work over OF . First, we determine the

ϕ-module Mk,0 corresponding to ap = 0. This is one case where calculating using

the definitions in [23] is accessible. In Section 3, we give a trivialization Mk,0 = O⊕2
F

in which ϕ =
(

0 −1
Ek−1 0

)
and the monodromy operator N∇,0, which has no poles, is

completely explicit. Considering all operators ϕ : F[[u]]⊕2 → F[[u]]⊕2 satisfying

ϕ ◦ N∇,0 = p
E(u)

E(0)
N∇,0 ◦ ϕ,

there is a one-parameter family {ϕap
} with the simple form ϕap

=
(

apζ −1
Ek−1 0

)
where

ζ ∈ 1 + uF[[u]] is an explicit series lying in the ring R of functions on the closed disk

|u|p ≤ p−1/p. Via ϕap
, we consider R⊕2 as a ϕ-module M̃k,ap

over R with height ≤ k − 1,

and we prove that we can descend M̃k,ap
to a ϕ-module M over OF , with features (except

integrality) as in Theorem 1.2.1. The crucial observation at this point is that such an M
must satisfy the monodromy condition: the canonical operator N∇,M associated with M
agrees with N∇,0 after base change from OF to R and so N∇,M has no pole at u = −p.

After a short calculation, we conclude M ∼= Mk,ap
.

A significant portion of this article is devoted to an algorithm, and the atten-

dant p-adic analysis, providing the descent from R to OF described in the previous

paragraph. The main mechanism is “row reduction” for semilinear operators. Related
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Reductions of Some Crystalline Representations 5

processes can be found in [16, 25], though those works focus on some more general

aspects while simultaneously restricting to the small weight situations.

2 Kisin Modules and the Monodromy Condition

For this section, we allow K/Qp to be a general finite extension and work in any

dimension; we will restrict to K = Qp and dimension two starting in Section 3.

Here, we establish notations and the main theoretical p-adic Hodge theory results we

need on Kisin modules and the monodromy condition. The key result is a criterion

(Corollary 2.2.5) for a ϕ-module to satisfy the monodromy condition (it is based on [25,

Proposition 5.3]).

2.1 Background

Let k be a finite field, W(k) the ring of Witt vectors over k, and K0 = W(k)[1/p]. Choose

a finite, totally ramified, extension K/K0 and let K be an algebraic closure of K. Define

GK = Gal(K/K). Write K = K0(π) where π is a uniformizer in K, and let E(u) ∈ K0[u]

be the Eisenstein polynomial for π . Choose elements π0, π1, π2, . . . in K such that π0 = π

and π
p
n+1 = πn for all n ≥ 0. The field K∞ is defined to be the compositum of the K(πn)

in K, and G∞ is defined to be Gal(K/K∞).

For r > 0, we write �[0,p−r ] for the p-adic disk of radius p−r over K0 in a

coordinate u and � = ⋃
r �[0,p−r ] for the open p-adic unit disk over K0. The ring of rigid

analytic functions on �[0,p−r ] is denoted by O[0,p−r ] and, likewise, O ⊆ K0[[u]] denotes

the ring of rigid analytic functions on �. We write S = W(k)[[u]], which is a subring of

O[0,p−r ] for any r > 0. The ring K0[[u]] is equipped with a unique operator ϕ such that

ϕ(u) = up and ϕ acts as a lift of Frobenius on K0. The rings O and O[0,p−r ] are ϕ-stable.

In fact, ϕ(O[0,p−r ]) ⊆ O[0,p−r/p] ⊆ O[0,p−r ].

We also choose F/Qp a finite extension, which will play the role of linear

coefficients. We assume that F contains a subfield isomorphic to K0. We write � for the

ring of integers in F and F for the residue field. The notations of the previous paragraph

extend, naturally. Specifically, OF,[0,p−r ] = O[0,p−r ] ⊗Qp
F and OF = O ⊗Qp

F, which is the

ring of rigid analytic functions on [K0 : Qp]-many open unit disks over F. Likewise, we

define S� = S ⊗Zp
� and SF = S�[1/p] ⊆ OF . The action of ϕ on K0[[u]] extends to

(K0 ⊗Qp
F)[[u]] linearly in F and all the above rings are ϕ-stable.

Assume that R ⊆ (K0 ⊗Qp
F)[[u]] is a ϕ-stable subring containing E. A ϕ-module

over R is a finite free R-module M equipped with an injective ϕ-semilinear operator ϕM :

M → M. We write Modϕ
R for the category whose objects are ϕ-modules over R and with
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6 J. Bergdall and B. Levin

morphisms being R-module morphisms that commute with ϕ. If h ≥ 0, then an element

M ∈ Modϕ
R is said to have (E)-height ≤ h if the linearization ϕ∗

M(M) = R ⊗ϕ,R M → M of

ϕM has cokernel annihilated by Eh. We write Modϕ,≤h
R ⊆ Modϕ

R for the full subcategory

of ϕ-modules with height ≤ h.

Definition 2.1.1. A Kisin module of height ≤ h over S� (resp. SF ) is an object in

Modϕ,≤h
S�

(resp. Modϕ,≤h
SF

).

Though our ultimate aim is questions on crystalline Galois representations, for

now we work with possibly non-trivial monodromy. Following [23], let Modϕ,N,≤h
OF

denote

the category of triples (M, ϕM, NM) where M ∈ Modϕ,≤h
OF

with Frobenius operator ϕM
and NM : M/uM → M/uM is a K0 ⊗Qp

F-linear endomorphism such that NMϕM|u=0 =
pϕM|u=0NM. Here and below (−)|u=0 means to calculate modulo u. Similarly, we define

Modϕ,N,≤h
S�

(resp. Modϕ,N,≤h
SF

) as in [23, (1.3.12)]. Note that even if M is defined over S�,

we nevertheless take NM to be defined on (M/uM) ⊗� F. Extension of scalars defines

functors

Modϕ,N,≤h
S�

→ Modϕ,N,≤h
SF

→ Modϕ,N,≤h
OF

. (2.1)

Below we will just write M ∈ Modϕ,N,≤h
OF

with the operators ϕM and NM understood.

Let MFϕ,N
F denote the category of filtered (ϕ, N)-modules over F (see [11, Section

3.1.1]). Then, Kisin defined in [23, (1.2.7-8)] a covariant functor D : Modϕ,N,≤h
OF

→ MFϕ,N
F .

The underlying vector space is D(M) = M/uM, the Frobenius on D(M) is ϕM|u=0,

and the monodromy on D(M) is NM. The filtration, which is always effective and

does not depend on NM, is more involved. We will recall its definition in the proof

of Theorem 3.0.5. We also abuse notation and write D for the composition of D with any

of the scalar extensions (2.1).

2.2 The monodromy condition

We now discuss the monodromy condition, which cuts out a subcategory Modϕ,N∇ ,≤h
OF

⊆
Modϕ,N,≤h

OF
that is equivalent via D(−) to the effective filtered ϕ-modules ([23, Theorem

1.2.5]). Let c0 = E(0) and

λ =
∞∏

n=0

ϕn(E/c0) ∈ OF .

Define a derivation N∇ = −uλ d
du on OF . Recall that N∇ϕ = p(E/c0)ϕN∇ .
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Reductions of Some Crystalline Representations 7

Lemma 2.2.1. Let M ∈ Modϕ,N,≤h
OF

. Assume that OF [1/λ] ⊆ S ⊆ (K0 ⊗Qp
F)[[u]] is stable

under ϕ and N∇ . Write MS = M⊗OF
S. Then, there exists a unique differential operator

NM∇ : MS → MS over N∇ such that NM∇ |u=0 = NM and NM∇ ϕM = p(E/c0)ϕMNM∇ .

Proof. The existence of NM∇ is [23, Lemma 1.3.10]. We explain the (standard) argument

for uniqueness. If NM∇,1 and NM∇,2 are two such operators, the difference H = NM∇,1 − NM∇,2

is an S-linear endomorphism of M such that H(MS) ⊆ uMS and

HϕM = p(E/c0)ϕMH. (2.2)

Since M has height ≤ h, and E is a unit in OF [1/λ] ⊆ S, MS is contained in the

S-submodule generated by ϕM(MS). Thus, from (2.2), H(MS) is contained in the

S-module generated by ϕM(H(MS)). So, starting from H(MS) ⊆ uMS we see by

induction that H(MS) ⊆ upiMS for all i. Thus, H(MS) = {0}. �

Given M ∈ Modϕ,N,≤h
OF

, we typically write NM∇ for the differential operator on

M[1/λ] obtained from the previous lemma.

Remark 2.2.2. For making matrix calculations, it is helpful to translate into matrix

form. Choose a basis for M over OF and write C (resp. B) for the matrix of ϕM (resp.

NM∇ ) whose column vectors record the action of the basis. A priori, B has entries in

OF [1/λ], but in fact λh−1B has entries in OF (see the proof in [23]). The commutation

relation for NM∇ and ϕM is equivalent to

N∇(C) + BC = p(E/c0)Cϕ(B). (2.3)

We sometimes refer to (2.3) as the monodromy relation.

Definition 2.2.3. If M ∈ Modϕ,N,≤h
OF

, M satisfies the monodromy condition if

NM∇ (M) ⊂ M.

We will abuse language and also say M ∈ Modϕ,N,≤h
S�

(resp. M̃ ∈ Modϕ,N,≤h
SF

) satis-

fies the monodromy condition if M ⊗S�
OF (resp. M̃ ⊗SF

OF ) satisfies the monodromy

condition.

If n ≥ 0, we write SF,n for the completion of SF at the ideal generated by

ϕn(E), and we write ιn : OF ↪→ SF,n for the natural inclusion. For any embedding

σ : K0 ↪→ F, the roots of σ(ϕn(E)) lie on |u| = p−1/epn
and so the map ιn factors through
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8 J. Bergdall and B. Levin

OF,[0,p−r ] whenever r ≤ 1/epn. Given M ∈ Modϕ,≤h
OF

, we write Mn = M ⊗OF ,ιn SF,n. By

construction, ιn(λ) is a unit multiple of ϕn(E) in SF,n, so we also use ιn to denote the

natural map M[1/λ] → Mn[1/ϕn(E)]. The monodromy condition on M is equivalent to

ιnNM∇ (M) ⊆ Mn for all n ≥ 0. However, we have the following weaker criterion based

on [25, Proposition 5.3].

Proposition 2.2.4. If M ∈ Modϕ,N,≤h
OF

, then M satisfies the monodromy condition if

and only if ι0NM∇ (M) ⊂ M0.

Proof. One direction is clear. Supposing ι0NM∇ (M) ⊂ M0, we will prove by induction

on n that in fact ιnNM∇ (M) ⊂ Mn. So, let n ≥ 0 and assume that ιnNM∇ (M) ⊂ Mn. Note

that ϕ induces a natural map ϕ : SF,n → SF,n+1 and ϕM induces a ϕ-semilinear operator

ϕn : Mn → Mn+1 such that the diagram

commutes. Using NM∇ ϕM = p(E/c0)ϕMNM∇ , we deduce

ιn+1NM∇ ϕM(M) = p

c0
ιn+1(E) · ϕn

(
ιnNM∇ (M)

)
⊂ Mn+1. (2.4)

On the other hand, since M has height ≤ h, EhM is contained in the OF-span of ϕM(M).

So, (2.4) implies that ιn+1NM∇ (EhM) ⊂ Mn+1. The containment ιn+1NM∇ (M) ⊂ Mn+1 now

follows from the Leibniz rule and the fact that ιn+1(E) is a unit in SF,n+1 for n ≥ 0. �

Corollary 2.2.5. Let M ∈ Modϕ,N,≤h
OF

, r ≤ 1/e, and Mr = M⊗OF
OF,[0,p−r ]. The following

are equivalent:

(a) M satisfies the monodromy condition.

(b) There exists a differential operator NMr∇ : Mr → Mr over N∇ such that

NMr∇ |u=0 = NM and NMr∇ ϕMr
= p(E/c0)ϕMr

NMr∇ .

Proof. Clearly, (a) implies (b). Suppose we are given (b). By Lemma 2.2.1, NM∇ = NMr∇
on Mr[1/λ] and so the assumption in (b) forces NM∇ (M) ⊆ Mr ∩ M[1/λ]. On the other
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Reductions of Some Crystalline Representations 9

hand, since r ≤ 1/e, the natural map OF → SF,0 factors through OF,[0,p−r ], from which

we deduce ι0NM∇ (M) ⊆ M0. So, we conclude (a) holds by Proposition 2.2.4. �

2.3 Kisin modules and Galois representations

By [23], Kisin modules over S� satisfying the monodromy condition are related to Galois

representations. To be precise, denote by MFϕ,N,wa
F ⊆ MFϕ,N

F the full subcategory of

weakly admissible filtered (ϕ, N)-modules. Then, we have a contravariant equivalence

of categories

V∗
st : MFϕ,N,wa

F → Repst
F (GK)

where Repst
F (GK) is the category of F-linear semistable representations of GK ([11,

Section 3.1.2]). Taking N = 0, this restricts to an equivalence V∗
cris : MFϕ,wa

F →
Repcris

F (GK) onto the category of F-linear crystalline representation of GK .

Let OE ,� denote the p-adic completion of S�[1/u] and extend ϕ from S�[1/u] to

OE ,� by continuity. Note that OE ,� ⊗� F = F((u)). The category of étale ϕ-modules over

OE ,� (resp. F((u))) is denoted by Modϕ,ét
OE,�

(resp. Modϕ,ét
F((u))

). By [20], there are contravariant

equivalences of categories

V∗
� : Modϕ,ét

OE,�
→ Rep�(G∞), V∗

F : Modϕ,ét
F((u))

→ RepF(G∞)

that satisfy the compatibility

V∗
�(M) ⊗� F ∼= V∗

F(M ⊗� F) (2.5)

for any M ∈ Modϕ,ét
OE,�

. In particular, if M ∈ Modϕ,N,≤h
S�

then we have G∞-representations

V∗
�(M ⊗S�

OE ,�) over � and V∗
F
(M ⊗� F[u−1]) over F.

If W is a representation of GK , we use W|G∞ denote W as a G∞-representation

via restriction.

Theorem 2.3.1 (Kisin). If M ∈ Modϕ,N,≤h
S�

and M satisfies the monodromy condition,

then D(M) is weakly admissible. Moreover, V∗
�(M ⊗S�

OE ,�)[1/p] ∼= V∗
st(D(M))|G∞ .

Proof. This is a summary of results of [23]. Specifically, the 1st statement follows

from applying Lemma 1.3.13, Lemma 1.3.10, and Theorem 1.3.8 of loc. cit. to M. The 2nd
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10 J. Bergdall and B. Levin

statement follows from Corollary 2.1.4 and Proposition 2.1.5 in the same reference. (See

also [26, Theorem 5.4.1].) �

If W is an F-linear representation of a group G, write Wss for the semi-

simplification of W as a G-representation. If V is an F-linear representation of GK , we

write V for (T/mFT)ss where T ⊆ V is any GK-stable lattice.

Corollary 2.3.2. Let M ∈ Modϕ,N,≤h
S�

and assume that M satisfies the monodromy

condition. Then, given a semi-simple F-linear representation VF of GK , we have

V∗
st(D(M)) ∼= VF if and only if (V∗

F
(M ⊗� F[u−1]))ss ∼= VF|G∞ .

Proof. Recall a semi-simple representation of GK in characteristic p is tamely ramified

([29, Proposition 4]). In particular, since K∞/K is totally wildly ramified, if W is a semi-

simple representation of GK then W|G∞ is semi-simple, and restriction of semi-simple

representations of GK to semi-simple representations of G∞ is a fully faithful functor.

Thus, by Theorem 2.3.1 and (2.5), we have V∗
st(D(M))|G∞

∼= (V∗
F
(M ⊗� F[u−1]))ss. The

corollary follows. �

3 A Family of 2-dimensional ϕ-Modules

From now on, we take K = Qp and restrict to the crystalline case by viewing Modϕ,≤h
OF

as

a full subcategory of Modϕ,N,≤h
OF

by forcing NM = 0.

We begin with some notation on 2-dimensional F-linear crystalline representa-

tions of GQp
. For each ap ∈ mF and integer h ≥ 1, there is a unique, up to isomorphism,

Dh+1,ap
∈ MFϕ,wa

F such that ϕ has characteristic polynomial X2 − apX + ph and the

filtration’s non-trivial jumps are in degrees 0 and h. Let Vh+1,ap
= V∗

cris(Dh+1,ap
). Then,

Vh+1,ap
is an irreducible crystalline representation of GQp

with Hodge–Tate weights

0 < h. (The convention here is that the cyclotomic character has Hodge–Tate weight 1).

Every 2-dimensional, irreducible, crystalline representation over F is a twist of some

such Vh+1,ap
. See [11, Section 3.1.2] for details and references.

Remark 3.0.1. Typically, Dh+1,ap
is presented as Fe1 ⊕ Fe2 where Fe1 is the non-trivial

line in the filtration on Dh+1,ap
and the matrix of ϕ in the basis {e1, e2} is given by(

0 −1
ph ap

)
(cf. [6, 10]). It is convenient for us, however, to use the basis {phe2, −e1} in

which the matrix of ϕ is
(

ap −1
ph 0

)
.
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Reductions of Some Crystalline Representations 11

Our goal in this section is to associate to Vh+1,ap
an explicit finite height

ϕ-module M̃ over R = OF,[0,p−1/p] that satisfies condition (b) in Corollary 2.2.5. We

further explain (Theorem 3.0.5) that any descent M of M̃ to OF satisfies the monodromy

condition and D(M) ∼= Dh+1,ap
is weakly-admissible.

From now on, we fix an integer h ≥ 1. For K = Qp we use the uniformizer π = −p,

so that E(u) = u + p. Let M0 = S
⊕2
� denote the Kisin module over S� with Frobenius ϕ

given by

C0 =
(

0 −1

Eh 0

)
.

Clearly, M0 has height ≤ h. Moreover, since E(u) = u + p, we have

C0|u=0 =
(

0 −1

ph 0

)
,

which is the matrix of ϕ acting on Dh+1,0 in the basis described in Remark 3.0.1. The key

step in justifying D(M0) ∼= Dh+1,0 is showing M0 satisfies the monodromy condition. We

do that by explicitly determining the differential operator NM0∇ on M0 = M0 ⊗SF
OF .

Define λ+ = ∏
n≥0 ϕ2n(E(u)/c0) and λ− = ∏

n≥0 ϕ2n+1(E(u)/c0). Note the crucial

identities:

λ = λ+λ−, ϕ(λ+) = λ−, ϕ(λ−) = c0

E
λ+ =: λ++. (3.1)

For f ∈ OF we write f ′ = df
du . Then, ϕ( f )′ = pu p−1ϕ( f ′) and so from (3.1), we deduce

ϕ
(
λ′+

) = 1

pu p−1 λ′−, ϕ(λ′−) = c0

pu p−1

(
λ′+
E

− λ+
E2

)
= 1

pu p−1 λ′++. (3.2)

Proposition 3.0.2. In the natural basis for M0, the matrix of NM0∇ is

B =
(

huλ+λ′− 0

0 huλ−λ′+

)
.

In particular, M0 satisfies the monodromy condition.
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12 J. Bergdall and B. Levin

Proof. By uniqueness of NM0∇ , it suffices to confirm that the relation N∇(C) + BC =
p(E/c0)Cϕ(B) holds for B and C = C0 (Remark 2.2.2). That is straightforward, using (3.1)

and (3.2). �

Remark 3.0.3. The base change of M0 to the unramified quadratic extension of Qp

is the direct sum of two Kisin modules of rank one. The monodromy condition can be

checked after unramified base change, and rank one Kisin modules always satisfy the

monodromy condition ([23, Lemma 1.3.10(3)]), so it is unsurprising that M0 satisfies the

monodromy condition.

Proposition 3.0.4. For each ap ∈ F, the matrix

Cap
:=

⎛⎝ap

(
λ−
λ++

)h −1

Eh 0

⎞⎠ (3.3)

satisfies the monodromy relation (2.3) with B from Proposition 3.0.2.

Proof. Consider ζ ∈ R and Z =
(

1 0
−ζ 1

)
, so that C := C0Z =

(
ζ −1

Eh 0

)
. We prove the

stronger claim that the monodromy relation (2.3) is satisfied by C and B if and only if ζ

is an F-scalar multiple of (λ−/λ++)h. To see this, first note (2.3) is equivalent to

0 = BC + N∇(C) − p

c0
ECϕ(B) = BC0Z + C0N∇(Z) + N∇(C0)Z − p

c0
EC0Zϕ(B). (3.4)

Let [−, −] be the usual matrix commutator. Then by Proposition 3.0.2, we have (3.4) is

equivalent to

0 = C0

(
p

c0
E[ϕ(B), Z] + N∇(Z)

)
. (3.5)

Since C0 is not a zero divisor in M2(F[[u]]), using (3.2) it is straightforward to see (3.5) is

equivalent to ζ being a solution to the differential equation

hu(E/c0)(λ−λ′++ − λ++λ′−)ζ + uλζ ′ = 0. (3.6)

Since λ = (E/c0)λ−λ++, the general solution to (3.6), in F[[u]], is given by ζ = a
(
λ−/λ++

)h

with a ∈ F. This completes the proof. �

Let p−2 < r < 1. By definition of λ++, the matrix Cap
in (3.3) has entries in

OF,[0,p−r ]. So, we may define M̃ap
= O⊕2

F,[0,p−r ] as a ϕ-module (of height ≤ h) over OF,[0,p−r ]
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Reductions of Some Crystalline Representations 13

by declaring ϕ acts in the natural basis of M̃ap
via the matrix Cap

. In this way, we view

{M̃ap
} as a family of ϕ-modules deforming M0. An object Map

∈ Modϕ,≤h
OF

such that

Map
⊗OF

OF,[0,p−r ]
∼= M̃ap

is called a descent of M̃ap
to OF . We use similar language to

describe descents to S� and SF . The purpose of Sections 4 and 5 is to show a descent

(to SF , even!) always exists for ap ∈ mF and identify an exact condition on vp(ap) under

which M̃ap
further descends to S�. For now, we prove just the following result, which

connects the family {M̃ap
} to Galois representations.

Theorem 3.0.5. Let p−2 < r < 1 and M̃ap
be as above. If ap ∈ mF and Map

∈ Modϕ,≤h
OF

is a descent of M̃ap
, then Map

satisfies the monodromy condition, D(Map
) is weakly

admissible, and V∗
cris(D(Map

)) = Vh+1,ap
.

Proof. Let M = Map
be as in the statement. By Corollary 2.2.5 and Proposition 3.0.4,

M satisfies the monodromy condition.

In order to justify the weak admissibility of D(M), we will have to explicitly

calculate the filtration on D(M) as defined in [22, (1.2.7)]. This is not so difficult, but we

would like to mention that if Map
were to descend to S�, which is the most interesting

case for us, then the weak admissibility is automatic by Theorem 2.3.1.

Let s be such that p−1 < s < 1 and r ≤ s. Write Os = OF,[0,p−s). Then OF,[0,p−r ] ⊆ Os,

so Ms := Map
⊗OF

Os has a basis {e1, e2} in which ϕ acts via Cap
in Proposition 3.0.4. In

particular,

(1 ⊗ ϕ)(ϕ∗Ms) = Ose1 ⊕ OsE
he2 ⊆ Ms.

The left-hand side is equipped with a decreasing filtration, which in degrees i ≥ 0 is

given by

Fili ((1 ⊗ ϕ)(ϕ∗Ms)
)

:= (1 ⊗ ϕ)(ϕ∗Ms) ∩ EiMs = OsE
ie1 ⊕ OsE

max{h,i}e2.

Write ξ : D(M) ⊗F OF → M for the map from [23, Lemma 1.2.6]. Thus, ξ is injective,

ϕ-equivariant, and the induced map ξs : D(M) ⊗F Os → Ms defines an isomorphism

ξs : D(M) ⊗F Os
∼= (1 ⊗ ϕ)(ϕ∗Ms), inducing a filtration on D(M) ⊗F Os. Explicitly, if we

choose xi ∈ D(M) ⊗F Os such that ξs(x1) = e1 and ξs(x2) = Ehe2, then

Fili(D(M) ⊗F Os) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D(M) ⊗F Os if i ≤ 0;

OsE
ix1 ⊕ Osx2 if 1 ≤ i ≤ h;

OsE
ix1 ⊕ OsE

i−hx2 if i > h.

(3.7)
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14 J. Bergdall and B. Levin

The filtration FiliD(M) is then defined to be the image of Fili(D(M) ⊗F Os) under the

map

D(M) ⊗F Os → D(M) ⊗F Os/EOs
∼= D(M).

Write x ∈ D(M) for the image of x ∈ D(M) ⊗F Os under the previous map. From (3.7), we

have

FiliD(M) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D(M) if i ≤ 0;

Fx2 if 1 ≤ i ≤ h;

(0) if i > h.

Since ξ is injective and commutes with ϕ, we have ϕ(x2) = −ϕ(Eh)x1. In particular, the

non-trivial line Fx2 in the filtration on D(M) is not ϕ-stable. Since ϕ acting on D(M) has

characteristic polynomial X2 − apX + ph, it follows that D(M) is weakly admissible and

D(M) ∼= Dh+1,ap
. (One could also use Remark 3.0.1.) The final claim, that V∗

cris(D(M)) ∼=
Vh+1,ap

, now follows from the discussion at the start of this section. �

4 Descent Algorithm

The goal of this section is to explain an algorithm for descending from R = OF,[0,p−r ] to

SF . The algorithm specifically will allow us to descend the ϕ-module M̃ap
defined at

the end of Section 3 to SF , when ap ∈ mF , and even to S� when vp(ap) � 0. It proceeds

via “row reduction” for semilinear operators and is inspired by related processes that

appear in [16] and [25, §4]. In those settings, an integral structure of the attendant ϕ-

modules is a given. The novelty here is that we begin over the larger ring R where p is

inverted. In order to arrive at a descent defined over S� (and thus calculate reductions

of Galois representations; cf. Corollary 5.2.3), we need to make a number of careful

estimates as the algorithm is carried out, and we have thus chosen to present the

algorithm in a generality where those estimates are most clear. It may also be helpful

for future applications.

4.1 Notations

Choose m > 1 and write

R = OF,[0,p−1/m] =
{
f =

∑
aiu

i ∈ F[[u]] | i + mvp(ai) → ∞ as i → ∞
}
.
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Reductions of Some Crystalline Representations 15

We equip R with the valuation

vR( f ) = min
i

{i + mvp(ai)},

which induces on R the structure of an F-Banach algebra ([9, Proposition 6.1.5/1]). In

particular, R is complete for the vR-adic topology. If v is a real number, we define

Hv = {f ∈ R | vR( f ) ≥ v}.

Thus, Hv ⊆ R is an additive subgroup and HvHw ⊆ Hv+w for any v, w. For C ∈ M2(R), if

C = (cij) then we also define vR(C) = min{vR(cij)}. More specifically, we will also write

C ∈
(

Hv11
Hv12

Hv21
Hv22

)

with the obvious meaning. If we replace Hvij
by an asterisk ∗, then we mean no condition

a priori.

We record the following interaction between vR(−) and the Frobenius operator

ϕ : R → R.

Lemma 4.1.1. If f ∈ Hv ∩ ujR, then ϕ(f ) ∈ Hj(p−1)+v ∩ upjR.

Proof. Write g = ∑
aiu

i so that ϕ(g) = ∑
aiu

ip. Then,

vR(ϕ(g)) = inf
i≥0

{
ip + mvp(ai)

}
≥ inf

i≥0
{i + mvp(ai)} = vR(g).

If f = ujg, so that ϕ( f ) = upjϕ(g), then

vR(ϕ( f )) = pj + vR(ϕ(g)) ≥ pj + vR(g) = pj − j + vR( f ).

This completes the proof. �

For each n ≥ 0, we define a truncation operator

T≤n : F[[u]] −→ F[u]

T≤n

( ∞∑
i=0

aiu
i

)
=

n∑
i=0

aiu
i.

We will use analogous notations T<n, T≥n, T>n for truncation of different types. We will

frequently use that T∗(Hv) ⊆ Hv for any truncation operator T∗ and any v.
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16 J. Bergdall and B. Levin

4.2 Analysis of certain row operations

For this subsection, we fix non-negative integers q, r, s, t. Given C ∈ M2(R), we write

T(C) =
(

T≤q(c11) T≤r(c12)

T≤s(c21) T≤t(c22)

)

and define (eij) = E(C) = C − T(C). Our goal is to study the behavior of C �→ T(C) and

C �→ E(C) under certain operations of the form A ∗ϕ C := ACϕ(A)−1 for A ∈ GL2(R). We

begin with a lemma.

Lemma 4.2.1. Let D ∈ M2(R) be such that D ∈
(

Hr′+γ Hr+γ

Hs+γ Hs′+γ

)
where γ > 0 and r′, s′ ∈ Q

such that r′ + s′ = r + s.

(a) If n is a non-negative integer such that n(p−1)+r′ −s′ ≥ 0 and f ∈ Hr′−s+γ ′ ∩
unR, with γ ′ > 0, then

(
1 −f

0 1

)
∗ϕ D − D ∈

(
Hr′+γ+γ ′ Hr+γ+γ ′

0 Hr′+γ+n(p−1)+γ ′

)
⊆
(

Hr′+γ+γ ′ Hr+γ+γ ′

0 Hs′+γ+γ ′

)
.

(b) If g ∈ Hγ ′ ∩ uR, with γ ′ > 0, then

(
1 − g 0

0 1

)
∗ϕ D − D ∈

(
Hr′+γ+γ ′ Hr+γ+γ ′

Hs+γ+γ ′+p−1 0

)
.

Proof. First, since f ∈ Hr′−s+γ ′ , we have fHs+γ ⊆ Hr′+γ+γ ′ , and fHs′+γ ⊆ Hr+γ+γ ′ , the

latter because r′ + s′ = r + s. Further, ϕ( f ) ∈ Hr′−s+γ ′+n(p−1) by Lemma 4.1.1. Since

r′ + n(p − 1) ≥ s′ we deduce ϕ( f ) ∈ Hs′−s+γ ′ . So,

(
0 −f

0 0

)
D

(
1 ϕ( f )

0 1

)
∈
(

Hr′+γ+γ ′ Hr+γ+γ ′

0 0

)(
H0 Hs′−s+γ ′

0 H0

)
⊆
(

Hr′+γ+γ ′ Hr+γ+γ ′

0 0

)
.

Returning to ϕ( f ) ∈ Hr′−s+γ ′+n(p−1), it follows that

D

(
0 ϕ( f )

0 0

)
∈
(

0 H2r′−s+γ+γ ′+n(p−1)

0 Hr′+γ+γ ′+n(p−1)

)
⊆
(

0 Hr+γ+γ ′

0 Hs′+γ+γ ′

)
.
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Reductions of Some Crystalline Representations 17

The containment (a) now follows because

(
1 −f

0 1

)
∗ϕ D − D =

(
0 −f

0 0

)
D

(
1 ϕ( f )

0 1

)
+ D

(
0 ϕ( f )

0 0

)
. (4.1)

For (b), the conjugation is first well defined because g ∈ Hγ ′ and γ ′ > 0. Moreover,

(1 − ϕ(g))−1 = 1 + h where h ∈ Hp−1+γ ′ (Lemma 4.1.1). Then, the proof is as in (a) except

using

(
1 − g 0

0 1

)
∗ϕ D − D =

(
−g 0

0 0

)
D

(
1 + h 0

0 1

)
+ D

(
h 0

0 0

)

rather than (4.1). �

Proposition 4.2.2. Suppose that γ > 0, cr, cs ∈ �× and C ∈ M2(R) such that

C ∈
(

0 crur

csu
s 0

)
+
(

Hr′+γ Hr+γ

Hs+γ Hs′+γ

)

where r′, s′ ∈ Q and r′ + s′ = r + s.

(a) Assume q ≥ s + max{0, � s′−r′
p−1 �− 1} and let n = q − s + 1. Set v = vR(e11). Then,

ρ(C) =
(

1 −e11/csu
s

0 1

)
∗ϕ C

satisfies the following:

(i) ρ(C) ∈
(

0 crur

csu
s 0

)
+
(

Hr′+γ Hr+γ

Hs+γ Hs′+γ

)
;

(ii) T(ρ(C)) − T(C) ∈
(

Hv+γ ∗
∗ Hv+n(p−1)

)
;

(iii) E(ρ(C)) ∈
(

Hv+γ ∗
∗ ∗

)
∩
(

E(C) +
(

∗ Hv+γ+r−r′

0 Hv+n(p−1)

))
.

(b) Set v = vR(e12). Then,

σ(C) =
(

1 − e12/crur 0

0 1

)
∗ϕ C
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18 J. Bergdall and B. Levin

satisfies the following:

(i) σ(C) ∈
(

0 crur

csu
s 0

)
+
(

Hr′+γ Hr+γ

Hs+γ Hs′+γ

)
;

(ii) T(σ (C)) − T(C) ∈
(

Hv+γ+r′−r ∗
∗ 0

)
;

(iii) E(σ (C)) ∈
(

∗ Hv+γ

∗ ∗

)
∩
(

E(C) +
(

Hv+γ+r′−r ∗
Hv+p−1+s−r 0

))
.

Proof. The proof of either part is similar. We give complete details for (a) and less

for (b).

Recall e11 = T>q(c11) and so ρ(C) is well defined because q ≥ s. In fact, e11 ∈
uq+1R = us+nR. For notation, let f = e11/csu

s. Since v = vR(e11) ≥ r′ + γ > r′, we can

write v = r′ + γ ′ with γ ′ ≥ γ > 0. Then, we have f ∈ Hv−s ∩ unR = Hr′+γ ′−s ∩ unR

(remember cs is a constant unit). Since n ≥ � s′−r′
p−1 �, we have n(p − 1) ≥ s′ − r′. So, we are

in position to apply Lemma 4.2.1(a).

Now write C =
(

0 crur

csus 0

)
+ D so that D ∈

(
Hr′+γ Hr+γ

Hs+γ Hs′+γ

)
. Writing D′ =(

1 −f
0 1

)
∗ϕ D, we have

ρ(C) =
(

0 crur

csu
s 0

)
+
(

−e11 −e11ϕ( f )

0 csu
sϕ( f )

)
+ D + (D′ − D) (4.2)

and Lemma 4.2.1(a) implies that, because r + γ + γ ′ = v + γ + r − r′,

D′ − D ∈
(

Hv+γ Hv+γ+r−r′

0 Hv+γ+n(p−1)

)
⊆
(

Hr′+γ Hr+γ

0 Hs′+γ

)
. (4.3)

Moreover, ϕ(f ) ∈ Hv−s+n(p−1) ⊆ Hs′−s+γ ′ (by Lemma 4.1.1) and so, since γ ′ ≥ γ and s′ −s =
r − r′, we have (

−e11 −e11ϕ( f )

0 csu
sϕ( f )

)
∈
(

Hv Hv+γ+r−r′

0 Hv+n(p−1)

)
⊆
(

Hr′+γ Hr+γ

0 Hs′+γ

)
. (4.4)

Thus, (i) follows from (4.2), (4.3), (4.4), and the assumption on D. Since T(C) =(
0 crur

csus 0

)
+ T(D), from (4.2) we see that

T(ρ(C)) − T(C) =
(

0 ∗
∗ T≤t(csu

sϕ(f ))

)
+ T(D′ − D) ∈

(
Hv+γ ∗

∗ Hv+n(p−1)

)
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Reductions of Some Crystalline Representations 19

by (4.3) and our previous estimate ϕ( f ) ∈ Hv−s+n(p−1). This proves conclusion (ii). Finally,

note that E(C) = E(D) =
(

e11 ∗
∗ ∗

)
. Thus, we see, applying E(−) to (4.2), that

E(ρ(C)) ∈
(

0 ∗
∗ ∗

)
+ E(D − D′) ∈

(
Hv+γ ∗

∗ ∗

)
.

This proves half of (iii), while

E(ρ(C)) ∈ E(C) +
(

∗ Hv+γ+r−r′

0 Hv+n(p−1)

)
.

follows from (4.3) and (4.4).

For part 4.2.2, let g = e12/crur ∈ Hv−r ∩ uR = Hγ ′ ∩ uR, with γ ′ = v − r ≥
γ > 0. Define h by (1 − ϕ(g))−1 = 1 + h as in the proof of Lemma 4.2.1(b). Writing

C =
(

0 crur

csus 0

)
+ D and D′ =

(
1 − g 0

0 1

)
∗ϕ D, we have

σ(C) =
(

0 crur

csu
s 0

)
+
(

0 −e12

csu
sh 0

)
+ D + (D′ − D). (4.5)

By assumption, h ∈ Hv+p−1−r. Since v ≥ r + γ , we have csu
sh ∈ Hv+p−1+s−r ⊆ Hp−1+s+γ .

So, part 4.2.2 follows, using Lemma 4.2.1(b). Statement (ii) is trivial from the same lemma

and that r′ + γ + γ ′ = v + γ + r′ − r. For (iii), the argument is as above. �

4.3 Allowed operations and the descent theorem

The previous subsection concerned two elementary operations, ρ(−) and σ(−), defined

on M2(R). Here we apply that analysis to produce a criterion, Theorem 4.3.7, for

descending ϕ-modules from R to a polynomial ring.

Fix non-negative integers a and b, along with rational numbers b′ ≥ a′ such that

a + b = a′ + b′. We define N = b if b′ = a′, and otherwise

N = b +
⌈

b′ − a′

p − 1

⌉
− 1.

Note that N ≥ b always. We now consider the specific truncation operation

T(C) =
(

T≤N(c11) T≤a(c12)

T≤b(c21) T≤a(c22)

)

on M2(R). As before, we define the error matrix E(C) according to C = T(C) + E(C).
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Definition 4.3.1. Suppose γ > 0 and ca, cb ∈ �×.

(a) For C ∈ M2(R), we say C is γ -allowable with scalars (ca, cb) if

C ∈
(

0 caua

cbub 0

)
+
(

Ha′+γ Ha+γ

Hb+γ Hb′+γ

)
.

Now assume that C is γ -allowable with scalars (ca, cb) (We sometimes later omit the

scalars and just say “γ -allowable.”).

(b) If C is γ -allowable and E(C) = (eij) then we define

ε11 = vR(e11) − a′; ε12 = vR(e12) − a;

ε21 = vR(e21) − b; ε22 = vR(e22) − b′.

The value εC = min{εij} is called the error of C. (Note εC ≥ γ > 0.)

(c) An allowed operation C �→ α(C) is one of the four operations

α11(C) :=
(

1 −e11/cbub

0 1

)
∗ϕ C; α12(C) :=

(
1 − e12/caua 0

0 1

)
∗ϕ C;

α21(C) :=
(

1 0

0 1 − e21/cbub

)
∗ϕ C; α22(C) :=

(
1 0

−e22/caua 1

)
∗ϕ C.

(The operations α12 and α21 are well defined by the geometric series.)

Remark 4.3.2. Each allowed operation is of the form C �→ A ∗ϕ C where A = 1 + X with

X|u=0 = 0 and vR(X) ≥ εC + min{a′ − b, b′ − a} = εC ± (b′ − a). Thus, if εC ≥ |b′ − a|, then a

finite composition of allowed operations is of the same form.

Remark 4.3.3. The allowed operations were all studied in Section 4.3. Indeed, if (i, j) =
(1, ∗), then we set (q, r, s, t, r′, s′) = (N, a, b, a, a′, b′) in Section 4.2, in which case α11(C) =
ρ(C) and α12 = σ(C) as in Proposition 4.2.2. On the other hand, if (i, j) = (2, ∗), then we

set (q, r, s, t, r′, s′) = (a, b, a, N, b′, a′) and so α22(C) = ρ(C◦)◦ and α21(C) = σ(C◦)◦, where

D �→ D◦ is given by D◦ =
(

0 1
1 0

)
∗ϕ D. (That is, usual conjugation by

(
0 1
1 0

)
.)

Lemma 4.3.4. Suppose that C is γ -allowable and fix 1 ≤ i, j ≤ 2. Then, C′ = αij(C) is γ -

allowable. Moreover, writing ε′∗ for the entry-by-entry errors of C′ in Definition 4.3.1(b),

we have the following:

(a) ε′
ij ≥ εij + γ ;
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(b) ε′
k�

≥ min{εk�, εij + min{γ , p − 1}} for any (k, �), except if (i, j) = (1, 1) and

(k, �) = (2, 2);

(c) if (i, j) = (1, 1) then ε′
22 ≥ min{ε22, ε11}.

In particular, εC′ ≥ εC.

Proof. Once one uses the translations in Remark 4.3.3, the γ -allowable assertion

is contained in the conclusions labeled (i) in Proposition 4.2.2 and the estimates are

contained in the conclusions labeled (iii) in Proposition 4.2.2. We detail the cases where

(i, j) = (1, 1) or (2, 2), to highlight the exceptional asymmetry in (b).

For (i, j) = (1, 1), apply part 4.2.2 of Proposition 4.2.2 to C with (q, r, s, t, r′, s′) =
(N, a, b, a, a′, b′). Set n = q − s + 1 = N − b + 1, so n(p − 1) + a′ − b′ ≥ 0. Then, Proposition

4.2.2(a)(iii) gives, in terms of the ε’s,

ε′
11 ≥ ε11 + γ ; ε′

12 ≥ min{ε12, ε11 + γ };
ε′

21 = ε21; ε′
22 ≥ min{ε22, ε11 + n(p − 1) + a′ − b′} ≥ min{ε22, ε11},

which implies the lemma if (i, j) = (1, 1). For (i, j) = (2, 2), apply part 4.2.2 of Proposition

4.2.2 to C◦ (see Remark 4.3.3) with the parameters (q, r, s, t, r′, s′) = (a, b, a, N, b′, a′). Then,

n = q − s + 1 = 1. By Proposition 4.2.2(a)(iii) we get, in terms of the ε’s,

ε′
11 ≥ min{ε11, ε22 + p − 1 + b′ − a′} ≥ min{ε11, ε22 + p − 1} ε′

12 = ε12

ε′
21 ≥ min{ε21, ε22 + γ }; ε′

22 ≥ ε22 + γ .

(In the estimate of ε′
11, we used b′ ≥ a′.) This completes the claim for (i, j) = (2, 2). �

Proposition 4.3.5. Assume that γ > 0 and C is γ -allowable with scalars (ca, cb). Then,

there exists a finite composition α of allowed operations such that C′ = α(C) satisfies

the following properties:

(a) C′|u=0 = C|u=0;

(b) C′ is γ -allowable with scalars (ca, cb);

(c) T(C′) − T(C) ∈
(

Hr ∗
∗ Hr

)
where r = εC + a′ + min{γ , p − 1};

(d) εC′ ≥ εC + min{γ , p − 1}.

Proof. For any composition α, (a) follows from Remark 4.3.2 and (b) follows from the

conclusions (i) in Proposition 4.2.2. For a single allowed operation, part 4.3.5 follows

from the conclusions (ii) in Proposition 4.2.2 (using the settings in Remark 4.3.3;
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22 J. Bergdall and B. Levin

recall that b′ ≥ a′ is assumed). The statement continues to hold for a composition of

allowed operations because the error is non-decreasing after each operation by the final

statement of Lemma 4.3.4.

So we only must show (d) can be arranged. By Lemma 4.3.4, we may repeatedly

apply off-diagonal allowed operations to find a finite composition α of allowed

operations such that C̃ = α(C) satisfies ε̃ij ≥ εC + min{γ , p − 1} for i �= j. Then set

C′ = α22 ◦ α11(C̃). From Lemma 4.3.4, we have

ε′
k� ≥

⎧⎨⎩εC̃ + min{γ , p − 1} if k = �;

min{̃εk�, εC̃ + min{γ , p − 1}}, if k �= �.

Since εC̃ ≥ εC, by Lemma 4.3.4 again, this completes the proof of (d). �

Remark 4.3.6. The estimate in part 4.3.5 of Proposition 4.3.5 can be strengthened

though statement is more complicated. Namely, we could have written that T(C′)−T(C) ∈(
Hv ∗
∗ Hw

)
where v = εC + min{a′ + γ , b′ + p − 1} and w = εC + min{b′ + γ , a′ + n(p − 1)}

where n =
⌈

b′−a′
p−1

⌉
unless a′ = b′, then n = 1. The same estimates could be used in part

(c) of the next result as well.

Theorem 4.3.7. Assume that γ > 0 and C is γ -allowable. Then, there exists a matrix

A ∈ GL2(R) such that C′ := A ∗ϕ C satisfies

(a) C|u=0 = C′|u=0,

(b) C′ = T(C′), and

(d) C′ − T(C) ∈
(

Hr ∗
∗ Hr

)
where r = εC + a′ + min{γ , p − 1}.

Proof. Write C = C(0). Using Proposition 4.3.5, we may for each m > 0 choose a finite

composition of allowed operations, say with matrix Am, such that C(m) defined by

C(m) = Am ∗ϕ C(m−1)

satisfies the following properties:

(1) C(m)|u=0 = C|u=0,

(2) C(m) is γ -allowable,

(3) T(C(m)) − T(C(m−1)) ∈
(

Hrm ∗
∗ Hrm

)
where rm = εC(m−1) + a′ + min{γ , p − 1}, and

(4) εC(m) ≥ εC(m−1) + min{γ , p − 1}.
For m sufficiently large, εC(m) ≥ |b′ − a|. In that case, Remark 4.3.2 implies vR(1 − Am) ≥
εC(m) ± (b′ −a) (for a constant ±). Thus, Am → 1 as m → ∞, meaning the infinite product
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A := ∏
m Am converges in GL2(R). By induction again, C′ = A∗ϕ C satisfies the conclusion

of the theorem. �

5 Application

We now specialize to the notations of Section 4.1 with m = p. So, we let R = OF,[0,p−1/p].

Recall that just before Theorem 3.0.5, for any ap ∈ mF , we defined a ϕ-module M̃ap
=

R⊕2 with Frobenius given by

Cap
:=

⎛⎝ap

(
λ−
λ++

)h −1

Eh 0

⎞⎠,

where E = u + p and

λ− =
∏
i≥0

(
1 + up1+2i

p

)
= 1 + up

p
+ · · · and λ++ =

∏
i≥1

(
1 + up2i

p

)
= 1 + up2

p
+ · · · .

(5.1)

Our goal is to descend M̃ap
from R to SF and, when vp(ap) is large enough, to descend

it to S�. The 1st goal is carried out in Theorem 5.2.1 by applying the algorithm from

Section 4. We then show, in Proposition 5.2.2, that an integral descent exists when

vp(ap) is large enough.

5.1 Preliminaries

We begin with some straightforward calculations.

Lemma 5.1.1. With R = OF,[0,p−1/p], we have

(a) vR(λ−) = vR(λ++) = 0;

(b) vR(1 − λ++) = p2 − p;

(c) vR(1 − ϕ(λ++)) = p3 − p2.

Proof. Part (a) is clear. For (b) we have 1 − λ++ = ϕ(1 − λ−). Since 1 − λ− vanishes to

order p at u = 0, vR(1 − λ++) ≥ p(p − 1) by Lemma 4.1.1 and part (a). On the other hand,

by definition vR(1 − λ++) ≤ vR(up2
/p) = p2 − p and this proves (b). Part (c) is proven

similarly. �

Lemma 5.1.2. If Q ∈ F[u] is of degree at most d and vR(Q) > d, then Q ∈ mF [u].

Proof. Clear. �
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Lemma 5.1.3. If vp(ap) >
⌊

h
p

⌋
, then T≤h

(
ap

(
λ−
λ++

)h
)

∈ mF [u].

Proof. Since vp(ap) >
⌊

h
p

⌋
, we have by direct examination that

T≤h

(
ap

(
1 + up

p

)h
)

∈ mF [u]. (5.2)

Now, let z = 1 − λ++ and y = ϕ(λ++) − 1, so that

λ−
λ++

=
(

1 + up

p

)
(1 + y)

∞∑
i=0

zi.

By Lemma 5.1.1, vR(z) = p2 − p and vR(y) = p3 − p2, Hence,

vR

((
λ−
λ++

)h

−
(

1 + up

p

)h
)

≥ p2 − p ≥ p − 1. (5.3)

Since p
⌊

h
p

⌋
+ p − 1 ≥ h and v(ap) > �h

p�, we have pvp(ap) + p − 1 > h. So by (5.3), we

conclude

vR

(
ap

(
λ−
λ++

)h

− ap

(
1 + up

p

)h
)

> h. (5.4)

The lemma now follows from (5.2), (5.4), and Lemma 5.1.2. �

5.2 Reductions

In this section, we prove the main result on descent:

Theorem 5.2.1. Let ap ∈ mF . Choose any rational number a′ ≤ h/2 such that pvp(ap) >

a′. Define N = h if a′ = h/2, otherwise set N = h +
⌈

h−2a′
p−1

⌉
− 1. Then, there exists a

descent M̃ap
of M̃ap

to SF such that the Frobenius on M̃ap
is given by

C =
(

P −1

Eh 0

)
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where P is a polynomial of degree ≤ N satisfying P(0) = ap and

vR

(
P − T≤N

(
ap

(
λ−
λ++

)h
))

≥ pvp(ap) + min{pvp(ap) − a′, p − 1}. (5.5)

Moreover, M̃ap
satisfies the monodromy condition, D(M̃ap

) is weakly admissible, and

V∗
cris(D(M̃ap

)) = Vh+1,ap
.

Proof. We choose a = 0, b = h, let a′ be as in the theorem, and set b′ = h − a′ in the

setup of Section 4.3. Then, N is taken as in the statement of this theorem.

By Lemma 5.1.1, vR((λ−/λ++)h) = 0 and thus vR

(
ap

(
λ−
λ++

)h
)

= pvp(ap) > a′; we

also have vR(uh −Eh) ≥ h+p−1. Thus, Cap
is γ -allowable with scalars (c0, ch) = (−1, 1),

for γ = min{pvp(ap) − a′, p − 1}. The error εCap
of Cap

satisfies

εCap
= vR

(
T>N

(
ap

(
λ−
λ++

)h
))

≥ pvp(ap) − a′.

Applying Theorem 4.3.7 to Cap
, we get a ϕ-conjugate C = A ∗ϕ Cap

of the form

C =
(

P x

f y

)

with P a polynomial of degree at most N, f a polynomial of degree at most h, and x, y

constants. Moreover, part (a) of Theorem 4.3.7 implies P(0) = ap, x = −1, y = 0, and

f (0) = E(0)h, and part (c) implies that P satisfies

vR

(
P − T≤N

(
ap

(
λ−
λ++

)h
))

≥ pvp(a) + min{pvp(ap) − a′, p − 1}.

Comparing the determinant of C to the determinant of A ∗ϕ Cap
, we see f = rEh where

r ∈ R×. So, f is a polynomial of degree at most h, with a zero of order h at u = −p, and

f (0) = E(0)h. By unique factorization in F[[u]] the only possibility is that r = 1.

So, M̃ap
= S

⊕2
F with Frobenius given by C satisfies the 1st half of the theorem.

To justify the “moreover” portion, apply Theorem 3.0.5 to M̃ap
⊗SF

OF . �

We now address the question of when M̃ap
from Theorem 5.2.1 is defined over

S�. This is a delicate question and can depend on the choice of a′.
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Proposition 5.2.2. Assume vp(ap) >
⌊

h
p

⌋
and h ≥ 2p. Then, there exists a descent Map

of M̃ap
to S� such that the matrix of Frobenius is given by(

P −1

Eh 0

)

where P ∈ mF [u] is a polynomial of degree at most h and P(0) = ap. Moreover, Map

satisfies the monodromy condition, D(Map
) is weakly admissible, and V∗

cris(D(Map
)) =

Vh+1,ap
.

Proof. Let a′ = h
2 − p−1

2 , and write h = qp + δ where δ ≤ p − 1 and q =
⌊

h
p

⌋
. Then,

a′ = h

2
− p − 1

2
≤ pq

2
.

Thus, pvp(ap) − a′ > pq − a′ ≥ p since q ≥ 2.

In particular, Theorem 5.2.1 applies with a′, and note we have shown pvp(ap) −
a′ > p. Thus, we conclude there is a matrix

(
P −1

Eh 0

)
for the Frobenius on M̃ap

where P

is a polynomial of degree N = h and such that

vR(P − T≤h(ap(λ−/λ++)h) ≥ pvp(ap) + p − 1 > h. (5.6)

By Lemma 5.1.2, since P has degree at most h, we have P ∈ mF [u] if and only if

T≤h(ap(λ−/λ++)h) ∈ mF [u]. The latter is true by Lemma 5.1.3, so the proof is complete. �

Corollary 5.2.3. If vp(ap) >
⌊

h
p

⌋
, then Vh+1,ap

∼= Vh+1,0.

More precisely, let Qp2 denote the quadratic unramified extension of Qp and χ

the quadratic unramified F-valued character of GQp2
. If ω2 is a niveau 2 fundamental

inertial character of GQp2
, then

Vh+1,ap
∼= Ind

GQp
GQ

p2
(ωh

2χ).

Proof. We may suppose h ≥ 2p by [4, Théorème 3.2.1]. Let Map
be the Kisin module as

in Proposition 5.2.2. By Corollary 2.3.2, Vh+1,ap
is determined by the ϕ-module Map

⊗�F.

Since the reduction Map
⊗� F has Frobenius given by

(
0 −1

uh 0

)
, which does not depend

on ap subject to vp(ap) >
⌊

h
p

⌋
, we have Vh+1,ap

∼= Vh+1,0. An explicit description of Vh+1,0

(and thus Vh+1,0) is given in [10, Proposition 3.2]. �
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