WEIGHT ELIMINATION IN SERRE-TYPE
CONJECTURES
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Abstract

We prove the weight elimination direction of the Serre weight conjectures as for-
mulated by Herzig for forms of U(n) which are compact at infinity and split at places
dividing p in generic situations. That is, we show that all modular weights for a mod
p Galois representation are contained in the set predicted by Herzig. Under some
additional hypotheses, we also show modularity of all the “obvious” weights.

Contents

1. Introduction . . . . . . . . . . .. ... 2433
2. Background . . . . .. ..o 2439
3. Localresults . . . . . . . . . .. ... 2450
4, Mainresults . . . . . . ... 2484
References . . . . . . . . . . .. .. 2503

1. Introduction
Let p be a prime. In 1973, Serre conjectured that every irreducible odd 2-dimensional
?p—representation 7 of Gal(Q/Q) comes from a modular form. He later refined the
conjecture into the strong form which asserts that every such 7 arises from a modu-
lar form of a specific minimal weight and prime-to-p level determined by the local
properties of 7 (see [38]). The recipe for the minimal weight is more subtle than the
minimal level and, as Serre suggested at the time, reflects the deeper structures of a
“mod p Langlands philosophy.” The landmark proof of Serre’s original conjecture
due to Kisin and Khare—Wintenberger relies crucially on knowing that the weak form
implies the strong form.

The first comprehensive conjecture for Hilbert modular forms is due to Buzzard—
Diamond-Jarvis (BDJ) in [5]. The weight k > 2 is replaced by the notion of Serre
weights, irreducible representations of GL,(IF,) in this case. Furthermore, there is no
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longer a notion of minimal weight; rather, BDJ define a collection of Serre weights for
which a given 7 should be modular. The weight part (weak = strong) of the BDJ
conjecture is now a theorem due to the work of many people (see [16]-[18], [36]).

Building on the work of Ash-Doud—Pollack in [1] and others, Herzig in [23]
formulated a vast generalization of the weight part of Serre’s conjecture to tame
n-dimensional Galois representations which was further extended by Gee-Herzig—
Savitt in [15]. In our earlier work [31] and [32] with S. Morra, we establish the weak
implies strong conjecture for tame 3-dimensional Galois representations (and for def-
inite unitary groups unramified at p). However, results for n > 3 were limited to a few
partial results (see [2], [13], [14]). In this paper, we establish the weight elimination
direction of the weight part of Serre’s conjecture for n-dimensional Galois represen-
tations in generic situations, namely, the set of modular weights is a subset of the set
of weights predicted by [23].

To describe these conjectures, let F' be an imaginary CM number field unramified
at p. Let F* be the maximal totally real subfield. Assume that F+ # Q, and assume
that all primes of F* above p splitin F. Let G be a unitary group over F* which
is isomorphic to U(n) at each infinite place and split at each prime above p. Let
7:Gal(F/F) — GL,(F p) be an irreducible odd continuous representation.

A global Serre weight is an irreducible representation V' of GL, (O g+ ,), which
are all of the form ®v| » Vv with V;, an irreducible representation of GL, (ky), where
k, is the residue field of Ft at v. In Definition 4.2.5, we define what it means for
7 to be modular of weight V. Roughly speaking, this means the Hecke eigensystem
associated to 7 appears in a space of automorphic forms for G of weight V. For each
place v, fix a place v of F dividing v, and define p, := 7|Ga1(Fg /Fy)- We now state
the main theorem.

THEOREM 1.0.1

Let 7 :Gal(F/F) — GL,(F p) be an irreducible odd representation. Assume that p
is unramified in F, and assume that, for all places v | p of Ft, p,, is (6n —2)-generic
(see Definition 2.2.5). Then,

7 is modular of weight ® Vo = Vy € W?(ﬁf)s) forallv | p,
vlp

where W' (oY) is defined by [23].

The set W?(ﬁff) is an explicit collection of irreducible representations of
GL, (ky) given by a representation-theoretic recipe. Conjecture 1.1 of [23] pre-
dicts that the reverse implication should also be true when p,, is semisimple for all
v’s (assuming 7 is modular). In fact, we prove a partial converse which shows the
modularity of a subset of the predicted weights as discussed below (Theorem 1.0.4).
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Remark 1.0.2

@))] When n = 3 and p splits completely in FT, this result is due to [11], [25],
[35], and [34].

(2) When p,, is not semisimple, there is no explicit conjecture, but one expects
there to be a strict subset W7 (p,) C W?(ﬁff) which predicts the modular
weights. When n = 3, this will be taken up in [33].

3) Our methods are purely local, and so at least with some technical assumptions
a version of Theorem 1.0.1 should hold in other global setups as well, for
example, unitary Shimura varieties.

A key feature of the BDJ conjecture and a motivation for the generalizations is
the relation between the weight recipe and p-adic Hodge theory properties of the
local representation p,,. Let K/Q, be a finite unramified extension, and consider
p:Gg —GL,(F p). When n = 2, the weight recipe is in terms of the existence of the
crystalline lifts of p in small (between [0, p]) Hodge-Tate weights. In Herzig’s con-
jecture, one expects (at least for p semisimple) that W (p) should also be predicted
by the existence of crystalline lifts in small weights (see [15, Section 1.5 or Section 5]
for a detailed discussion). However, the range of “small” Hodge—Tate weights is now
[0, (n — 1) p] and determining reductions of n-dimensional crystalline representations
in this range is still well beyond the current technology in p-adic Hodge theory.

We consider another local problem, namely, reductions of tamely crystalline
representations with fixed (parallel) Hodge-Tate weights n:= (n — 1,n —2,...,0).
A tamely crystalline representation is a Q p-representation of Gk which becomes
crystalline when restricted to G, for L/K a tame extension. The descent from L /K
is then encoded in a tame inertial type 7. For short, we will call these representations
of type (1, t). For generic 7, we give a complete description of the semisimple Galois
representations which are reductions mod p of representations of type (n,7) (see
Theorems 3.2.1 and 4.4.3).

If p is a Galois stable lattice in a representation of type (7, T), then by deep results
in integral p-adic Hodge theory due to Kisin in [28] building on work of Breuil, one
can associate a semilinear algebra object, a Kisin module 2t with Hodge type 1 and
descent data of type t. A. Caraiani and the third author in [7] construct a moduli stack
of Kisin modules Y 7'* with Hodge type < 1 and tame inertial type t. An upper bound
on which p can arise as the reduction of a representation of type (7, 7) comes from a
description of the special fiber of Y 7-*. To describe the special fiber, [7] relates Y 7*
to a local model M (n) constructed by Pappas and Zhu in [37]. The special fiber of
M (n) is a closed subscheme of an affine flag variety. The coherence conjecture of
Pappas and Rapoport, proved by Zhu in [40], allows [37] to describe the special fiber
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as a union of affine Schubert cells resolving a deep and long-standing question in the
subject.

By classifying mod p Kisin modules of type (7, 7), we arrive at a combinatorial
upper bound for the semisimple p that arise as the reduction of a representation of type
(n, 7) in terms of a subset Adm(n) C W of the extended affine Weyl group of GL,
called the n-admissible elements originally introduced by Kottwitz and Rapoport.
More precisely, we assign to any semisimple p a relative position w(p, 7)* € W called
the (dual) shape (Definitions 2.1.2, 3.2.11, and 3.2.19). (Technically, the shape is
associated with a Kisin module with descent data, but, in generic situations, there is a
unique Kisin module which corresponds to p.)

THEOREM 1.0.3 (Theorem 4.4.3)
A (6n — 2)-generic semisimple Galois representation p has a lift of type (n, t) if and
only if w(p, t)* € Adm(n).

We first use the “only if”” direction of Theorem 1.0.3 to reduce weight elimination
(Theorem 1.0.1) to a representation theory/combinatorics problem. For simplicity,
assume that K = Q,,. If F(A) is a Serre weight for GL, (IF,) with p-restricted high-
est weight A which is not in W7 (p), one has to exhibit a tame GL, (O x)-type o (1)
such that F (1) is a Jordan—Holder factor of the reduction & (z) and w(p, t)* is not
n-admissible. Initially, this might seem daunting, since there are many types which
contain F(A). In fact, it suffices to consider only the types which “obviously” contain
F (), namely, the Deligne-Lusztig representations Rg(wy - A + n) for s € W(GL,)
(see Section 4 for undefined notation). Precisely, we show that if, for all s € W(GL,,),
the shape of p relative to Ry (W, - A + 1) is n-admissible, then F (1) € W?(p). The
argument uses alcove geometry to relate admissibility to a description of W?(p) in
terms of dominant p-restricted alcoves and linkage due to Herzig. In turn, we use this
relationship together with Theorem 1.0.4 below and global arguments to establish the
“if”” direction of Theorem 1.0.3.

We now discuss our second main theorem, which represents partial progress
toward the other direction of the weight part of Serre’s conjecture. Among the pre-
dicted weights, there is a distinguished subset Wy, (p) C W7 (p) called obvious Serre
weights. Obvious weights are defined precisely in Definition 7.1.3 of [15], but roughly
correspond to the Hodge—Tate weights (with an n-shift) in which p has a crystalline
lift which is the direct sum of inductions of characters from unramified extensions.
When n = 2, there are only obvious weights, so the naive generalization of the weight
part of Serre’s conjecture would be that W, (p)’s are exactly the modular weights.
Despite their name, the modularity of these weights is by no means obvious. However,
they are more easily accessed via automorphy lifting techniques. For example, [14]
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obtains essentially complete results on the modularity of ordinary obvious weights in
the ordinary setting. When 7 is a generic direct sum of characters, there are (n!)[X:Q»]
obvious weights of which only n! are ordinary. In [2], Barnet-Lamb, Gee, and Ger-
aghty prove the modularity of the obvious weights when n = 3 and obtain partial
results when n > 3. Using Theorem 1.0.1 and a generalization of part of [31] on
potentially crystalline deformation rings, we extend these results to GL,,.

THEOREM 1.0.4

Let 7 : Gal(F/F) — GL, (E,,) be an irreducible representation satisfying Taylor—
Wiles conditions. Assume that p is unramified in F, and assume that, for all places
v | p, p, is semisimple and (6n — 2)-generic. If ¥ is modular of any obvious weight,
then 7 is modular of all obvious weights.

Before giving an overview of the paper, we summarize the relationship between
the methods and results of this paper and those of [31], which are for n = 3. The
results about shapes of mod p Kisin modules and the triviality of the Kisin vari-
ety under genericity conditions in [31, Sections 2-3] generalize directly to the n-
dimensional setting. Establishing these generalizations is enough to prove the only-if
direction of Theorem 1.0.3. The only-if direction is the necessary local input to estab-
lish weight elimination (Theorem 1.0.1).

To prove Theorem 1.0.4, we compute certain potentially crystalline deformations,
which requires generalizing arguments of [31, Sections 4—-5]. The deformation rings
are computed explicitly in [3 1] for all shapes. Here, we compute the deformation rings
only for shapes of the form translation by a permutation of (0,1,...,n — 1). (When
n = 3, this corresponds to the shapes ¢fay and Byay appearing in tables at the
end of [31].) For these special shapes, the deformation rings turn out to be formally
smooth, and this is the necessary local input to prove Theorem 1.0.4.

We now give an overview of the paper. In Section 2, we begin with some back-
ground on affine Weyl groups, Serre weights, tame types, and inertial local Langlands.
In Section 3, we prove the main local results in p-adic Hodge theory. Sections 3.1-3.3
are direct generalizations to n-dimensional Galois representations of results of [31]
and [32] on Kisin modules with descent data. In Section 3.4, we show that if p has
special shape with respect to 7, then the potentially crystalline deformation ring of
type (7, t) is formally smooth and we deduce the existence of potentially diagonaliz-
able lifts.

The main theorems appear in Section 4. Weight elimination is in Section 4.2. The
modularity of the obvious weights is in Section 4.3, and in Section 4.4, we complete
the proof of Theorem 1.0.3, the local reduction problem using global input.
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1.1. Notation and conventions
Fix n > 2. Let p be a prime with p > n. Fix a finite unramified extension K/Q, of
degree f.Let k denote the residue field of K of cardinality ¢ = p”/. Let Og := W(k)
be the ring of integers of K. We denote the arithmetic Frobenius automorphism on
Ok by ¢, which acts as raising to the pth power on the residue field. Let Gg =
Gal(K/K). Let Ik denote the inertia subgroup, and let Wx denote the Weil group.
Let £/Q, be finite extension assumed to be sufficiently large such that, for any
unramified extension K’/ K of degree the order of an element of S, x S,, E contains
a copy of K’. Let O be the ring of integers of E with uniformizer @ and residue
field F. We fix an embedding oy of K into E (equivalently an embedding k into F).
Define 0; = 0po0¢™/.

1

For r > 1, we fix a compatible system of (p"/ — 1)st roots w, = (—p)?"/ -1 €
K. The choice of root @ defines a character W, : Ix — O%. Using our choice of
embedding oy, we get a fundamental character of niveau f:

Wy i=000wgy, : [k > O

We fix once and for all a sequence p := (pn)nen, Where p, € @p verify p,fH = Pn
and po = —p. We let Koo 1= J,,enK(pn) and Gk, 1= Gal(@p/Koo).

Let G = Resy/r,GLy,. Let T C GL, be the diagonal torus, and let T =
Resy/r, T be a maximal torus of G. Let Z C T denote the center of G. Let
W(G) = W(GL,)Hm®&F) denote the Weyl group of G. Similarly, let X*(T) be
the (geometric) characters of 7', which is equipped with an action of Frobenius 7.
We have an action of & on W(G) by the formula 7 (w) (7 (v)) = w(w(v)). There are
isomorphisms W(G) = W(GL,)” and X*(T) = X*(T)/ where the jth entry cor-
responds to the embedding o ;. Under this identification, the action of 7 is such that
itv=(v;) e X*(T), then m(v); =v,;_1. Let Ag C X*(T) (resp., A C X*(1))
denote the root lattice for GL,, (resp., G).

Let W, (resp., W) denote the (resp., extended) affine Weyl group for GL,,. Simi-
larly, we will use W, = Waf (resp., E/ =W/ ) to denote the (resp., extended) affine
Weyl group of G. Recall that

W,=Ag x W(GL,), W = X*(T) x W(GL,)

and similarly for W, and I;I_V/ We use 1, € W to denote translation by v e X*(T). The
action of 7 on X *(7T') and W(G) extends naturally to V_T/

Let RT C R (resp., RT"Y C RY) denote the subset of positive roots (resp., pos-
itive coroots) in the set of roots (resp., coroots) with respect to the upper triangular
Borel subgroup in each embedding. Define dominant (co)characters with respect to
this choice of positive roots.
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We fix an isomorphism X *(7") = Z" in the standard way, where the standard i th
basis element ¢; = (0,...,1,...,0) (with the 1 in the ith position) of the right-hand
side corresponds to extracting the ith diagonal entry of a diagonal matrix. Dually
we get a standard isomorphism X, (T') = Z", and let {&;"} denote the dual basis. Let
n=m-1,n-2,...,0) € X*(T) be a fixed lift of the half sum of positive roots for
GL,,. Define n = (99, 1o, . .., no) € X*(T). In the paper, sometimes we will consider
simultaneously the group G = Resgr, GL,, for multiple k’s. In such a situation, the
symbol 7 will be used for the above element for any of the groups that appear, and it
will always be clear which group it occurs in. Note that n; = no for any j. We will
always denote the duality pairing between a free Z-module and its dual (e.g., X *(T)
and X (7)) by (-,).

For any ring S, we define M,,(S) to be the set of n x n matrix with entries in S.
If « =¢; —¢; is aroot of GL,, we also call the (i, j)th entry of a matrix X € M, (S)
the a'th entry. We will make use of both notations X;; and X, for this entry.

If P is a statement, the symbol §p € {0, 1} takes value 1 if P is true, and O if P is
false. If W is a de Rham representation of G over E, then for each x € Hom(K, E),
we write HT, (W) for the multiset of Hodge—-Tate weights labeled by embedding «
normalized such that the p-adic cyclotomic character has Hodge—Tate weight {1} for
every k. For u = (u;) € X*(T), we say that an n-dimensional representation W has
Hodge—-Tate weights p if

HTo, (W) ={ft1,j. 2,js- s Bonj }-

An inertial type is a representation t : I ¢ — GL, (E) with open kernel and which
extends to Wk . We say that an n-dimensional potentially semistable representation
p: Gg — GL,(E) has type (u,7) if p has Hodge-Tate weights u and the Weil-
Deligne representation WD(p) restricted to /x is isomorphic to t. Note that this
differs from the conventions of [15] via a shift by 7.

Let Artg : K* — W;éb denote the Artin map normalized so that uniformizers
correspond to geometric Frobenius elements. For 7 an inertial type, we use o(7)
to denote the finite-dimensional smooth irreducible @—representation of GL,(Ok)
associated to 7 by the “inertial local Langlands correspondence” (see Section 2.3). In
fact, in all situations, o (t) will be defined over E. If V is a finite-length representa-
tion, then we use JH(V') to denote the set of Jordan—Hdélder factors.

2. Background

2.1. Affine Weyl group
Fix the dominant base alcove for the apartment of (GL,,T) which defines a Bruhat
order on W, denoted by <. If €2 is the stabilizer of the base alcove, then W = W, x Q
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and so W inherits a Bruhat order in the standard way: for w1, w, € W, and w € Q,
wW1wW < w,w if and only if W < W,, and elements in different right W,-cosets are
incomparable. We also have the natural generalization €2 for G and a Bruhat order on
E/. We now recall the definition of the admissible set as introduced by Kottwitz and
Rapoport.

Definition 2.1.1
Let Ag € X*(T). Then define

Adm(Lg) := {17)'6 w | W < ty(x,) for some w € W(GL,,)}.

Similarly, if A = (4,) € X*(T), then define Adm(1) = []; Adm(4 ) C Ww.

When working on the Galois side, it is natural to work with the partially ordered
group E’V (resp., WV), which is identified with E/ (resp., I/IN/) as a group, but whose
Bruhat order, also denoted by <, is defined by the antidominant base alcove. For any
character € X*(T), define the subset Adm" () C E/V as in Definition 2.1.1.

Definition 2.1.2

Define a bijection W > W™ between E/v and W as follows:

()  forw = (wj) € W(G), define w* := (w}) € W(G) by w} = w}llfj;

2) forv=(v;)e {*@), define v* = W) eX (D) byvi=vs_1_j;

3) forw= wtv € WV, define w* € W by W* := t,w™*.

Note that w +— w* is an antihomomorphism. By specmhzmg to the case f =1, we
obtain a bijective antthomomorphism between WY and W.

We now record a few basic lemmas for later.

LEMMA 2.1.3
We have Wy < Wy in WY if and only if Wy < Wy in W.

Proof

Suppose that W, has a reduced expression (] [,c; S«)7, Where each s, is an affine
reflection along a wall of the antidominant base alcove and t stabilizes the antidomi-
nant base alcove. Then W is the product

(]‘Ef*s;)z*, @2.1)

where ©* sk =1t*s}k(t*)7L. (The order of factors indexed by I should of course be
reversed from the reduced factorization of w5.) It is easy to check that T is in



WEIGHT ELIMINATION IN SERRE-TYPE CONJECTURES 2441

and that each ™" s} is an affine reflection along a wall of the dominant base alcove.
From this, we see that £(w;) < £(w;). (Note that the lengths are with respect to
different sets of generating reflections.) By symmetry, we see that £(w5) = £(W>)
so that (2.1) is a reduced expression. Since W < W, in WV if and only if w; has a
reduced expression ([ [,c; S«)7, where J is some subsequence of 7, and similarly

for wY, the result follows. O

LEMMA 2.1.4
Forwe W, we have T € Adm" (i) if and only if T* € Adm(u*).

Proof
This follows from Lemma 2.1.3. O

LEMMA 2.1.5
Let A € X*(T) be a dominant weight. If t,s € Adm(]), then

max{|(v,a")||a¥ € RV} <max{|(A.a")||a¥ e R"}.

Proof

We reduce immediately to the case f = 1. By a result of Kottwitz—Rapoport (see
Theorem 3.2 in [19]), ¢, is A-permissible, which means in particular that v is in the
convex hull of the Weyl group orbit of A. The claim is that the inequality holds for
any v in the convex hull. For this, we can replace v with the dominant representative
in its Weyl group orbit. Convexity then says that A — v is an R-linear combination
of positive roots where all of the coefficients are nonnegative. If &, is the highest
positive coroot, then for any positive coroot o, we have

(v,aV) < (v,a)).

It suffices then to observe that (v,oe;l’) < ()L,a;l’), which follows from that fact that
a;l’ is dominant. O

Recall that p-alcoves of G are defined to be the connected components of
(XD @R)\{x | (x + 1) = Py cpy ez
Define the collection of p-restricted dominant weights
X1(T)={re X*(T)|0=<(A,a") < p—1 for all simple positive coroots " }.

A p-alcove C is called p-restricted if CNX*(T) C X1(T). Wesay that A € X (T) is
regular p-restricted if furthermore (A, ") < p —1 for all simple positive coroots V.
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Recall also that

XOT)={reX*(T)|(r.a) =0 for all coroots o }.

Definition 2.1.6
Define the dot action of W on X *(T) ® R by

w-x = (wty) -x =wx+n+ pv)—n.

In the literature, this is often thought of as an action of W(G) x pX*(T), but it
will be convenient to include the p-scaling in the definition. Recall that the group W,
acts simply transitively on the collection of p-alcoves. Let C denote the dominant
base p-alcove, that is, the alcove containing 0.

Definition 2.1.7

Let A € X*(T) be a weight. We say that A lies m-deep in its alcove if there exist
integers ny € Z such that pny +m < (A +n,a) < p(ng + 1) —m for all positive
coroots ¥ € RV,

For example, a dominant weight A = (A;) € X*(T) is m-deep in Cp if m <
(Aj +no.af) <p—mforall j =0,..., f — 1 and all positive coroots o} € RV,

2.2. Tame types and Serre weights

We begin with some setup. An inertial type t : [k — GL,(E) is a representation with
open kernel which extends to the Weil group of K. An inertial type is tame if it factors
through tame inertia. All our tame types will be defined over O.

Tame inertial types have a combinatorial description which we will now recall
(see [23, (6.15)] or [15, Definition 8.2.2]). Let (w, u) € W(G) x X*(T). As in [23,
(4.1)] (see also the paragraph preceding [15, Definition 10.1.12]), for any (v,0) €
X*(T) x W(G), define

) (w, p) = (own (o), o (1) + pv —own (o) 'x(v)), (2.2)

and we write (w, ) ~ (w’, ') if there exists (v, o) such that 9 (w, ) = (W', w').

Let r be the order of an element of S,. For any such r, we choose an embedding
o of the unramified extension K’/K of degree r into E extending op. Let ¢/ =
pf" —1,lete = p/ —1,and let ' = fr. Using our choice of e’th root 9f (=p)

in Section 1.1, we get a fundamental character w s/ : Ix — O™ such that a)]i_, =wy.
The following describes all isomorphism classes of tame inertial types for K.
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Definition 2.2.1

Define an inertial type v(w, 1) : Ix — GL,(0O) as follows. If w = (so,...,5r_1),
then set s; = 505 r—15r—2---51 € W(GL,) and @ € X*(T') such that g = o, ot =
sytsy . os7 () for 1 < j < f — 1. Let r denote the order of s.. Then,

(0) fk
c<p_1Q .
2051\ <r—1 31{ (i)P

tw.)E P o, 23)

1<i<n

where a® = Z]f;éajpj € Z". Note that (w,u) ~ ((s¢,1,...,1),e) and
T(w, ) = ((s¢, 1,...,1),a) by construction.

For any (-valued inertial type 7, we use T : [x — GL, (F) to denote the reduc-
tion to the residue field. Note that, since w ¢ is the Teichmiiller lift of its reduction to
IF, for tame inertial types, T determines t.

We say that a pair (w, u) € W(G) x X*(T) is good if (T, Oy,,) is maximally
split (see [15, Section 9.2] for the definitions of (7%, 6y, ) and maximally split). This
definition is consistent with [23, Definition 6.19] by [23, Proposition 6.20]. As in [15,
Section 9.2], which follows [26], we attach a Deligne—Lusztig representation to a
good pair (w, n) € W(G) x X*(T), which we denote by Ry, (i). For any tame rep-
resentation T : [x — GL,(IF) which extends to G, there is an associated E-valued
GL, (Ok)-representation V(7) defined in [15, Proposition 9.2.1]. (In [15, Proposi-
tion 9.2.1], it is denoted V4 (7).) By [15, Proposition 9.2.3] if T = T(w, i), then

V(@) = Ry (). (2.4)

Remark 2.2.2

The condition that (w, 1) is good guarantees that the Deligne—Lusztig representation
Ry, (1) is a genuine representation (and not only virtual; see [15, Proposition 9.2.1]).
The genericity condition defined below will guarantee that R,,(u) is in fact (abso-
lutely) irreducible over E.

LEMMA 2.2.3
Suppose that u—n € X*(T) is in alcove Cy. Then (w, i) is good for any w € W(G).

Proof

Let (T,,s) be the F*-stable maximal torus of G* and semisimple element
s € Tu’jF* corresponding to (Ty,, 6y,;,) as in [15, Section 9.2(ii)]. As in the proof
of [15, Lemma 10.1.10], let s’ be (g’;,*(w_l))_1sF(g};*(w_,)). (Recall that
(g;*(w,l))_lF(g;*(w,l)) € N(T*) represents F*(w™!) asin [15, Section 9.2(ii)].)
By the proof of [15, Lemma 10.1.10], if the Weyl group of 7,5 in Zg=(s), which
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is isomorphic to Staby(s’), is trivial, then the claim follows. Suppose that s, is
in Stabw (s’) (which is generated by reflections). Let d be the order of wrm as an
automorphism of X*(7'). (In particular, f divides d.) Then by the proof of [15,
Lemma 10.1.10],

d—1

> (wr) ) 2.5)

i=0

is divisible by p? — 1. Since p — 7 is in C, this divisibility forces (i, (wm) ) to
be p—1foralli or 1 — p forall i. Thus, either (wm)’a" are highest coroots in RY for
all i, or they are lowest coroots for all i . (Note that R" has exactly f highest coroots.)
This in turn implies that (wr)'a¥ = waY for all 0 <i < d — 1, by comparing the
unique nonzero component on both sides. Since d > f, this implies that w fixes 7o
for all i and that s,,;, € Stabyy (s") for all i. We conclude that Staby (s") is (s,i,)i
and centralizes w. From this, we see that Z g+ (s) is isomorphic to Resy /g, GLy x T’
for some torus 77, and 7,y is T» x T, where T» C Resyp ,GL2 is a maximally split
torus. Then by definition, (Ty,, 6y,,) is maximally split. O

PROPOSITION 2.2.4

Let (w, 1) and (w', ') be in W(G) x X*(T). If (w,u) ~ (W', '), then the tame
inertial types T(w, i) and t(w’, ') are isomorphic. If jx — n and ' — n are in alcove
C o and the tame inertial types t(w, ) and T(w', ') are isomorphic, then (w, L) ~
(w’, w).

Proof

The first part follows from a direct computation. For the second part, (Ty,, 0y,,.) and
(Tw, 0w ) are maximally split by Lemma 2.2.3. The second part now follows from
[15, Proposition 9.2.1]. U

Definition 2.2.5

Let t be a tame inertial type.

(1) Define t to be m-generic if there is an isomorphism t = t(s, A + 1) for some
s € W(G) and A € X*(T') which is m-deep in alcove C,.

(2)  Define p: Gxg — GL,(FF) to be m-generic if p*|7, = T(s,A + n) for A €
X*(T) which is m-deep in alcove C.

3) We say that 7 (resp., p) is generic if it is n-generic (resp., 3n-generic).

4) A lowest alcove presentation of t is a pair (s, u) € W(G) x X*(T') where
u € Co such that T = t(s, u + 1) (which by definition exists exactly when t
is 0-generic).
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Remark 2.2.6

The results in Section 3.2 hold for = which are n-generic and p which are 2n-generic.
For Section 3.4, we will use (2n — 1)-generic to control the monodromy condition.
In most of Section 4, p will be (6n — 2)-generic because of representation-theoretic
input and a reliance on [12] to eliminate weights near the alcove walls. For example,
Proposition 4.1.3 requires the type to be 2n-generic, which combined with [12] forces
p to be (6n — 2)-generic. A more careful analysis would likely improve this bound.

Remark 2.2.7
Since the bounds for genericity do not depend on p, as p gets large, most semisimple
representations will be generic.

Concretely, t is m-generic if there exists an isomorphism 7 = t(s,A + n) with
Aj+mn;=(ar,a2j,...,a,,;) such that, for all j,

m<lajj—agj|<p—m, foralll <i#k=<n.

Remark 2.2.8

The notion of generic here is slightly stronger than that of [31] when n = 3 and [12]
in general. Comparing with Definition 2.1 in [31] and Definition 2 in [12], we see that
if T is m-generic as in Definition 2.2.5, then it is m-generic in the sense of [31] and
[12]. If it is m-generic in the sense of [31] and [12], then it is (m — 1)-generic in the
sense of Definition 2.2.5. The difference being that the first inequality above is strict.
Both [31] and [12] state genericity as a condition on a presentation as in (2.3), that
is, as a condition on the o ;’s. To compare the two definitions, note that if (s, i) is a
lowest alcove presentation, then & ; is in the Weyl group orbit of ; 4 7;.

Definition 2.2.9
We say that a tame inertial type t is regular if the characters appearing in 7 as in (2.3)
are pairwise distinct.

Note that 1-generic implies regular, but regular is a weaker condition.

Definition 2.2.10

A Serre weight is an irreducible representation of GL,(F, /). If A € X1(T) is a p-
restricted dominant weight, then F (A1) denotes the associated Serre weight which is
the socle of the (dual) Weyl module, W(A4), with highest weight A. A Serre weight
V is regular if V = F(A) for a regular p-restricted weight A (see discussion after
Lemma 2.1.5).
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We recall that the map A +— F(A) induces a bijection between X;(7T)/
(p — m)X°%T) and the set of isomorphism classes of Serre weights (see [15,
Lemma 9.2 .4)).

Let wg denote the longest elements of W(G). Recall the self-bijection on regular
p-restricted weights defined by A > wq - (A — pn) which induces a map R on regular
Serre weights (see [15, p. 54]). If we let Wy, := wot—y, then

R(F(A)) = F(wo - (A — pn)) = F(Wy - A).

Note that Wy, - C is the highest p-restricted p-alcove.
We are now ready to state the Serre weight recipe following [23] and [15].

Definition 2.2.11 (see [15, Definition 9.2.5])
Let p be a generic semisimple 7-dimensional representation of Gal(K /K). Then,

W?(p) := {R(F(})) : F(%) is a Jordan-Holder constituent of V(p|7, )}

where V (|7, ) denotes the semisimplification of a reduction modulo @ of V(p|r, ).
Define W,y (p) C W?(ﬁ) as in [15, Definition 7.1.3].

We give another characterization of the obvious weights.

PROPOSITION 2.2.12
Let 0 be generic and semisimple. Then for A € X1(T'), F(A) € Wop(p) if and only if
Plix =2T(w, A + 1) for some w € W(G).

Proof
See [15, Proposition 9.3.7]. O

COROLLARY 2.2.13
Let B be n-generic and semisimple. Then |Wewy (p)| = (n!)7 .

Proof
Since p is n-generic, p|7, == T(s, i+ n) for some p which is n-deep in C . We define
a map

W(G) — Wor(p),
o= F(uW),

where (o5 (0)~", i + 1) = ¥ (s, 1w+ 1) and v € X*(T) is the unique element up
to X%(T) such that (t,0) - Cy is p-restricted. Explicitly,
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W =o(u+n+pv—osa(o) 'w(v) —n=(0) p—osa(oc) 'x(v). (2.6)

The inequality [{(v,a" )| < [{n,a")| < n from Lemma 2.1.5 coupled with the fact that
W is n-deep in C¢ implies that i’ is in the alcove (¢,0) - Co. By Proposition 2.2.12,
F(u') is in Wypy(p), so that our map lands in the claimed set.

We now prove surjectivity. Consider any pair (v,0), and let ' be such that
(osm(o) L ' 4+ ) =9 (s, 4 + ). Assume that u’ is p-restricted. Any obvious
weight is of this form by Propositions 2.2.4 and 2.2.12. We claim then that (t,0) - Cy
is p-restricted and so (v, ) is one of the pairs above. Since u’ is p-restricted, for any
coroot oV,

0= [(' +n.e”)| = |foGu+m) + pv — os57(0) ' 7(v).0¥)| < pln — 1),

Since  is n-deep in alcove Cg, we have n < |{o(u + 1), a)| < p —n. We conclude
that

}(pv — osn(o)_ln(v),avﬂ <n(p—1).

Set M = maxqv{|{v,a")|}. We deduce that (p — 1)M <n(p —1) and so M < n.
Since M < n and (t,,0) - u is n-deep in its alcove, we deduce that ' lies in the alcove
(ty0) - Cyp. Since p’ is p-restricted so is (t,0) - Cyp.

For injectivity, suppose that “ (s, + n) =) (s, + 1) mod (p —
7)X%(T). Then restricting the part in X*(T) to Z, we see that (p — m)v|z =
(p — )|z mod (p — m)nX*(Z). Since p — m acts injectively on X*(Z), we
deduce that v|z = V'[z mod nX*(Z), so after modifying v’ by an element in
X°(T) we can now assume that v — " € A g.

As observed at the beginning of the proof, the fact that y is n-deep in C( implies
that the part in X*(T') of "9 (s, u + 1) lies in alcove t,0 - C. Thus, the above
equality implies an equality of alcoves (#,0) - Co = (f,70”) - C¢. Combining this with
the decomposition W = W, x Q shows that v = v’ and o = o’ thus giving what we
want. O

Definition 2.2.14

We say that F(L) € Wy (p) is the obvious weight associated to w € W(G) if w maps
to F(A) in the bijection from the proof of Corollary 2.2.13. (Note that this depends
on the choice of (s, u) such that p|;, = 7(s, u 4+ n) and p is n-deep in Co.)

PROPOSITION 2.2.15

Assume that t is d-generic with d > 1. Then for any lowest alcove presentation
(s', 1) of T, ' lies (d — 1)-deep in alcove Co. Furthermore, if (s, jt) is a fixed lowest
alcove presentation of T, then the collection of lowest alcove presentations is given by

(6" 1) e WG) x X*(T) | (5"t +m) = D (s, + 1), 100 € Q).
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Proof

The proof is similar to that of Corollary 2.2.13. Fix a presentation (s, ) with pu
d-deep in Cy. For any other presentation (s’, '), (s', ' + 1) = (s, u + 1) by
Proposition 2.2.4 so

p = (ty0) - p—osm(o) ' x(v)
as in (2.6). Since u’ € Cy, for all ",
0<|lo(u+n +pv—osa(o) '7v).a¥)|<p—1.

The same argument in Corollary 2.2.13 shows that if M = maxgv{|{v,a")|}, then
M <2.

Thus, if y is d-deep in Cy, then ' = (t,0) - —osn (o) m(v)is (d — 1)-deep
in (t,0) - Cy. Since ' is in C, we see that 1,0 € Q and ' is (d — 1)-deep in Cy.
We have thus shown that all lowest alcove presentations occur in the set described in
the statement of the proposition.

Finally, we observe that any pair (s, ') in the set described in the proposi-
tion indeed gives a lowest alcove presentation. This is because if t,0 € €2, then
[(v,aV)| < 1. Using that u is at least d-deep in Co and d > 1, we conclude that
1 is alsoin Cy. O

PROPOSITION 2.2.16

Let A be a weight which is d-deep in a p-restricted alcove C with d > n. Then
for any s € W(G) and any lowest alcove presentation (s', ') of T(s,A +1n), W' is
(d —n + 1)-deep in Co. Moreover, T(s,A + n) is at least (d —n + 1)-generic.

Proof

The same argument as in Corollary 2.2.13 shows that (s', ' + 1) = @9 (s, 1 + 1)
with (£,0) - C = Cyp. The result now follows because |(v,a¥)| <n — 1 for all
coroots o”. O

2.3. Inertial local Langlands

In this section, we establish some simple instances of the inertial local Langlands fol-
lowing [11, Section 2.4]. We let B,, C GL, be the Borel subgroup consisting of upper
triangular matrices. Fix an isomorphism i : @p =~ C. As above let K C @p be the
unramified extension of degree f. Let reck ¢ denote the local Langlands correspon-
dence for GL,(K) of [21]. Using i, define a local Langlands correspondence rec g
over @p such that i orecg = recg c oi. We first recall the existence statement.
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THEOREM 2.3.1
Let © be an inertial type. Then there is a finite-dimensional smooth irreducible
@p—representation o (1) of GL,,(Ok) such that if 7 is any irreducible smooth @p—
representation of GL, (K), then m|gL, @) contains a unique copy of o(t) as a
subrepresentation if and only if recg (7)|1, = v and N =0 on recg (). If  is an
irreducible smooth @p-representation of GL, (K) such that

Homg, o 5)(Ind5 % B yi.7) #0,

1
then reck ()|, = Di_, Xi OArt}lhK-

Proof
The first part is [6, Theorem 3.7]. We now prove the second part. One proves

as in the proof of [I1, Proposition 2.4.1(ii)] that & is a subrepresentation of

n—Ind$" (X)
Bn(K)
Then the result follows as in [11, Proposition 2.4.1(ii)] (though N () is not necessar-

ily zero in our context). O

8;;” X"_, Xi, for some y; extending x; asin [11, Proposition 2.4.1(ii)].

What we will need is an explicit o(7) in the case when 7 is a tame inertial
type. Let K’/ K denote an unramified extension of degree r with residue fields k' / k.
A character 6 : k"™ — @; is primitive if all its Gal(k’/ k)-conjugates are distinct. Fol-
lowing [23, Section 4], let k (0) = (—1)"! ReTw denote the cuspidal representation of
GL, (k) parameterized by 6.

PROPOSITION 2.3.2

Lef 0k — @; be a primitive character. Let T = @;;(1)(9 o Artgh) |1, where
1D denotes the ith Frobenius twist. Then o(t) can be taken to be k() interpreted
as a GL,(Ok)-representation via the reduction map GL,(Og) — GL, (k).

Proof
See [11, Proposition 2.4.1(1)]. O

Definition 2.3.3

Letn = Z€‘=1 r;j be a partition of . For each j, let §; be a primitive character for the
extension of degree r; of k. Define PInd(x(61)....,x(6;)) to be the parabolic induc-
tion to GL, (k) of & j k(0;) as a representation of the rational points of a parabolic
P D B with Levi subgroup [ [; GL;, .

PROPOSITION 2.3.4

Let T = @‘]{-:1 Tj, where T; is a cuspidal inertial type associated to primitive char-
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acters 0; of degree r; as in Proposition 2.3.2. Assume that the cuspidal types k(0;)
are pairwise distinct. Then o (t) can be taken to be PInd(k(61),...,x(6;)).

Proof
This follows from Section 6 of [37], where o(7) is constructed as o»(A) for maxi-

mal P (see also Section 3.6 of [6]). In the case of principal series, see also Proposi-
tion 2.4.1(ii) in [11]. O

COROLLARY 2.3.5
Let T = t(w, i) be a regular tame inertial type (Definition 2.2.9). Then o (t) can be
taken to be Ry, ().

Proof

As in Definition 2.2.1, we immediately reduce to the case in which w = (s;,1id,
...,1d). The condition of being regular corresponds to the pairwise distinctness con-
dition in Proposition 2.3.4. Finally, we use Lemma 4.7 of [23] to relate the parabolic
induction in Proposition 2.3.4 to the Deligne-Lusztig representation Ry, (i4). U

From now on, for any regular tame inertial type, we let () be as in Corol-
lary 2.3.5.

Remark 2.3.6
Note that, for a regular tame inertial type t, by Corollary 2.3.5 and (2.4)

V(@) =o(r).

3. Local results
In this section, we prove the main results on reductions of potentially crystalline rep-
resentations which will be used for weight elimination in Section 4.1.

3.1. Etale p-modules

In this section, we consider étale ¢-modules associated to affine Weyl group elements
and determine their corresponding semisimple Galois representations. The key result
is Proposition 3.1.2, which relates the Galois representation to the tame types defined
in Section 2.2.

Let Qg denote the p-adic completion of 6[%], where G := Ok [v] is endowed
with a Frobenius morphism ¢ extending the Frobenius on Ok such that ¢(v) = v?.
Let R be a local, complete Noetherian (9-algebra with finite residue field. By base
change, the ring Qg ®7 , R is naturally endowed with a Frobenius endomorphism
@, and we write ®-Mod“(R) for the category of étale (¢, ¢ @Z,, R)-modules. Its
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objects are finite-type projective modules M over Og &z, » R, endowed with a Frobe-
nius semilinear endomorphism ¢4 : M — M inducing an isomorphism on the pull-
back: id ®,, ¢ : @* (M) — M.

Since Koo/ K is totally wildly ramified, the subgroup Gk, of Gk projects sur-
jectively to the tame quotient of G g. Hence, the restriction map

Rep;(Gk) — Repr(Gkoo)

is fully faithful, where Rep’ denotes the subcategory of tame representations. We
use Repi(Gk,,) to denote the essential image of this map and will often implic-
itly identify these representations of Gk, with their canonical extensions to Gg.
Note that this essential image contains exactly representations of Gg., which
are trivial on Gg_ N Ggr, where K’ is the maximal tamely ramified extension
of K.

For any complete local Noetherian (9-algebra R with finite residue field, by the
theory of norm fields, there is an antiequivalence of categories (see [30, Lemma 1.2.7]
for a version with coefficients)

V* : ®-Mod“(R) — Repg(Gk.,).

If K’ is finite unramified extension of K, let K, = Ko, ® ¢ K’, and we can similarly
consider the category of étale ¢-modules over K’ denoted @-Modf}t(, (R) together with
the antiequivalence V%, : @-Mod‘i‘(, (R) — Repr(Ggr ).

For any (M, ¢4) € ®-Mod”(R), we decompose M = B ; M) over embed-
dings o; : W(k) — O with the induced maps gb%) s MU — MUFD, We are
now ready to define “semisimple” étale p-modules. We fix an embedding WV =
X*(T) x W(GLy) < Nar, (T)(F((v))) given by u > v and identifying W(GL,)
with the subgroup of permutation matrices. Here, for u = (ay,...,a,) we define
v* to be the diagonal matrix with entries v% . (We interpret X *(7T) as the group
of cocharacters of the dual torus, and v* is the associated cocharacter evaluated
atv.)

Definition 3.1.1

For any i = (;) € WY and D = (D) € T (F), define M(i, D) € ®-Mod*(F)
to be the free module over Og ®z, I of rank n such that the Frobenius ¢%) is
given by the matrix D;w; € Ngr, (T)(F((v))) (with respect to the standard basis).

Set M(W) 1= M (W, 1d).

PROPOSITION 3.1.2
Let M(W, D) be as in Definition 3.1.1 with w = st,, € W. Then, V*(M (W, D)) lies
in Reph(Gk.,) and
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V*(M(@, D)1 =T(s*, 1*).

In particular, the restriction to inertia does not depend on D.

Proof

Assume that (s7,uy) ~ (s5,15) via conjugation by (v*,0™*). Then for any D; €
I (FF), there exists a Dy € T'(F) such that g-conjugation by 7;-1(,)0 induces an
isomorphism M(s1t,,, D1) = M(s2t,,.D2) by (2.2) . For any w, by an appro-
priate conjugation, we can assume w; = 1 for j # f — 1. Let Wy = so_ltMO
with o = (ay,...,a,) € Z", and let r denote the order of s9. Consider the base
change

M := MW, D) @wau) W(k'),

where k’/k is a finite extension of degree r. Let ¢4 denote the Frobenius on M.
A straightforward computation as in [32, Lemma 3.3.3] shows that there exists a basis
(e;) for (M) (the piece corresponding to the fixed embedding oy W(k') = 0)
such that

Yizoa mt1,.,p/™
o1l (er) = dp " NE T O
for some scalars d; determined by D. Following Proposition 2.1.7 in [8] and using
our choice of embedding o) : W(k') — O, one can determine V%, (M') from
¢dj;r, If K, = Koo ®wx) W(k'), then there are unramified characters & such
that
n Yltor’"a mit,.
s, (i)
Vi) = (Ptio,, ")

!
i=1 Koo

Hence, V*(M(w, D)) is tame, and by comparison with (2.3),

V* (M@, D)) |15 = 7((50, 1,..., 1), (10,0, ..., 0)). O

3.2. Semisimple Kisin modules

In this section, we generalize [31] from GL3 to GL, and study reductions of Kisin
modules with descent. For the convenience of the reader, we first state the main theo-
rem which is used for weight elimination in Section 4. The theorem will be a conse-
quence of Theorem 3.2.26 about reductions of Kisin modules with descent data. The
proof appears at the end of the subsection.

THEOREM 3.2.1
Let T = ©(s,t + n) be 1-generic with lowest alcove presentation (s, 1), and let
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A € X*(T). Let p be the reduction of a potentially crystalline representation of type
(A, 7). Assume that either (1) T is a principal series type and p* is a direct sum of
characters or (2) A = n and t is generic. Then there exists (w,v) € W(G) x X*(T)
such that

—SS

01, =T(w,v+1n)  and s 'ty_,w € Adm(R).

Remark 3.2.2
The element s_lt\,_uw in Theorem 3.2.1(2) is later defined to be w™* (p, 7) in Defini-
tion 4.1.6.

We continue to use the notation of Section 2.2. Let 7 : [x — GL,(E) be a tame
inertial type. We will assume throughout that 7 is 1-generic and fix a lowest alcove
presentation (s, u) where u € Cy (i.e., T = (s, u + 1)).

If s = (s0.....57-1) and p = (4j)o<j<f—1 € X*(T), we take s; o
50Sf—15f—2+--51 € W(GL,) and e,y € X*(T) such that e, ; = sy sy
S;I(I,Lj +n;)for1 <j < f—1andeg,)0 = Mo + no. Let r denote the order of
st and f’ =rf. As in Definition 2.2.1, t(s, 0 + 1) = t((s¢, 1,...,1),0¢(5,)), and
concretely,

n Socker_18® L plk
t=@x with yii=w, e @ 3.1)
i=1
where ag”)u) = Z{;& (s ), p’ € Z" (compare with (2.3)). By fixing a choice of

lowest alcove presentation, we also fix the order of the characters y; as above.

Remark 3.2.3
In [31] and [32], the notion of lowest alcove presentation does not appear. Everything
is written for presentations of the form 7((s¢,1,...,1), 0, ) (see, e.g., the begin-

ning of Section 2.1, Section 6.1 of [31], or Section 3.1 of [32]). In the notation of
Section 6.1 of [31] and Section 3.1 of [32], at(s,,), 7 = (a1,,0a2,j,a3,;). If

1

) -1 - -1 —1.,-1 -1 -1
Sor 1= (8785 CSEN ST Sy tSpoga. 8] ,1) e W(G),

then s} (a(s,.)) = ® + 1, and conjugation by (0,s;.) changes one presentation to
the other. The element s, is called the orientation of a s, ) (see Definition 2.6 and
equation (2.2) in [31]).

Remark 3.2.4
Comparing (3.1) with the equation at the beginning of [31, Section 2.1] or [32, Sec-
tion 3.1], the exponents differ by a minus sign. This is because of a dual that appears



2454 LE, LE HUNG, and LEVIN

in Definition 3.2.5 which makes everything consistent. See Remark 3.2.7 for more
details.

We continue to write K (resp., K') for the unramified extension of Q, of degree

f (resp., f’ &t fr). If r =1, we say that 7 is a principal series type. Otherwise,

we write T/ for the base change of t to K’'/K (which is just T considered as a
principal series type for Gg+). We record the relevant data for t’. Define a’(

X*(T)Hom&"F) ~ x*(T')/" (using the fixed choice of embedding 0y) by

S5/4) €

Xl ). j+kf =5 (g ,) for0<j<f—-10<k<r—1

If Tx/(w’, ') is the analogous construction of tame types over K’ for (w’, u’) €
(W(GL,) x X*(T))Hom&"F) then 1/ =~ rK/(l,oz’(s’M)) by direct comparison using
(3.1). The orientation s, € W(GL,)” " of oc’(s’ 0 in the sense of Definition 2.6 in [31]
is given by (compare with [3 1, Proposition 6.1])

s;r,ka::s’;“sor,j for0<j<f—10<k<r—1. (3.2)

Note that oc’(s,m,ka is in the W(GL,)-orbit of u; 4+ n;. If (s, ) is a lowest
alcove presentation with p m-deep in alcove C g, then for all coroots o of GL,, and

0<j ' <f'—1,

m< |(O£(S,M),j/,(xv>| <p—m and 3.3)
(S‘/’r’f’)_l(“/(s,u),f’—l—jf) =WUf_1—j+ny_1—; is dominant,

where j = j' mod f.
1

Define L' := K'(w,) = K'((—p)?’/-1), and let A’ := Gal(L'/K') C A :=
Gal(L’/K). Note that t defines an (O-valued representation of A’. For any com-

plete local Noetherian (-algebra with residue field F’ finite over F, let &1/ g :=
(W(k') ®z, R)[u']. We endow &1/ g with an action of A as follows. For any 7 in
AN, t(w) = %"r’)u’ and 7 acts trivially on the coefficients. If 0 € Gal(L’/Q),) is the
lift of Frobenius on W (k') which fixes w@,, then o/ generates Gal(K’/K) acting in
the natural way on W(k’) and trivially on both u#” and R. Set v = (v’ )Prf_l, and note
that

(G, R)A! = (W(k) ®z, R)[v].

Asusual, ¢ : &1/ g — S g acts as 0 on W(k'), acts trivially on R, and sends u’ to
W)?.

For any positive integer %, let ¥ [%#7(R) be the category of Kisin modules over
L’ with tame descent of type 7 and height in [0, /] as defined in Section 3 of [7] if
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T is a principal series type. For other types, we refer to Section 6 of [31] for further
background.

Definition 3.2.5

An element (I, pon, {g}) € YOH7(R) is a Kisin module (M, ox) over S1- g ([31,
Definition 2.3]) with height less than 4 together with a semilinear action of A which
commutes with ¢y such that, foreach0 < j < f/—1,

M mod v’ ~ 7V Qe R

as A’-representations. In particular, the semilinear action induces an isomorphism
(07)*(901) 2 M (see [31, Section 6.1]) as elements of ¥ 0417 (R).

Remark 3.2.6

As explained in [31, Section 6.1], the data of an extension of the action of A’ to an
action of A is equivalent to the choice of an isomorphism (o )* (9t) = 0 satisfying
an appropriate cocycle condition. We will use both points of view interchangeably.

Remark 3.2.7

The appearance of TV in the definition is due to the fact that we are using the con-
travariant functors to Galois representations to be consistent with [31] and [32] as
opposed to the covariant versions which appear in [7] and [11]. In [31], we did not
use the notation tV. Instead, we included it in our description of descent data by hav-
ing a minus sign in the equation before [31, Definition 2.1]. The notion of a Kisin
module with tame descent data of type 7 here is consistent with what appears in [31,
Definition 2.1].

Recall that we have fixed a lowest alcove presentation (s, i) with i € Cy. Defi-
nitions 3.2.11 and 3.2.8 as well as the matrix of partial Frobenius AY) below depend
on the choice of presentation (see Remark 3.2.12).

Recall the following definition.

Definition 3.2.8

For any complete local Noetherian ©-algebra R, an eigenbasis 8 for Mt € Y [0-417(R)
is a (ordered) basis BV = (fl(j/), fz(j/), ey f,,(j/)) of MU for each 0 < j' < f’
such that A’ acts on fi(j " via the character )(i_l from (3.1) and such that (6/)*(8) =
B (see [31, Definition 2.8] and [32, Definition 3.1.1] for details).

Note that, since the order of A’ is prime to p and O is assumed to be suffi-
ciently large, eigenbases exist for any Mt € Y [%#17(R) when R is a complete local
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Noetherian ©-algebra as above. Given 90t € Y [%#1.7(R) together with an eigenbasis

B, the matrix of the partial Frobenius ¢‘.§J/t 1 with respect to § is defined as in

Definition 2.11 of [31]. Namely, let ¢(j )

AR )

U G'+1)
(m) Sor.j +1(n) - mxs/

be the Frobenius map on the y, (@) 1sotyp1c pieces of omU"+D and 0 (ﬂﬁ)(] )
or, j/

Y

respectively. Forany 0 < j' < f/ — 1 set

/(J’)
) = Z “(s w—Jj +zp , (3.4)

where —j’ + i is taken modulo f'.
If ,3(-"/+1) = (fl(] +1), e f,,(] +1)), then as in Lemma 2.9 in [31],

AU/ FD_y G+

(CNOR R CNNN ) £('+1)
() O @ UV

is a basis of MY, ™) Similarly, if 9 = (477, 477), then

Sor.j/+1

a;(j/T!)—a/(j/+12 ,
GO (s.u).s" ., . (n) G'nn
{() /@ N

is a basis for ¢ (sm)(’ ) _ . We order these bases such that the u’-multiple of

O
fs @ is the ith bams vector. Note that the orientation s, is chosen such that, for
all i < k
fr (G’ +1) G’ +1)
P> AG S T R, G 7O 3-3)

so that all the exponents which appear are positive. The inequalities are strict because
7 is regular (since 7 is 1-generic).

The matrix of the j’th partial Frobenius with respect to these bases ordered as
above will be denoted by AU = = Matg (¢(J ) e (n)). We stress that the notion of

eigenbasis and the definition of AU depend on the chosen presentation of , as well
as our choice of the ordering of the characters in 7. By our requirement that f is 0/ -
invariant, AU") only depends on j’ mod f. We also observe that the height condition
implies v (AU7)~1 € M, (R[v]).

For any (-algebra R, define
. J(R) :={M € GL,(R[v]) | M mod v is upper triangular};
. J1(R) :={M € GL,(R[v]) | M mod v is upper triangular unipotent};
. forany m > 1, Dy (R) := {M € GL,(R[v]) | M mod v™ is diagonal}.
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For any M € Mat, (R((u"))) and g € GL, (R((1"))), define
Ad(g) (M) :=gMg™". (3.6)

We can now record the effect of changing the eigenbasis B on the matrices A/,
which is the generalization of Propositions 2.15 and 2.16 in [31].

PROPOSITION 3.2.9

Let R be a complete local Noetherian O-algebra. Let 9 € YT (R) together with
two eigenbases BY) = (fl(j), z(j),...,f,,(j)) and ') = (f{(j),le(j),...,f,{(j))
be related by

KO LD, FODD = (f9, £, 1D
. . , ) def j iy def
with DY) € GL,(R[u']). Let us write AY) = Matﬂ((pggs;r,jﬂ(n)) and AV =

. . /(J) .
Matﬁ/(d)(]) , ) as above. Set 1U) &f Ad((s’ )_l(u’)_a<A{M))(D(1)) € 4(R),
g‘n’sor.j+1 ()

or,j

which only depends on j mod f. Then forall0<j < f'—1,
A0 — I(j+1)A(j)(S;‘(I(j)a(p)(s;‘)—l)’
where

10 5005 (1 D) )57
Furthermore, if i is m-deep in alcove C g, then I19)¢ € D, 41 (R).

Proof

The formula for change of basis only depends on 91 as a Kisin module over L’ for
the principal series type t’. The fact that /) only depends on ; mod f follows
from the fact that § is fixed by o/. The rest of the proof is the same as in Proposi-
tion 2.15 of [31], but we note that the s;’s which appear in Proposition 2.15 of [31]
are called s, ;’s here. We use that (s, ;, )™'s). ; = 57 by (3.2) and Remark 3.2.3.
Also, we use that, for 0 < j < f —1, (s(’)r,j)_l(oc/(s’mj_l_j) =Ufo1—j +Nfo1—j
(see (3.3)). That 1) ¢ J(R) follows from (3.5), which follows from the fact that
the characters appearing in 7 are distinct (see Proposition 4.6 in [7]). The fact that
199 € D, 1(R) is straightforward (compare with Proposition 2.16 in [31]). O

Remark 3.2.10

In the situation of Proposition 3.2.9, we call the tuple (/) € J(R)/ " the change of
basis tuple from B to f’. It satisfies 1U) = I®) if j =k mod f. Conversely, any
tuple in 4(R)/’ with this property is the change of basis tuple from f to another
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eigenbasis B’. (This uses our running assumption that 7 is 1-generic.) In other words,
given B, the data of an eigenbasis 8’ is the same as the data of the tuple (1 ¢)).

Recall (from [7, Definition 5.5]) the notion of shape.

Definition 3.2.11

If 7 is a principal series type, the shape of a Kisin module 2 € ¥ (0417 (F") is the ele-

ment W = (Wo, W1,...,Ws_1) € WY = (WV)Homk.F) gych that, for any eigenbasis A

andany 0 < j < f — 1, the matrix AV) = Matg (¢, o) lies in (B 4 ().
*or,j+1

(Recall the fixed inclusion WY <> NoL, (T)(F((v))) before Definition 3.1.1.)

For a nonprincipal series type t, we define the shape via base change as in [31,
Definition 6.10]. By definition, an element 9t € Y217 (F") consists of an element
M e YIOhLT (') together with an isomorphism (o/)*(90) = MV satisfying the
cocycle condition as in [3 1, Definition 6.3]. By the principal series type case, we have
the shape of ', which is an element W' = (W, w7, ..., w},_l) € (WV)H"m(k/’F). By
the isomorphism (o/)*(9V) = M’ and our requirement that eigenbases are compati-
ble with it, the components of W’ corresponding to two embeddings k” < [F are equal
if they restrict to the same embedding kK <> F. In our numbering, this gives W', =
w;.Jrf. We then define the shape W of 9t as the element W = (W, W}, ..., ﬁ)'/f_l) IS
I/_AVV — (WV)Hom(k,IF)'

Remark 3.2.12

Proposition 3.2.9 shows that the shape of a Kisin module is well defined. The shape
of a Kisin module depends mildly on the choice of a lowest alcove presentation of ¢
(and the associated ordered characters y; in (3.1)). For a different choice of presenta-
tion, the shape changes by an outer automorphism of W, coming from the action of
the fundamental group (see [31, Corollary 2.24]). Everything we do depends on the
choice of a lowest alcove presentation, and we will always fix it at the outset before
talking about objects such as A) = Matg (¢é{2‘§;r,j+l (ny)> and so on.

Remark 3.2.13

The shape (Definition 3.2.19) is a kind of relative position between the two tame rep-
resentations p°* and T. The shape is closely related to the geometry of the potentially
crystalline deformation ring of type (7, t) as studied in [31].

Recall the functor from Section 6.1 of [31]:

T3, : YORT(R) 5 Repr(Gk.,).
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Let A € X*(T) be effective, that is, A; = (a;,;) with a; ; > 0. We will need finer
control of the shape of the Kisin module in the case when p is semisimple. For any A
that is effective, we have a closed substack Y At < Y0kt constructed in [7, Propo-
sition 5.2] (see also [31, Section 3.1]). Then for any finite extension F’/F, Y *7(F") is
the full subgroupoid of ¥ (%17 (F") (for any sufficiently large /) consisting of Kisin
modules whose shapes lie in Adm" (1) by [7, Proposition 5.4].

Definition 3.2.14
Let M € Y[02L7(F") where F'/F is a finite extension. We say that 01 is semisimple
of shape W = (W;) € W if there exists an eigenbasis B of M such that

AD =Matg (o), () €T ([ [])T;
*or, J

for0<j < f'—1.

Remark 3.2.15

Since the set of monomial matrices (i.e., matrices that have at most one nonzero entry
in each row and column) in d (F")w; J (F) is exactly 7' (F'[v])w, the above condition
is equivalent to AY) being a monomial matrix.

PROPOSITION 3.2.16
If O is semisimple of shape W = (W;) € W, then there exists an eigenbasis f such
that

AV e TE)D,; for0<j<f—1.

Proof

By definition, there exists an eigenbasis 3 such that AY) = D ;@ for D; € T (F'[v]).
Let D = D;j modv. For0<j < f'—1,set IU*D =D; D! € J(F') with j
considered mod f. Then () € J(F')/" defines an f’-tuple as in Remark 3.2.10.
By Proposition 3.2.9, there is an eigenbasis 1 for 9 such that the matrix of partial
Frobenius with respect to f; is

A(ll) — 1(./'+1)A(j)s}f(I(j),«J)—l(s;f)—l zﬁjsz;ﬁ(l(j),rp)—l(s;%)—l.

Since /U0 =1 mod v and is an element of T(F'[v]), s;f(l(j)"")_l(s;f)_l =1
mod v”? and is an element of T(F'[v]). We conclude that AY) = D, ;;, where
D;; = D; modv”. Repeating this process, we can inductively construct a
sequence of eigenbases B,, such that the matrix of partial Frobenius with respect
to Bm has the form D,, ;W;, where Dy, ; = D; mod v?". The sequence P
converges to an eigenbasis with the desired property. O
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COROLLARY 3.2.17
Let (s, jt) be a lowest alcove presentation for . If M € Y 01T () is semisimple of
shape W € WV then T d(i)ﬁ) is semisimple and (after extending coefficients)

T;d(ﬁﬂll( = V*('M(wS*t,u*-l-n*))hK =T(w,v+7),

where Ws*t,x = wW*t,*.

Proof
The second isomorphism is from Proposition 3.1.2. This first isomorphism follows
from a direct computation of the étale @-module M = (9[1/u’'])2=" as in [32,
Proposition 3.1.2, Corollary 3.1.3]. We briefly go through the main points.

Let 8 = (8Y)) be an elgenba51s for O as in Proposition 3.2.16. We start by
considering a basis ,3/ for M : = (M[1/u])A'=! as follows for0<j < f'—1,

if BU) = (fl(f ),_”,f(f )) define B~U") = ((u/)a(\ . 1f(/ )7.'_,(u/)a(x,u.).n fn(j ),

which is a basis for ﬂ/ . The matrix for ¢(_],) M/(] ) W/(] 0 with respect to
E/ is given by
y 7 /G4
s(’,r’j,ﬂA(J )(sf)r’j,ﬂ) (u )pa(a 0 a(fu)
: G GHD o ! e
Since pag ) —ag ) = (p l)a(s,u),f’—l—j” this is the same as

i/

! U et -1, & I
sor’j/HA (sor,j’—i-l) v,/ i,

Define Eby E(j/) = F(j/)sérj/. Let j'=j +if for0<j < f — 1. Then the matrix
for ¢%ﬁ) with respect to Eis given by

1 s * *
(" 1./ (G e 4 rq—in) (G o %, M5 +17
A (sor], 1) Sor, j1V or, j/ ). f1=1=j"" = A §;vT

using (3.2) and (3.3). Since (Of)*(ﬁ(j/)) = E(j/_f) this descends to a basis of M :=

(ON[1/u'])A="! = (M')°” =1 such that Frobenius gb(]) M S m" Y g given by

. * * * *
A(’)s}‘-‘v“fﬂj =D, sz;v“ﬁ"f

for D = (D;) € T(F')/ using Proposition 3.2.16. Thus, M 2 M (Ws*t,x1p*, D)
(Definition 3.1.1). O

Before proving the main theorems of the section, we show that, in generic situa-
tions, the Kisin module which gives rise to p is necessarily unique (if one exists); that
is, the Kisin variety is trivial.
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PROPOSITION 3.2.18

Assume that T is generic.

(1)  LetD,0N e Y75 () for some finite extension F' /F. If T}, () = T, ),
then 9t = NV

(2)  LetMe YY), and let p 1= Ty, (ON). Define a groupoid

tor = {(M. o) | M € Y77 (F'[e] /€?), 8o : M/ —> M}
Then the functor T; 4 induces a fully faithful functor

Tn * G577 = Repprpey/2(Gko)p
={(p.70) | p € Repp(eye2(Gio). Yo 1 p mod e —> B}

Proof
We fix a lowest alcove presentation (s, iu) of T such that u is n-deep in alcove Cy to
perform all calculations. For part (1), since the G g__ -representations are isomorphic,
we have M[1/u'] = ﬁ/[l/ u’] as étale p-modules with descent datum. We pick two
eigenbases f, B’ of 9N, M7, and let (DW) e (GL, (F'(u))))”” be the f’-tuple which
expresses the basis 8’ in terms of f as in Proposition 3.2.9. Note that DY) = DU +,
since our eigenbases are compatible with the action of o/ . The same computation in
the proof of [31, Theorem 3.2] with 2 replaced everywhere by n — 1 (see Remark 2.2.8
for the comparison of the genericity in the present paper with that of [31]) now shows
that DY) € GL,, (F'[u']) for all ;.

Part (2) is similar to part (1). The argument in the proof of [31, Proposition 3.4]
adapts to our situation. O

Definition 3.2.19

Assume that 7 is generic with a chosen lowest alcove presentation (s, ;). If there
exists M € Y7 (F) such that T;, (ON) = PlG ., - then define w(p, 7) € Adm" (1) to
be the shape of 91. This is well defined by Proposition 3.2.18.

A key input for weight elimination is the following.

THEOREM 3.2.20

Assume that either (1) t is a regular principal series type or (2) A = n and T is
generic. If p has a potentially crystalline lift with type (A, ©) where A is effective, then
there is a Kisin module 9 € Y *(F) such that Ty, () =~ Pleko,-

Proof
If t is a principal series type, this is direct consequence of [7, Proposition 5.4 and
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Corollary 5.18] (also see [7, Remark 5.6], which compares the stratification of the
moduli of the Kisin module with Definition 3.2.11). Proposition 5.4 in [7] crucially
uses results about local models from [37].
—/ ’
For case (2), by the case (1), there exists a Kisin module 9t € YT (F) with
—
T; 4. ) = mGKgo’ where T 4K is the analogous functor over K’. Since p

extends to Gk, we have an isomorphism ¢ : (of)*(ﬁ/[l/u’]) = ﬁ/[l/u’] (satisfy-
ing an appropriate cocycle condition; see [31, Sectlon 6.1]). Slnce T is generlc by the
proof of Proposition 3.2.18, t((c/)* (93? ) = M inside M [1/u']. Thus, M defines
an element of ¥ 7:*(IF) and hence has shape in Adm" (1). O

Remark 3.2.21

Our definition of Adm" (1) (Definition 2.1.1) is in terms of the Bruhat order on the
(extended) affine Weyl group for GL,, using our choice of antidominant base alcove
for the standard apartment. The Bruhat order which appears in [7, Section 5] comes
from the closure relation on the affine flag variety with respect to the standard Iwahori
subgroup, the subgroup 4 () of matrices which are upper triangular mod v. The sub-
group 4 (F) is the stabilizer of the antidominant base alcove; hence the Bruhat order
(and hence the admissible set as well) in [7, Section 5] is the same as ours.

The following proposition gives us control on Y 7% (F”).

PROPOSITION 3.2.22
Assume that T zs generzc Let M € YIOn=1LT (R et B be an elgenbaszs of M, and let
AV = Matg (¢7 v ) Then the assignmentp’ +— (Mat,g/(d) ; (n)))0<j<fr

defines a bl]ectton between the set of eigenbases B’ such that B’ = ,3 mod u’ and the
set tuples of the form (X ; A(f))05]<f/ such that

. Xjed () forall j;

® ijinijkmodf.

Proof
Throughout this proof, we adopt the same notation as in Proposition 3.2.9: we let
(DY) be the tuple of matrices expressing B in terms of B/, from which we get
the matrices 1), 1(/)%_Observe that the condition 8’ = 8 mod v’ is equivalent to
DY) =1 mod ' and also equivalent to 1) e 4, (). If these equivalent conditions
hold, then / ()¢ = 1 mod "+ since t is assumed to be generic. We also observe
that if j = k mod f, then the jth and kth components of any tuple of matrices that
we work with are equal.

Since M € YO~ 1L7(F') we have v~ (4U))~! € M, (F'[v]). This gives us a
bound on the denominators of (4¢))~1,
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First we check that our assignment is actually defined, in the sense that the col-
lection A’V) = Matﬂf(cp(ﬁj)s, (n)) associated to B’ is really of the prescribed form.
Sor, j+1
By Proposition 3.2.9 we have

X; = A/(j)(A(j))—l — 7U+D 40) (S;f(](.i),rp)(s}'f)—l)(A(j))—l‘

It is clear that X; = Xy if j =k mod f. As observed above, I /)% = 1 mod v"*1;
hence we can write s;(l(j)"/’)(s;f)_l =1+ v"*lY; with Y; € M, (F'[v]). Since
V" AD) ™ e M, (F'[v]), we get

X;= A’(J')(A(j))—l — ](j-i-l)(l + v"+1A(j)Yj(A(j))_1) e 41 (F)

as desired.
Next, we show that our assignment is surjective. Thus we are given (X ;) with
X € 41 ('), and we need to solve the system of equations

X; = I(H‘l)A(j)(s;(I(j)"p)(s;f)_l)(A(j))_l

with 1) € 4 (F"). To do this, we carry out the same limiting procedure as in the proof
of Lemma 2.20 of [31], using 1% = 1 mod v"*! and v*~1(4U))~1 € M, (F'[v])
to establish convergence to a solution.

Finally, we show that our assignment is injective. This means that we have to
show that if there are two collections (), (1'0)) e 4;(F)/" corresponding to
eigenbases 8, 8” such that

I(j+1)A(j)(S;f(l(j)xﬂ)(s;f)—l)(A(j))—l — I’(j+1)A(j)(S;f([’(j),tﬂ)(s;f)—l)(A(J'))—l’

then 1) = ['U) for all j. By replacing B with 8” and AY) with A”), we reduce to
the case when I') = 1. Thus, it suffices to show that if

10D 4D (2 (1 D) (1)) (A1 = 1,

then /) =1 forall ;.
Indeed, by the observations at the beginning of the proof,

A(-i)(s}f(1(j)"")(s;f)_l)(A(j))_l = 1 mod v2

for all j; thus, /&) = 1 mod v2 for all j. Suppose that we already have V) =
1 mod v® for some § > 2 and for all j. Then [¢)¢ = 1 modv?’"~! and
hence A(j)(s;*(I(j)"")(s;f)_l)(A(j))_l = 1 mod v”%=2" for all j. Hence, also
19 = 1 mod v?5=2" for all j. Since p§ — 2n > & (the existence of a generic ©
implies p > 2n + 1), this shows that //) = 1 mod arbitrarily high powers of v for
all j. This shows ) =1 forall ;. O
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We now discuss the notion of a gauge basis, which provides certain normal forms
for Kisin modules. For a root a = ¢; — € of GL,, recall that the (7, j)th entry of an
n x n matrix A is also called the ath entry and is denoted by A, . For any statement
*, define §, to be 1 if « is true and O if « is false.

For any & = wt, € WY and any ring R, we define the subset Ug(R) C
GL,, (R((v))) to be the set of X € GL, (R((v))) satisfying the following conditions.

. The diagonal entries of X are in R*.

. For any root @ of GL,, the ath entry X, is of the form ), a;v' € R((v)),
where a; = 0 unless 8y<o <i < —(v,a") + 8y (a)<o- In particular, Xo =0
unless Sq<o < —(v, &) + 8y (a)<o0-

By a standard computation with affine root groups, the natural map

WU (F') — 1 (F)\I (F) 0 (F)

is a bijection, for any extension F’ of FF.
The following definition generalizes Definition 2.22 of [31].

Definition 3.2.23

Let M € Y77 (F') with shape (W;). A gauge basis f for 91 is an eigenbasis for M

such that AY) = Matg (¢z§jlz)s’ (n)) belongs to w; U, (F') forall 0 < j < f.
*or,j+1

Example 3.2.24

When n = 3, the list of n-admissible elements Adm" (1) is given in [31, Table 1]. For
each W € Adm" (1) up to outer automorphism, [31, Table 4] lists the set w; Ug, (F)
which consists of the possible matrices of partial Frobenii for pairs (9, B) with shape
w, where E is a gauge basis.

For 7 generic, Proposition 3.2.22 shows that gauge bases exist and are unique up
to scaling by the subgroup of T'(F')/ ' consisting of tuples whose jth and kth entries
are the same for j =k mod f.

Remark 3.2.25

Assume that 7 is generic. If M € Y"*(F’) is semisimple of shape i = (i;), then
Proposition 3.2.16 shows that there is an eigenbasis 8 with the property that AY) =
Matg ((pgf?s(’,, j+1(n)) belongs to T (F)w; = w; T (F") C w; Uy, (F’). Such an eigen-
basis is therefore a gauge basis, and we deduce that the matrices of partial Frobenii
with respect to any gauge basis have this form. In particular, they are all mono-
mial matrices. Conversely, if there is a gauge basis for which the matrices of partial

Frobenii is monomial, then 90t € Y 7% (F’) is semisimple, by Remark 3.2.15.
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THEOREM 3.2.26

Let p: Gg — GL,(FF) be a semisimple representation, and let T be a 1-generic type.
Assume that either (1) p is a direct sum of characters, or (2) A = n and t is generic.
If there exists a Kisin module M € Y **(F) such that Ty, M) = plg Koo then there
exist a finite extension F' /F and a semisimple Kisin module M eyhe (F") with shape
in Adm" (L) (see Definition 3.2.14) such that (after extending scalars) T, (ﬁ/) ~
ﬁ|GKoo. Furthermore, we can take F' = in case (2).

Proof
Let Mgg = 90[1/u']. It is an étale p-module over L’ with descent datum to K.

We first treat the case where p is a direct sum of characters. Since V, ; is an
equivalence of categories and p is a direct sum of characters, Mgg = @;_, M;,
where each M; has rank 1, is stable under ¢, and the descent datum.

Let Yj{’;d be the Kisin variety parameterizing lattices in M4 which lie in Y47,

that is, which have shape in Adm"(1). When 7 is principal series type, le;d is
defined as in Definition 3.1 in [31] and is shown there to be a projective scheme
over F. In general, we define Y’l’t to be the closed subscheme of fixed points on
le: for the natural action of of Note that by assumption Y2 ’d is nonempty.

The torus 7' = G, acts on My, by scaling individually in each factor of the
above decomposition. As a consequence, we get an algebraic action of 7 on the pro-
jective variety Yj{’;d. Any such action has a fixed point (possibly after passing to a
finite extension F’ of IF). Let m Yj{’:d (F') be a T-fixed point. Let ; : T — Gy
denote projection onto the i th coordinate, and set ﬁ; = (ﬁ/)‘”i . Then

m =P, (3.7)

i=1

Since the T'-action commutes with ¢, , and A, each ﬁ: is stable under both; hence
ﬁ: is in fact a rank 1 Kisin module with descens datum. Any choice of eigelllbasis
which respects this decomposition shows that 9T is semisimple. Because ) is in
YAT(F'), it is semisimple with an admissible shape W € Adm" (1).

Now suppose that T is generic, but p is not necessarily a direct sum of charac-
ters. In this case, 9 is the unique element of ¥ % (F) SUCII that 7' d(sm) = Dleko,
by Proposition 3.2.18. We pick an unramified extension K/K’ such that ple, isa

direct sum of characters. Let 7 be the base change of  to K, and let 01 = 9 QW (k')
W(k) be the base change of the Kisin module M to KL'. Since 7 is still generic by

Lemma 3.3.1, S)Jt is the unique lattice in Dﬁ[l /u’] which belongs to Y ¥ (F). By the
above argument, the set of such Kisin lattices must have a semisimple element (pos-
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sibly after extending IF); thus 91 is semisimple. Fix a gauge basis 8 of 91, and let ,é
be the induced eigenbasis of 9)1. It is easy to check that it is a gauge basis of 9. By
Remark 3.2.25, the matrices of partial Frobenii of 9t with respect to B are monomial;

hence the same is true for the matrices of partial Frobenii of 90T with respect to f.
This shows that 9t € Y7 (F) is semisimple. O

Remark 3.2.27

In the proof of Theorem 3.2.26, while A’ acts on (ﬁ/l)(j ) mod u’ through one of the
characters of 7, it need not be the same character for each j. This is why, even though
¢ is “diagonal,” the individual AU)’s need not be diagonal, but only monomial.

Proof of Theorem 3.2.1

If o is the reduction of a potentially crystalline representation of type (4, 1), by a
standard argument (see, e.g., [12, Lemma 5]), p* is also the reduction (after possi-
ble extending scalars) of a potentially crystalline representation of type (A, 7). So,
without loss of generality, we assume that p is semisimple. After twisting, we may
assume that A is effective. Then, by Theorem 3.2.20 combined with Theorem 3.2.26,
after possibly replacing [ by a finite extension, there exists a semisimple Kisin mod-
ule M € Y*7(F) of shape W € Adm" (1) such that Plox., =T7, ().

If we write

WS ™ty e = W¥tyx
for (w,v) € W(G) x X*(T), then, by Corollary 3.2.17,
Pl =T(w,v+1n).
Furthermore, by Lemma 2.1.4,
0* =5ty w € Adm(R). O

3.3. Genericity conditions

LEMMA 3.3.1

Let K'/K be an unramified extension. If T is an m-generic tame inertial type, then
|1, is also m-generic. Similarly, if p : Gk — GL, (F) is an m-generic representa-
tion, then p|g ., is m-generic.

Proof
Let r be the degree of K'/K. Let tx/ denote the analogous construction as in
Definition 2.2.1 with K replaced by K’ (using the compatible (p” o 1)-system
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of roots of —p from Section 1.1 for all ' and an embedding o} : K’ — E
extending o). Then, for (w’,u’) € W(G)" x X*(T)", there is a tame inertial
type tx/(w', 1) : Igr — GL,(O). For (w,u) € W(G) x X*(T), let t(w, ) =
(w,w,...,w), (U, u,..., 1)) € W(G) x X*(T)". Then,

T(w,//«)|1,</ g‘L'K’(L(w’/’b))' (3.8)

This can be checked by direct computation. Alternatively, one can appeal to Propo-
sition 3.1.2, which says, in particular, that V*(M(w*t,*, D)) |1, = T(w, n) for any
D e T(F). If k’ is the residue field of k, then restricting to Gk corresponds to ten-
soring with k” on the étale gp-module side. We see immediately that

M(w*tu*,D) Rk k'
= M((W* 1, W tyx, ..., w*tyx), D) for D'=(D,...,D) e T (F)

and so T(w, )|, = Tk (t(w, 1)). Applying Teichmiiller lifts yields (3.8).

Let G’ = Resy/ /kG. Let Cj, be the analogous lowest alcove with k replaced by
k'’ viewed as a subset of X *(T)" @ R. Let T == (s, A + ) with A m-deep in Cg. Then
clearly (s, A) is a lowest alcove presentation with ¢(A) m-deep in Cj,. The argument
for p is the same. O

PROPOSITION 3.3.2

Let t© be a 1-generic tame inertial type. Assume that p is semisimple and m-generic
where m > n. If p is the reduction of a potentially crystalline representation of type
(n, 1), then t is (m — n)-generic. In particular, if p is 2n-generic, then T is generic.

Proof
Let (s, ) be a lowest alcove presentation for . First, assume that p is a direct sum of
characters, and assume that 7 is a principal series. By Theorem 3.2.1, we have

Plig =T(w. 1 +1)

with s_ltu/,uw € Adm(n). Define v = ' — . By Lemma 2.1.5, for any ¥ € RY
we have

|(v.a¥)| <n—1. (3.9)
Since p is m-generic, there exists (v',0) € X*(T) x W(G) such that
oW +n)+pv —owr(e) tx(v) -1

is m-deep in alcove C. Hence, for any «¥ € RY,
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m < |(o(u +n) —I—pv'—owyr(a_l)n(v’),aVH <p-—m. (3.10)
Since pisin Cy,
(' +no0 ") = (u+n+v.o'aY)<p+n—1.
It follows that
(pv' —owr(c™Hr().av)| <2p+n—m—1

for all a¥ € RY. Let M = max,vegv{|(v'.a)[}. By choosing a so that
[(vV,aY)| = M in the above inequality, we get (p — DM <2p +n —m — 1,
hence, M < 2. Thus, we have shown |(v/,aV)| <1 for all ¥ € R". Hence, for all
a’ eRY,

[lowr(e™Hw(v'),a¥)| < 1. 3.11)
Since
oW +n)+pv —owr(c Hr(W)=o(u+n +o®) + pv —own (o H)x(),

inequalities (3.9) (with & replaced by o~ 'aV), (3.10), (3.11), and the equality u/ =
M + v together imply that

m—n<|ow+n+pv.a¥)=[{n+no ")+ p0.a¥)| <p—m+n

for all coroots V. It follows that, for any coroot oV, the integer (u + n, ") is not
congruent modulo p to any integer between n —m and m — n. But since u € Cy, for
any positive coroot oV we also have that 0 < (4 + n,a") < p, and thus we in fact
have

m—n<(u+na’)y<p—m-+n.

This shows that t is (m — n)-generic.

Finally, if p is not the direct sum of characters or 7 is not a principal series, let
K’/K be an unramified extension over which both become true. By Lemma 3.3.1,
PlG ., is m-generic. We will use notation from the proof of Lemma 3.3.1. By (3.8),
t(s, ) is a lowest alcove presentation for t|;,,. The same argument as above with K
replaced by K’ shows that ¢(u) is (m —n)-deep in Cy,. Hence, p is (m — n)-deep in
Co. O

3.4. Potential diagonalizability

Let p be a tame representation. The goal of this section is to show that, for certain
sufficiently generic tame types t, all potentially crystalline lifts of p of type (1, t) are
potentially diagonalizable in the sense of [3]. The main theorem is the following.
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THEOREM 3.4.1

Let T = t(s, ) be a tame type with a lowest alcove presentation (s, u — 1) such that
w—mnis 2n—1)-deep in Cy. Let p: Gg — GL, (F) be a semisimple representation.
Assume that there exists M € Y% (F) of shape (tw; (n0)) j» where wj € W(GLy) and
such that T, (M) = plGy - Then the framed potentially crystalline deformation
ring Rg’r is nonzero and formally smooth.

Remark 3.4.2

The proof of Theorem 3.4.1 uses the techniques introduced in [31] for n = 3. When
n = 3, the shapes ty,; (»,) as in the theorem correspond to the shapes afay and Byay
(and their cyclic permutations) in the tables at the end of [31]. In [31, Table 6], the
reader can see that the deformation ring for these shapes is formally smooth.

For the rest of the section, we will be in the setting of the theorem. By Theo-
rem 3.2.26 and the uniqueness of 9t (see Theorem 3.2.18), 91 is semisimple. We fix
a gauge basis E of M. By Remark 3.2.25, for all j, the matrices of the jth partial
Frobenius with respect to E have the form

AV =D jpwi 0 (3.12)

with D ; € T(F).
We will need the following result, which gives a normal form for deformations
of the pair (901, B)

PROPOSITION 3.4.3

Let R be complete local Noetherian O-algebra with maximal ideal m and residue
field F, and let v = (s, ) be a type with 1 —n n-deep in Co. Let 9t € Y 10n=117(R)
be such that M Q@ F = M. Then there exists an eigenbasis B lifting B such that the
matrices of partial Frobenii (AY ))05 j<f—1 With respect to B satisfy the following
degree bounds:

Al%) € v%i>k R[v] and has degree less than Si>k + (wj (o), 81\6/)

(Note that automatically A%) € vli>k R[v]). Furthermore, such B is uniquely deter-
mined up to scaling by the group {(t;) € ker(T(R) — T(F))/ | tj =t for j =
k mod f}.

Example 3.4.4
Let n =3, let f =1, and let T be a generic principal series type. Let 91 be a
Kisin module with shape #(; 0y = Byay in the notation of [31], and choose a gauge
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basis 8. Proposition 3.4.3 says that any lift 9t with height in [0, — 1] has an eigen-
basis 8 lifting B such that the matrix 4) has polynomial entries with degrees

1 <1 <O
<1 2 <017,
<1 <2 0

where the entries below the diagonal are divisible by v (compare with [31, Table 5]
where degree bounds are given for all admissible shapes).

Remark 3.4.5

Our method of proof for Proposition 3.4.3 can be adapted easily (with more burden-
some notation) to treat semisimple Kisin modules 9t of more general shapes. On the
other hand, the generalization to the situation where 91 is not semisimple requires
more work. We only treat the case covered in Proposition 3.4.3 in this paper as this is
all that we need. We leave the generalizations to future work.

Proof of Proposition 3.4.3
The proof is a straightforward generalization of the arguments in [31, Section 4]. As
in [31, Section 4], we introduce a semivaluation on R given by vg(r) = max{k € N |
k>0,r emk} and vg(0) = oo. For P = >, riv' € R[v], define d(P) = min; ((n +
3)vg(r;) +i). For a matrix X with entries in Rv], define d(X) to be the minimum
of d(X;;), where the Xj;;’s are the entries of X, and for a tuple of matrices (X;); €
M, (R[v])”" we define d((X;);) = min; d(X ). Note that in all cases d takes values
in Z>o U {oo}. We have:
. d(a + b) = min{d(a),d(b)} for a, b both in either R[v], M,(R[v]), or
My, (R [[vﬂ)f/ ;

. d(ab) > d(a) + d(b) for a, b both in either R[v] or My, (R[v]).
On any of the spaces R[v], M, (R[v]), or My, (R[v])”", the function ||a| = 24
defines a norm, which is furthermore submultiplicative in the first two cases. Thus,
each of these spaces is endowed with a metric topology, which is easily checked to be
complete.

For each 0 < j < f/ — 1, we define the truncation operator Tt i My(R [v]) —
M, (R[v]) as follows: for X € M, (R[v]),

. if i <k, then Tt;(X);x is the sum of the terms in X;; € R[v] of degree at
least (w; (70). )
. if i > k, then Tt;(X);x is the sum of the terms in X;x € R[v] of degree

greater than (w; (1), ;).
In other words Tt ; (X) kills off precisely the part of X that satisfies the degree bounds
on AY) in the conclusion. It is clearly an idempotent additive map. We observe that
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our degree bounds are chosen precisely so that the image Tt; is the subspace of
X such that Xv~%/ () ¢ M, (R [v]) is integral and is furthermore upper triangular
nilpotent mod v.

Note also, since d(vP) =1+ d(P) for P € R[v], we have

d(Te; (X))o~ ) > g (Tej (X)) —n+1>d(X)—n+ 1. (3.13)

We also define Tt : My, (R[v])” — M, (R[v])’ by Te((X;);) = (Fvj(X;));.

We will show that, for any given eigenbasis 8 of 91 lifting B, there is a unique S’
lifting B such that 8’ = 8 mod u’, and B satisfies the conclusion of the proposition.
This proves the proposition, since the set of all possible 8’s mod u’ forms a torsor for
the group {(¢;) € ker(T(R) — T(F))/" | t; =1, for j =k mod f}.

We now fix an eigenbasis 8 lifting 8. Our strategy will be to interpret the problem
of finding 8’ as finding a fixed point for a certain mapping on a complete subspace
of M,(R ﬂv]])f ". We then show that this mapping is contracting on this subspace, and
the proposition follows by the contraction mapping theorem.

By Remark 3.2.10, prescribing any other eigenbasis 8’ of 90t is the same as
prescribing a change of basis tuple (11)); € J(R)”" such that /) depends only
on j mod f. The condition that 8’ also lifts B is equivalent to /) = 1 mod m,
and the condition that 8’ = 8 mod u’ is equivalent to /) € J;(R). Thus, the tuple
(Xj); = (IY) — 1), satisfies
. X; depends only on j mod f;

. X; =0modm;

. X is upper triangular nilpotent mod v.

This leads us to define the subspace V C M, (R [[vﬂ)f ' consisting of tuples satisfying
all these conditions. Clearly V' is stable under componentwise addition and is easily
seen to be a closed subspace and, hence, is also complete.

Let (A(f )) ; be the tuple of matrices of partial Frobenii with respect to B. Since

B lifts B, 2" has the form given in (3.12); thus, we can decompose
A0) — Djij(no) + Mj

with Dj € T(R) and M € M, (m[v]). We can and will assume that this decomposi-
tion has been chosen so that D; and M; only depend on j mod f.

By Proposition 3.2.9, our problem of finding 8’ now reduces to finding (X;); €
V such that for all j

Tej (1 4+ X;40) AP Ad(s50") (o (1 + X )71)) =0 (3.14)

by Proposition 3.2.9. (Recall that Ad(g)(M) := gM g~'.) To lighten the notation, we
putY; =Y;(X;) = Ad(s;v“/)(go((l + X;)™1)) and think of it as a function in X ;.
We now rewrite the left-hand side of the above equation as
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T (14 Xj0)(Dj0" 0 4 M) + Tej (L + X ) AV (Y - 1))
= ztj (Dj Uw-/(n())) + it,- (Xj_HDj Wi (770))
+ T ((L+ Xjp0)M;) + Te (L + X410 A9 (Y, = 1)
= X;41D;v"7 M) 4 Te i ((1+ X;40)M;) + Te; ((1+ X400 AV (Y — 1)),

where the last equality is due to the fact that X, € M, (R[v]) is upper triangular
nilpotent mod v.

Thus (3.14) is equivalent to (X;); being a fixed point of the map H : V —
M, (R[v])”" given by

H((X;);) = (—=(Tej—1 (1 + X)M;1)
+ Tej (L + X)AY D (Ve (Xjmr) = 1))~ 1 (D)7

Note that the assumption pu — 7 is n-deep in C implies that (Y; —1); € V, so that
each expression that gets truncated is indeed in the domain of definition of the appro-
priate truncation operator.

Clearly H((X ) ;) satisfies the first property defining V. Now H((X ;) ;) satisfies
the second property defining V, since truncation operators preserve the property of

being 0 mod m, and M; = 0 mod m since Z(j) satisfied the correct degree bounds.
Finally, the description of the image of Tt; implies that H((X);) satisfies the third
property defining V. Thus H maps V to V.

The proof of the proposition is complete once we have the following.

LEMMA 3.4.6
We have

d(H(a)— H(b))>=d(a—b)+1

fora,beV.

Proof
Puta=(X;); andb=(X; + Aj);.Put§ =d(a —b) =min; d(A;).
On the (j + 1)th component, we have

(H(a)j 41— H(b)j41)Djv*7 10
=T (A1 M) + Tei (1 + X1+ A0 )AD (Y (X + A)) — 1))
— T (14 X, )AD (Y, (X)) — 1))
= Te (A j1 M) + T (A1 AV (Y (X + 8) 1))
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+ Tt (1 + X400 AP (Y (X, + A) = Y(X)))
For the first term, since M; € M, (m[v]), d(M;) > n + 3. Thus
d(Tej(Aj1M))) = d(Aj1) +d(Mj) =8 +n+3.

For the second term, as observed before, Y;(X; + Aj) — 1 € M, (m[v]), and we
similarly have

d(Tej (B0 AP (Y (X + A)) = 1)) =8 +n +3.
For the third term, we observe
d(Te; (1L + XD AP (Y (X + A)) = V(X))
Zd(Yj(Xj +Aj) —Y]'(Xj))
= d (= Ad(s3v") (@ ((1+ X, + A) oA e+ X))
> d (Ad(s70"7) (p(A))) = d (Ad("T) (p(A ).

where the second inequality is due to the fact that Ad(s; vH )(@(X)) € M, (R]v]) for
X € J1(R). (This uses that i — n is 0-deep in alcove C,.) For the diagonal entries,
we have

d((Ad@")(@(D)))),,) =d(@(A))ii) = p—1+d((A))ii) = p—1+5=8+n

by the observation that d(¢(P)) = p + d(p(P/v)) > p+d(P/v)=p—1+d(P)
for P € vR[v]. For the ath entry where « is a root of GL,, we have

d((Ad*7)(p(A)))),) = d (9(A))a) + (15.).

By the above observation, the fact that (A;), € vR[v] for & < 0, and the fact that
1 — n is n-deep in alcove C, we conclude that for all roots o

d((Ad"7)(p(A)))),) = § +n.
Thus,
d(Te (1 + X;00)AD(Y(X; + Aj) = Yi(X))))) =8 +n.
Putting everything together, we obtain
d(H(a)j+1— H®b)j+1) > d((H(@)j4+1 — H(b) j41)Djv*7 1) —p 41
>+n—n+1=56+1

as desired. |
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Thus we deduce that the map H : V — V is a contraction mapping. In particular,
H has a unique fixed point in V', which is what we wanted. O

We call a basis as above a gauge basis (lifting B) of the deformation 9t of 9.
This is consistent with [31, Definition 4.15]. Since we have fixed the data (901, B), we
will suppress the dependence on f.

For each 0 < j < f’, the deformation problem that assigns to each Artinian O-
algebra A with residue field F the set of matrices A; € M, (A[v]) lifting 2 and
satisfying the degree bounds in Proposition 3.4.3 is clearly representable by a com-
plete local Noetherian @-algebra R, which is a formal power series ring over O. It
carries the universal matrix A;“iv.

For any Artinian (-algebra A with residue field I, let D%ﬁ (A) be the category
of pairs (M4, B4) deforming (I, B), where M4 € ¥ 7(A) and B4 is a gauge basis
of M 4. We would like to give an “explicit” presentation for D%ﬂ as in [31, The-

orem 4.17]. Define Reu’)‘fl( no) 1© be the quotient of the formal power series ring R
above by the height < 7 relations:
. detA‘j’.“i" =x;j(v+ p)"=D/2 where x7 € (R; v

. (v + p)k*=1/2 divides each k x k minor of A%™ . Note that the condition that
(v + p)! divides P € R;[v] can be expressed as
d d \1-1
Ply—p=0. =P =0, ... () P =0,
lv=—p dv lv=— dv v=—p

which are algebraic conditions in the coefficients of P.

PROPOSITION 3.4.7
The functor Drﬁ’ﬂ is representable by the complete local Noetherian O-algebra

—

T,E — expl p-flat, red
RF = ®Osj<f(ij(n0)) . (3.15)

Proof B
By Proposition 3.4.3, there exists a closed immersion D%B — Spf @05 j<fR;j (note
that Y77 is closed in Y [07~117) 5o D%g is representable by a quotient R%ﬂ of

®Osj<f R;. By [7, Theorem 5.3], YF is equisingular to the local model M (7).

Since the addition of a gauge basis is formally smooth, R%g is p-flat and reduced. It

expl ) p-flat, red
w; (no) :

Let F/E be a finite extension with ring of integers O . Let x : @0 <j<fR;i—
OF with associated Kisin module 201, and the matrix of partial Frobenii given by

suffices then to compare @p-points of R%ﬁ and ®0 <j<f (R
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Aj . By Theorem 5.13 in [7], 90, lies in Y "*(OF) and, hence, Drﬁ’ﬂ (OF) if and
only if 91,[1/p] has p-adic Hodge type < 7. In our notation, 91, [1/p] has p-adic
Hodge type < 7 if, for each j, the filtration on zmif }S&(m[l/ p] is of type u; with
j < no. The filtration is induced by the partial Frobenius with matrix A; , and so
this is equivalent to the condition that the elementary divisors of A ;  as a matrix over
F[v + p] are (v + p)*/ for each 0 < j < f. Thus, M, lies in D%ﬂ (OF) if and
only if the elementary divisors of A; . as a matrix over F[v + p] are bounded by
(v + p)7o for each 0 < j < f. But this condition is exactly the divisibility condition
on the minors and the determinant condition on A4 ; , imposed by the relations defining

expl
Rw i (mo)” _

Let (91"Y, BUniV) be the universal pair living over R%g )

PROPOSITION 3.4.8

(1) Over R%B , the universal matrices of partial Frobenii of "™ with respect to
B have the form

A(j),univ — D;l_niV(v +p)wj(n0)U(j),univ

for0<j<f, where
. D e T(RYP) lifts D j;
i wJTlU (7),univyy, j is lower triangular unipotent, and for any root o =
& — ek of GL,, its ath entry is a polynomial with topologically nilpo-
tent coefficients of the form phwj@<o £9(v), where deg £ (v) <
- —{a¥,no)=i—k.
2) R%“3 is the formal power series ring over O generated by the coefficients
Xo(lj)’l of fa(j) (where 0 < j < f, a <0 is a negative root of GL,;, 0 <[ <
—(aY,no)) and the variables ci(l-j) = (D;’-“iv)ii —[(D)ii] (where 1 <i <n,

0 <j < f, and [‘] denotes the Teichmiiller lift).

Example 3.4.9
In the situation of Example 3.4.4, that is, forn = 3, f = 1, t a generic principal series
type, and 9t having shape 7(; 2,0y = Byay, the proposition asserts that the universal

deformation of (901, B) living over R%g has matrix of Frobenius of the form

(v + p)ety (v+ p)ciz 0
0 (v + p)cs, 0],
VC31 v(czz + (v + p)e,) 33
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where the starred coefficients are units and the nonstarred coefficients are topologi-

cally nilpotent. This is exactly what is given in Table 5 of [31]. The ring Rrﬁ’ﬂ isa

. . ’ * —% * — * —*
POWeT series ring over ¢i2, 31, €32, C5,, 11 — [C11], €32 — [C55], €35 — [C33]-

Proof
(1) We work with fixed j and set B = w]TIA(j J.univyy . The fact that 4¢)-"V obeys
the degree bounds in Proposition 3.4.3 implies that

. Bi; € R%B [v] and has degree <n —i;
. for any root @ = &; — &; of GL,, v 7w @<0p. s in R%ﬂ [v] and has degree

less thann — k.
We claim that these conditions together with the heig_ht < relations force B to be

lower triangular, B;; to be u; (v 4 p)"~* withu; € (R%g)x, and B;j to be divisible by

pdwjtei—e)<0 (v+ p)"~". This finishes the proof, since we can then uniquely factorize
B=D;(v+ p)"U

with D; € T(R%ﬁ ) and U lower triangular unipotent (whose entries obey degree
bounds deduced from the bounds for B), and conjugating by w; yields the desired
factorization of AU)""V_ Note that the nondiagonal entries of U are necessarily topo-
logically nilpotent since B is diagonal modulo the maximal ideal.

We now prove the claim by downward induction on the index of the rows and
columns. We start by showing the claim for entries in the nth column and nth row
of B. The degree bounds imply B;, = 0 for i <n, while B,, € R%ﬂ . Furthermore,
B, is a unit since it lifts a unit in the residue field. The claim is empty for all other
entries of the nth row of B. Suppose the claim holds for all entries in the last kK — 1
rows and columns. Then the induction hypothesis and the condition that each k x k
minor of AUV (and hence also each k x k minor of of B) is divisible by (v +
p)kE=D/2 imply the following.

. Looking at the minor formed by the last k columns, the last (k — 1) rows, and
the ith row of B fori <n —k + 1, we get

k—2

W+ p) 42| Bigriesny [ [un—1 + p)':
1=0

thus, (v + p)F 1| Bi(n—k+1). Fori =n —k + 1, since B, —k41)(n—k+1) has
degree <k — 1, we must have Bk 1)(n—k+1) = U(n—k+1)(V + )1 and
U(n—k+1) 1S a unit since it lifts a unit in the residue field. On the other hand,
fori <n —k + 1, the degree bounds imply that B;,—x+1) is of the form 8
times a polynomial of degree less than k — 1, for § € {0, 1}. However, if p is
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regular in a ring R, then the condition that vP is divisible by (v + p)’ for
P € R[v] is equivalent to P being divisible by (v + p)’. (This can be seen by
using the interpretation of this condition in terms of vanishing up to (I — 1)th-

order derivatives of P evaluated at v = —p.) Since p is regular in R i , we
conclude that B;(,—x41) = 0.
. Looking at the minor formed by the last k rows, the last K — 1 columns, and

the ith column of B fori <n —k + 1, we get

k—2

@+ p* V2 By [ [ unt 0 + p)s
1=0

thus, (v + p)k~! | B—k+1)i- We get the claim about divisibility by
8w Enkp1=e0)<0 (v + p)*~1 of B(y—k+1); by the same reasoning as above.

(2) We observe that, for a polynomial P € R[v] with given degree, the condition
that P is divisible by (v + p)’ is equivalent to solving the first / coefficients of P in
terms of the remaining ones.

Thus, for j, there is a quotient ﬁ j of the ring R; over which the universal matrix
with degree bounds A‘j‘.“i" has the form in the first part of the proposition (as this
is equivalent to asking that each entry either is O or is divisible by certain powers
of v 4+ p and v), and R j is exactly the power series ring in the variables described
in the second part of the proposition. Furthermore, as the specialization of the uni-
versal matrlx Aumv to R; j clearly satisfies the determinant and the height conditions

defining R’ we conclude that there is a factorization R; — R — R/. Part

wj (no)

(1) then shows that there is a factorization ®O<j<f Rf;pl(no) - ®0<j<f R; — RT_’B
T ﬂ

w(n)’

But since ®0< j<f R, j 1s a power series ring—hence reduced and p-flat—and R

expl
is the maximal reduced and p-flat quotient of ®05 j<rR w, (no)’ the last quotient map

is an isomorphism. O

We now recall the monodromy condition on the universal Kisin module 9)t*""
over R ﬁ, as in [31, Section 5.1] and [28]. We refer to [31] for undefined sym-

bols. On M"Y ® (D"g , there is a canonical derivation over the differential operator
ﬂﬁ
—\u’ m, the monodromy operator, which is meromorphic along A. (In fact, it has

poles of order < n — 2 due to the finite height conditions we imposed.) The mon-
odromy condition is the condition that this operator has no poles. On the closed points
of Spec Rrﬁ’ﬂ [%], this condition precisely cuts out the (Zariski-closed) locus where the
induced Kisin module comes from a potentially crystalline representation (which is
necessarily of inertial type t and Hodge—Tate weight < 7).
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We recall some more deformation problems attached to the current situation, sim-
ilar to [31, Definition 5.10] (when 7 is principal series) and [3 1, Section 6.2] (for gen-
eral 7). All data below are understood to be compatible with the given data p, 90, B,
and so on.

(1) R%’r is the framed potentially crystalline deformation ring of type (1, t) as in
[29]. By [29, Theorem 3.3.4], if this ring is not zero, it has Krull dimension
dim R7* = w + n? + 1. We denote the deformation problem it repre-
sents as D%’D.

(2)  Let R%Dﬁ denote the complete local Noetherian (9-algebra which represents
the deformation problem

DI (A) = {4 pa.84) | My € Y7 (A),

pa€ DE(A).84: T (M) = (pa)lG, }-

Thanks to Proposition 3.2.18 (and our running hypothesis that t is generic),
this deformation problem is representable and, in fact, is representable by Rg’r
as explained in [31, Section 5.2].
(3) Let R%li "D denote the complete local Noetherian (9-algebra which represents
the deformation problem
DEPE(A) = (M. pa. 84, Ba) | Ma.pa.84) € DI (A),

B4 a gauge basis for M4 }.

(4) Let Rrﬁ’ﬂ U denote the complete local Noetherian (9-algebra which repre-
sents the deformation problem of triples (214, B4.¢€4), where (M4, Ba) €
D%B (A) and e, is a basis of T;,(M4) lifting the basis on p|G  so that
(T;, (i)ﬁf), e 4) is a framed deformation of p|G__ - B

(®)] Let Rtﬁ’ﬂ V' denote the O-flat and reduced quotient of R%g such that

Spec R%3 ’V[l /p] is the locus where the monodromy condition holds on

Spec R%ﬂ [1/p]. We define R%S BV from R%B ‘Uin a similar way.
We recall [31, Diagram (5.9)], which summarizes the relationship between the
above deformation problems. The square is Cartesian and “f.s.” stands for “formally

smooth.”
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©.p,0,V 7,8,V

fs.
Spf R —— Spf R

R [

7 = fs. —
SpFREY D SpfREPT - sprRE? (316)

l ss

1.t - 7,00
SpfR;" <—— Spf Rﬁ 5

The maps which are formally smooth correspond to forgetting either a framing on
the Galois representation or a gauge basis on the Kisin modules. (The fact that adding
gauge basis is a formally smooth operation is due to Proposition 3.4.3.) The fact
that the horizontal arrow below the dotted arrow is a closed immersion is due to our
assumption that 7 is (at least) generic, which implies ad(p) is cyclotomic free (e.g., by
looking at the inertial weights, which are easily read off by applying Corollary 3.2.17),
and hence the argument of [3 1, Proposition 5.11] applies. This shows that if the dotted
arrow exists, then it must be a closed immersion. We show below that the dotted
arrow exists and is furthermore an isomorphism. The fact that it is an isomorphism
rather than just a closed immersion is because, in the present situation, the elementary
divisors of the matrices of partial Frobenii of 91 with respect to B are exactly (v +
)", and thus, no lift 90t of M can satisfy a height < A relation for A < 7.

PROPOSITION 3.4.10
The natural map Rt B — Rrﬂ = factors through the quotient R wh.V . The induced
map & is an zsomorphzsm

Proof

The proof is completely analogous to the proof of [31, Theorem 5.12]. As both target
rings are reduced and p-flat, we only need to check that the factorization exists on
closed points of the generic fibers. However, this is just the statement that a Kisin
module coming from a potentially crystalline Galois representation satisfies the mon-
odromy condition.

To see that the map £ is an isomorphism, we note that the only closed points in
Spec Rr A0, V[ ] that do not come from Spec Rt B> D[ ] are those for which the jth
component of the underlying Kisin module has elementary divisors strictly dominated
by (v+ p)"°, for some 0 < j < f. (This corresponds to the condition that the Hodge—
Tate weight of the jth embedding of the corresponding Galois representation is less
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than 7y.) However, this possibility is ruled out by the form of the universal Kisin
module given in Proposition 3.4.8 O

COROLLARY 3.4.11

For p, t as in Theorem 3.4.1, there exists a closed point x € Spec R%’t[%] such that
the corresponding Galois representation p, becomes a direct sum of characters after
restriction to a finite-index subgroup. In particular, R%’r #0.

Proof
Recall that we have fixed a gauge basis B of 9t such that, for all j, the matrices of
the jth partial Frobenius with respect to 8 have the form

2V =D pwi (.17)

with D j € T(IF). Using Proposition 3.4.8, we can produce an ¢ point of Rrﬁ’ﬂ such
that the matrices of partial Frobenii are monomial matrices of the form

A40) — D;(v+ )Y (m0)

by choosing diagonal matrices D ; € T(O) lifting D j- A Kisin module of this form
becomes isomorphic to a direct sum of rank 1 Kisin modules after passing to a finite
unramified extension K of K’. Since the monodromy condition can be checked after
base change and always holds for rank 1 Kisin modules (by an easy computation),
we deduce that the above Kisin module satisfies the monodromy condition. Lifting
this point along the formally smooth maps in the diagram (3.16) yields a closed point
x € Spec Rg’r [%]. As the underlying Kisin module of x decomposes into a direct sum

of rank 1 Kisin modules over K , px becomes a direct sum of characters over K.
Alternatively, we can also directly produce p, as a direct sum of inductions of

(potentially crystalline) characters for unramified extensions of K and then check that

it comes from a Kisin module with the above form and, hence, has type (7, 7). ([

PROPOSITION 3.4.12
nn+1)f
2

We have that Rtﬁ’ﬂ’v/w is a quotient of a power series ring over I in vari-
ables.
Proof

We work over R = R%g with universal Kisin module 9t = 9t*"" and universal gauge
basis 8. This determines the matrices AU as before. It will suffice to analyze the
monodromy condition on 9t viewed as a Kisin module over K’ with descent data
corresponding to the base changed type 7’ (which is a principal series type), and we
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will do so by closely following the computations in [31, Section 5.1] (especially [31,
Theorem 5.6]). As in [31], we have the matrices C ) which are determined by the
AY)’s and our chosen presentation of t, and we have a ring (9;?. We note that the
variable u in [31] corresponds to our variable u’, the variable v there is the same as
our v = ()¢, and E (u) there is (u)¢ + p = v + p. Exactly as in [31, Lemma 5.2]

we have a formula for the jth component No(é) of the monodromy operator:

0
NG = NP + Y ([T CO40))g I ) ( T] ¢5(Cu-+-0).

i=1 k=0 k=i—1

where CU)* := (v + p)(CW)~1,
N — Au’i(c(j—l))(c(j—l))—l
! du’ '

and the convergence happens inside A2~" Mat,, ((9;?).
As in [31, Theorem 5.6] we can write

p”_lk”_zNo(é) — (pk)n_lulw(c(]_1))(C(]_1))_1 + ZXi(])’
i=1
where
i—1

. i+1 A n—1 ) . d o
Xi(]) - ¥ pi(i_)z) (kljo gok(C(J—k—l)))(pz (M/WC(]_l_l))

0
» (l—[ (pk((v + p)n—zc(_i—k—l),*))'

k=i

If z € 7", we use the shorthand Diag(z) to denote the diagonal matrix with entries
21,22,...,2Zn. Also for M, N € M,(R[v]),[M,N]:= MN — NM. By “removing

the descent data” as in [31, Theorem 5.6] (see (3.6) for notation), we obtain

pn—l Ad((s/ )_1(u/)_aﬁ“j:l)”)()tn_zNég))

or,j
. o0 . .
— —§0(A)n_1PN(A(j_1)) + Z(pl—l-l(k)n—lzi(])7
i=1
where (see [31, Lemma 5.4])

(j—1) def ,d o Gon . 1= () (=1
PN(A J ) - (_e U%A / - [Dlag((sor,j) (a(s,p,) )’A g ])

x (v+ p)" (AU
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and

G) _ 1 _ /() 1 ()
Z;7 = Ad((sir,) " () a(S’M))(WXi] )

Now exactly as in the last part of the proof of [31, Theorem 5.6], using that 7’
v @n—2)p'~

is (2n — 1)-generic, we get Z\) € i~ Mn(R[v]) for i > 1 and zV e

v2nfl

FM" (R[[v]). This fact together with a simple computation with derivatives

shows that M) .= W > <pi+1()L)”_lij) satisfies (%)IM(JI)L,:_I, €
p2n—1—(n—2)—tMn(R) and (dd_v)tv—lM(j)lv=_p c p2n—1—(n—2)—t—1Mn (R) for
0<t<n-3.

As in the proof of [31, Proposition 5.3], the monodromy condition is equivalent
to A”_ZN&{ ) vanishing to order n — 2 at u’ = (— p)# Thus the upshot of the above
discussion is that the monodromy condition is equivalent to —Py (4Y~D) + M)
vanishing to order n —2 at v = —p in M, ((9?5%). Note that this condition is preserved
under multiplication by any power of v and can be expressed as the vanishing of all
derivatives (%)’ atv=—pfor0<t<n-3.

We now recall Proposition 3.4.8, which gives the decomposition

AU = D;(v _'_p)wj(ﬂO)U(j)’

and R = Rrﬁ’ﬂ is the formal power series ring over @ in the variables Xo(tj ) (where
0<j < f,a <0is anegative root of GL,, and 0 <! < —(59, ")) and the variables
ci(ij) (where 1 <i <n,0<j < f), which (up to a translation in the case of cl.(ij)) give
the coefficients of the entries of U ) and D, respectively.

Substituting the above expression, we get
G-1) 1y 4 w1 (n0) ~w;_1(n0)
Py(AU70) = =+ p)" ! (o= (v 4 p)i= 00 ) (v 4 p) i1 (0
d .
—(+p)" ' Ad(Dj— (v + p)w"‘l("‘)))((e’vd—U("_l)
v

+ [Diag((s4,,) ™ @), VI 00,

To understand the second term, recall that also from Proposition 3.4.8, for each neg-
ative root o = &; — & of GL,, the ath entry of w7, UU=Dw;_, is given by

s ' s —(mo.@¥)=1
v w_/(a)<0fa(,1—l)(v) = powj—1@=<0 Z Xo(/_l)’lvl.
=0
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Thus, the ath entry of Ad((Dj—jw;—1)~")(Py (AY~V)) is of the form

v d j
— (v + py" ' Hloe )(e’v— +((s ) @), wj—lav))

dv (s,1)
> (v5wj_1(ot)<0fa(j—1)) 4
—(no,a¥)—1
— —(U + p)n—l-‘r('lo,ot )( Z (e/(l + gwjil(a)<())
=0
— j j— I+8y ; )<
{500, )7 @) @Y ) XY T TR e00 )
where the ellipsis in the first expression is an R-linear combination of terms of the
form
v d s, (ap)<0 £(j—1) Sw;_j@p<0 £(j=1)
eE(U J—17%0 faO )l_[v J=1E fD{l‘
i#0
and

Sw <0 £(j—1
l_[v wj—1@p)< a(ij ),
i

where the ;s are negative roots of GL, with o = ) ; o; and the sum has at least two
terms. In particular, the remaining terms are polynomials divisible by plwjre<o
and whose coefficients only involve X 0(1{ =D for roots o' strictly larger than «. Thus,
the monodromy condition on the ath entry of p Swj—r@<o Ad(w;il(Dj_l)’l) X

(=Pn(AY~D) 4 M) has the form

d \t y —(no,aV)—1
() (@410 (3T (0 + 8,y @<0)
=0
J— i P ,ll
{67 @ e PO

o o
= O((XY ™) g rngs) + O(p? 1= (=211

for 0 <t < n—3, where the right-hand side only involves variables indexed by strictly
larger roots and a term in R that is divisible by p2"~'~("=2)=1=1 and hence is divisible
by p. 3

Thus, the above system of equations holds in the quotient R%g v /@ of R, where
it implies (noting ¢’ = —1 in IF)
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ESTED SUYEET

=0

~

k) @) wrae )X

v=0
—1).1
= 0((X0(t{ D )0>oe/>a,l)

for 0<t<(n—3)—(n—1+(noa")) =—(no. ") — 2. Since 7 is generic and
p > n, all the coefficients —/ — ‘Swjﬂ](a)<0 + ((sér’j)_l(azﬁfi)), wj—1a”) as well as
the constants introduced by taking derivatives are nonzero in I, and hence this system
of equations solves Xy =D for 1 < —({no,a") — 1 in terms of variables indexed

B,V

by strictly larger roots. It follows that R /@ is topologically generated by the

top degree coefficients of £ and the c(J ) —[c; Y )] for0<j < f,1<i<n,and
negative roots o of GL,,. Hence it is topologically generated byn(n—1)f/24+nf =
n(n + 1) f/2 elements. O

Proof of Theorem 3.4.1
We already know R® # 0 by Corollary 3.4.11. We look at diagram (3.16). By Propo-

sition 3.4.3, Spf Rr ’3 b, Spf R is a torsor for (Gm)" ; hence d & dim m’tﬂ,lj

dim R?* +nf —n(n—l)f/2+n2+nf+1 =n(n+1)f/2+n?+ 1. On the other
hand, Spf R%g v, Spf R%g T formally smooth of relative dimension n2; hence

Proposition 3.4.12 shows that there is a surjection O[xy,...,xg—1] — Rrﬂ 2V,

From Proposition 3.4.10, we obtain a surjection O[xy,...,x4—1] — R . . Since
the quotient ring has dimension d = dim O[xy, ... ,xd_l]] the kernel of this surjec-
tion must be trivial; hence the surjection is an isomorphism. It follows that R%’r is
formally smooth over @. O

COROLLARY 3.4.13
With p,t as in Theorem 3.4.1, any potentially crystalline lift of p of type (n,7) is
potentially diagonalizable.

Proof
This follows from Theorem 3.4.1 and Corollary 3.4.11. O

4. Main results

In this section, we deduce our main results using Section 3. In Section 4.2, we deduce
weight elimination in an axiomatic context and in the context of definite unitary
groups. In Section 4.3, we use weight elimination and the change of weight techniques
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of [3] to deduce the modularity of obvious weights. In Section 4.4, we use the above
results to classify congruences between RACSDC (regular algebraic, conjugate self-
dual, cuspidal) GL,-automorphic representations of trivial weight and generic tame
type 7 in residually tame cases and solve the lifting problem for residually tame Galois
representations to potentially crystalline representations of type (1, t). We introduce
combinatorial results on Serre weights and affine Weyl groups as needed. The key
theme in these combinatorial results is the close relationship between certain reduced
factorizations of admissible elements and Jantzen’s description of the Jordan—Holder
factors of types.

Recall the (nonstandard) definition of the dot action in Definition 2.1.6. We write
I/_V:{ - @+ for the subsets of W, C E/, respectively, which map C to a dominant
alcove under this dot action.

LetQ C E/ be the stabilizer of C¢. Then we have the decomposition V_7 =Wax
2. We extend the Coxeter length function £ on W, to E/ by setting £(wd) = £(w) if
w € W, and § € Q2. Recall that one can calculate lengths from minimal galleries (see
[19, Section 2]). We will use galleries in a fixed direction (see [19, Definition 5.2]),
which are necessarily minimal by [19, Lemma 5.3].

Recall the upper arrow (1) ordering on p-alcoves (see [27, Section 11.6.5]), and
extend it to E/ by writing w; 1 Wy if Wy - Co 1 Wa - Co and W,w; = W, w, for
wi and W, € E/ (elements of different right W ,-cosets are incomparable). We also
use 1 to denote the ordering on X *(7T') defined in [27, Section I1.6.4]. Recall from
Section 2.1 the Bruhat ordering < on W, defined by the dominant base alcove. As
with the upper arrow ordering, we extend this to a partial ordering on E/ by setting
w16 < w,d if Wy and Wy € W, W1 < W, and § €  (and elements of different right
W 4-cosets are incomparable).

Let Wy, = wot—y € W . Note that @y, - Cy is the highest p-restricted alcove and
Wy, - A = R(A) from Definition 2.2.11.

4.1. Combinatorics of weights and types

In this section, we deduce the key combinatorial results, especially Corollary 4.1.12.
We will use the following theorem of Wang (see [39, Theorem 4.3]) without com-
ment.

THEOREM 4.1.1
If wy and W, € ﬂ/+, then Wy < Wy if and only if W1 1 Ws.

We also use the following proposition without comment.



2486 LE, LE HUNG, and LEVIN

PROPOSITION 4.1.2
If Wy and W, € W, then Wy 1 W, if and only if WyWw> 1 Wy, W1 if and only if W;, ' W, 1

~—1~

wh wi.

Proof
From the definition of the up ordering, it is clear that wg reverses and translation
preserves the ordering. The proposition now follows from the definition of w;. O

PROPOSITION 4.1.3

Suppose that 1 is 2n-deep in Cy, and suppose that A is a p-restricted weight. Then
F(A) € JH(Rg (i + 1)) if and only if there exists W = wt, € ﬂ/+ such that

W (u—smv) P Wy -A and w-Cotwy-Co. 4.1)

Proof

We use [15, Proposition 10.1.8]. (Note that, by the depth assumption, the proof of [ 15,
Proposition 10.1.2] based on [26, Satz 4.3] applies.) The proposition cited shows that
F(A) € JH(Rs (i + n)) if and only if there is v such that

oty-(uw—smv) P wy-A forallo € W(G). 4.2)

It suffices to show that the existence of v satisfying (4.2) and w € E/Jr satisfying (4.1)
are equivalent.

We begin with the “backward” implication, for which the following remark is
useful.

Remark 4.1.4
If W = wt, satisfies W-Cq 1 Wy, - Cy, then v lies in the convex hull of the Weyl orbit
of n, and hence maxyv {|{v,a¥)|} <n —1.

Suppose that W = wt,, satisfies (4.1). With the depth assumption on j, the above
remark implies that © — s7v is in Cy so that wt, - (4 — swv) is the unique dominant
element of the W(G) (dot) orbit of  — swv + pv. This implies that v satisfies (4.2).

For the “forward” implication, suppose that v satisfies (4.2), and take W to be
the unique element wt, € V:VJF with w € W(G). Then W - (u — swv) 1 Wy - A by
assumption, and it suffices to show that @ - C¢ 1 Wy, - C. We claim that v satisfying
(4.2) must automatically satisfy [(v,a¥)| <n — 1 for all ¥ € RY. Admitting this
claim for the moment, we again have that @ - (1 — s7v) is in alcove W - Cy, so that
W (u—smwv) Wy - A implies that W - Co 1 Wy, - Co.

Going back to our claim, (4.2) implies that u + pv —smv + 7 is in the convex hull
of the Weyl orbit of Wy, - A + 1. The same argument as in the proof of Lemma 2.1.5
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shows that
IEQX“(M + pyv—smv+n.aV)|} < IE%X{“wh A+nav)|} < pn-1).

The same argument as in the proof of Corollary 2.2.13, using that y is 2n-deep in Cy,
shows that if M = maxqv{|[{v,a")|},then (p—1)M < p(n—1)+ p—2n = (p—2)n,
and thus M <n — 1 as desired. O

We will often fix
(P1) a generic semisimple Galois representation p : Gg — GL, (F);
(P2) apair (s5, p) such that p|7, = T(sp, up + 1) with puz in Co; and
(P3) a lowest alcove presentation (s, 4 — 717) of a tame inertial type © = (s, ) :
Ix — GL,(0O) such that uz — € A p. Such a presentation is called compat-
ible with (Sﬁ, /Lﬁ)
Note that, under (P1) and (P2), ug is always (3n — 1)-deep in C¢ by Proposi-
tion 2.2.15.

LEMMA 4.1.5
Suppose that T(s, ) = t(s’, ') is 1-generic, suppose that . — n and (' — n are both
in Co, and suppose that u — j1" € A g. Then we have (s, ) = (s', ').

Proof

By Proposition 2.2.15, since (s’, 4’ — 1) and (s, u — 1) are two lowest alcove presen-
tations of (s, it), we have (s, ) = @ (s, u') with ,0 € Q. Since pu — i’ € A g, we
also must have that (p — w)v|z = 0 or, equivalently, that v|z = 0. Combining these
facts, we have that t,,o is the identity. O

Definition 4.1.6
Fix (P1)-(P3) as above. Then, we define w = s 's5, v =51 (us + n — @), and

w*(p, 1) &Y.

Remark 4.1.7

Definition 4.1.6 a priori depends on the choice of (sz, 45) and the compatible pre-
sentation (s, u — 1) of the type 7. By Lemma 4.1.5, if t is 1-generic, there is at most
one compatible presentation, so that Definition 4.1.6 depends only on the choice of
(85, up). Furthermore, if a compatible presentation (s, it — 1) exists for one choice of
(57, u5), then a compatible presentation exists for all other choices, and changing the
choice of (s3, /1) conjugates W* (p, 7) by an element of Q.
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PROPOSITION 4.1.8

Let T be a generic type with lowest alcove presentation (s, u — 1). Assume that there
exists MM € Y¥(F) as in Definition 3.2.19 such that Td’g(ﬁ) = plGx,,» Where p is
moreover semisimple. Then there is a pair (s5, Uup) as in (P2) such that (P3) holds
and W(p,7)* = w*(p, 7).

Proof
By Theorem 3.2.26 combined with Corollary 3.2.17, we have

ﬁ|1K g ?(wv v + 77),

where W (P, 1)s*t,x—p* = w*ty=. Thus, W(p,)* = s~ ty_y1,w. Since W(p, 1)* €
Adm(n), v — u € Ag. Moreover, v —  + 7 is in the convex hull of Wn by
Remark 4.1.4, so that v is 1-deep in Cy, since u — 7 is n-deep in Cq. Then, by
letting p5 = v and s; = w, (P2) and (P3) are satisfied. Comparing, we see that
w(p, 7)* agrees with Definition 4.1.6. O

LEMMA 4.1.9
Suppose that Wy, W, € ﬂ/+. Then £(w5 'wowy) = £(W5 1) + L(wo) + £(W1).

Proof

The length £(W) is the length of a minimal gallery between W, 'wow; - Co and Co,
which is the length of a minimal gallery between wow; - C¢ and w5 - Cy. Such a
gallery can be taken to start with a gallery from wow; - Co to wg - Co, then to Cy,
and then to W, - Cy, all in the dominant direction. This decomposition of a minimal
gallery in the dominant direction gives the desired equality. O

LEMMA 4.1.10

Fix (P1)—(P2) as above. Suppose that A € X1(T) is 3n-deep in its alcove and such
that, for all s € W(G), t(s,Wy - A + n) is a tame inertial type which admits a com-
patible presentation as in (P3) and W*(p, t(s, Wy - A + n)) € Adm(n). Then F(L) €
W ().

Proof

Lets € W(G),and let t = t(s, Wy - A +n). If W, -A €7 -Cy for 6 = ot,, then T
has a lowest alcove presentation (0~ 'sm(0),5 Wy, - A + o Lsm(ov)) witha 1wy, -
A+ 0" lsm(ov) 2n-deep in C ¢ by Proposition 2.2.4(1). By assumption, T 2= 7(s’, ')
has a lowest alcove presentation (s’, A’ — 1) as in (P3). Combining these with Propo-
sition 2.2.4(2), we have that s’ = w; 'sm(wz) and A = W, ' Wy, - A + s'wvy + 1 for
some Wy = Waty, € E/Jr. If we let A be 1'172_1%;, - A, then A + ¢'7v, isin C
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since A (and, thus, 1(?) is 3n-deep in its alcove and maxqv {|(v2,aV)|} <n —1 by
Remark 4.1.4.

Let i = w*(p, r). Then by assumption, we have that ji5 —A©® — v, —p € Apg.
Note that this condition and the condition that Wy - A € W5 - C¢ uniquely determines
Wo; hence, W, does not change when s changes. Thus, as s runs over W(G), s’ runs
over all of W(G).

By definition, we have

~_ -1 _ -1 _ —1
W=S""1 30 _gg,Sp =5 15—gmv,5p = l-mv,8 1§55 € Adm(n),

where § = g — 20 Leto e W(G) (unrelated to the use of ¢ in the first paragraph)
be the unique element such that o7 = € W . Note that the w-action on W pre-
serves ﬂ/ . We now take s" = 550~ woﬂ(U)2), so that W = 7 (t—y, w5 Hweot,—15 =
o)
(W5 Ywoot,—15. Since o115 € E/Jr, we have that wom (W)W € E+. Thus,
4 o
WoTt (W)W = f— g (wownvs) WoT (W)W is in E+, since —m(wow,V,) is a dominant
weight. Note that there is a gallery in the dominant direction from wom(w;)(Co)
to wom(w;)W(Co) passing through C( and hence a gallery in the (wom(w,))~!-
direction from Co to w(Cop). By [20, Corollary 4.4], W < t(yyn(wy))~1n- (The
reference [20] uses the Bruhat order defined with respect to the antidominant base
alcove. However, by applying wg-conjugation which interchanges the two Bruhat
orders, the cited corollary holds for the Bruhat order defined with respect to the

dominant base alcove.)
Note that

wgntuy—tn = (007 (02) ™ty (wor (w2)) = (' (T2)) ™ ), o (i)' (72)
= JT(w2)_ Wo (w; ﬂ(wz))

Since (W) = L(mw(W2)~ 1) + L(wo) + E(O’tsﬁ—l(g) by Lemma 4.1.9, we conclude that

UZSB—I Pas ﬁ;ln(ﬂfz) by standard facts about Coxeter groups. Since both sides of this

. . ~+ ~1 e~
inequality are elements of W, we conclude that o7 —15 1 W, L7 (). In other words,
0

we have
7'[—1(0’)1‘”_1(55—18) . (/»Lﬁ_ )1 A.

By Proposition 4.1.3, F(; 1) € JH(R,_ (i + 1)) or, equivalently, F(1) € W’(p).
h pAp
Ul

Remark 4.1.11
Regarding the hypotheses in Lemma 4.1.10, if A is n-deep in a p-restricted alcove,
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then by Proposition 2.2.16, T = t(s, Wy, - A + 1) is 1-generic. By Proposition 2.2.15,
all lowest alcove presentations (s’, u’ — 1) of 7 are of the form

(s' 1) = @y - A+ )

with (¢,06wWy) - A € Cyp. The condition that there is one compatible lowest alcove pre-
sentation as in (P3) above is equivalent to (Wy, -A +n— ip)|z € (p —w)X*(Z). This
condition is the condition that the central character of F(1) agrees with the central
character of any element or, equivalently, all elements of W’(p).

COROLLARY 4.1.12

Suppose that p : Gxg — GL,(F) is a 5n-generic Galois representation. If A is in
X1(T) and (2n — 1)-deep in its alcove and F (M) is not in W’ (p>), then there exists
an n-generic tame inertial type T such that F (A1) € JH(0(v)) and p does not have a
potentially crystalline lift of type (), T).

Proof

Suppose that A is not 3n-deep. By Proposition 2.2.16 and its proof, the tame type
= (1, Wy, - A + n) is n-generic, but not 4n-generic (by comparing (1, Wy - A + 1)
with a lowest alcove presentation). By Corollary 2.3.5 and [24, Lemma 2.5], F(A) €
JHG@ (z (1, Wy, - A + 1))). Then p is not the reduction of a potentially crystalline rep-
resentation of type (7, t) by Proposition 3.3.2.

Now suppose that A is 3n-deep in its alcove. Suppose that p is the reduction
of a potentially crystalline representation of type (1, t) for all T such that F(1) €
JH(G(t)). We claim that T can be taken to be t(s, Wy, - A + 1) for any s € W. Suppose
that @ = wt,, and suppose that Wy, - A € W - Cy. Let y be 1wy, - A + w™lsm(wv).
Then t(w™ s (w), u + n) = =(s, Wy - A + 1) by Proposition 2.2.4, and w is 2n + 1-
deep in C by Remark 4.1.4. Then o (t (s, Wy A + 1)) = walm(w)(,u + 1) contains
F () as a Jordan—Holder factor by Proposition 4.1.3 (0« (u—w ™ Lsm(wv)) = Wy - A).
Thus, for all s € W(G), p is the reduction of a potentially crystalline representation
of type (n, T(s, Wy - A + 1)).

By Theorem 3.2.1 and Proposition 4.1.8, for each s € W(G), there is a pair
(55, up) for p* as in (P2) such that w*(p*, v (s, Wy -A + 1)) € Adm(n) (which implies
(P3) holds). By Remark 4.1.7, these conditions hold for any choice of (s3, i5) satisfy-
ing (P2), since Adm(7) is stable under 2-conjugation. Thus we can use the same pair
(53, J155) for all choices of 5. Then by Lemma 4.1.10, we see that F(1) € W (p*). O

Remark 4.1.13
In the proof of Corollary 4.1.12, we used Proposition 4.1.3 to show that F(A) €
JH(@ (z(s,wy - A + n))). This weight is the reflection of an obvious weight or a
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diagonal prediction in [22, Definition 12.8], so the above membership is likely true
with weaker genericity hypotheses on the Deligne-Lusztig representation. Corol-
lary 4.1.12 also probably holds with weaker genericity hypotheses.

4.2. Weight elimination

In this section, we deduce our main weight elimination result (Corollary 4.2.7). We
begin with an axiomatic setup for our method and then proceed to the case of modular
forms for definite unitary groups.

4.2.1. Axiomatic setup

We begin with an axiomatic setup for modular Serre weights. This is related to the
axiomatic setup of [11, Section 4.2]. Let p : Gg — GL,(FF) be a Galois representa-
tion. (We no longer assume (P1)—(P3).) We write F[GL, (k)]-mod for the category
of finite F[GLy (k)]-modules and Vect,r for the category of F-modules (i.e., vector
spaces).

Definition 4.2.1

We say that a functor S : F[GL, (k)]-mod — Vect is an arithmetic cohomology func-

tor for p if

. S #0;

. whenever S(V') # 0 for a Serre weight V and V € JH(c (7)) for a regular tame
inertial type 7, p has a potentially crystalline lift of type (1, t); and

. whenever S(V) # 0 for a Serre weight VV and V € JH(R; (1)), p has a poten-
tially semistable lift of type (1, t(1, ®)).

We now fix an arithmetic cohomology functor S for p.

Definition 4.2.2

We say that p is modular of weight V if S(V) # 0. Let W(p) be the set of isomor-
phism classes of Serre weights for which p is modular. Let W, (o) be the subset of
W (p) consisting of isomorphism classes of Serre weights represented by F (1), where
A is (2n — 1)-deep in its alcove.

THEOREM 4.2.3
If b is 5n-generic, then Waim(p) C W (5%).

Proof
If A is (2n — 1)-deep in its alcove and F(1) ¢ W’ (p*), then by Corollary 4.1.12
there is a regular (n-generic even) tame inertial type t such that F (A1) € JH(o (7))
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and p does not have a potentially crystalline lift of type (7, 7). We conclude that
F(A) ¢ W(p). O

Theorem 8 in [12] shows that, for sufficiently generic p, W(p) does not contain
weights near the boundary of alcoves. Combining this with Theorem 4.2.3, we obtain
an upper bound for W(p) rather than Wy, (0).

COROLLARY 4.2.4
If b is (6n — 2)-generic, then W(p) C W' (p%).

Proof

Suppose that A € X1 (T) is O-deep but not (2n — 1)-deep in its alcove. Let A(?) be the
unique weight in C linked to A. Then A is also not (2n — 1)-deep in its alcove so
that A(®) 4 7 is not 2n-generic in the sense of [12, Definition 2]. We conclude that
A is not (4n — 2)-generic in the sense of [12, Definition 1]. Note that even if A is
not 0-deep in its alcove, this last conclusion still holds. Now p is (6n — 2)-generic in
the sense of [12, Definition 2] by Remark 2.2.8. Then the proof of [12, Theorem 8]
shows that p does not have a potentially semistable lift of type (n,t(1,1)), while
F(A) € JH(R (1)) by [24, Lemma 2.5]. We conclude that F(1) ¢ W(p). O

4.2.2. Algebraic modular forms for unitary groups

We closely follow the setup of [11, Section 7.1] (see also [25, Section 4.1]). Let F/Q
be a CM field, and let F* be its maximal totally real subfield. Assume that F+ # Q,
and assume that all places of F* dividing p split in F and are unramified. We write
¢ for the generator of Gal(F/F ™). For u { oo (resp., v { 00) a place of F (resp., FT)
we denote by k,, (resp., k,) the residue field of F,, (resp., FU+).

We let G+ be a reductive group, which is an outer form of GL, which splits
over F. We assume that G(F,") = U, (R) for all v|co. By the argument of [9, Sec-
tion 3.3], G admits a model § over Op+ such that § x O+ is reductive for all
places v of F™T that split in F. For any such place v of F + and u|v of F we
get an isomorphism ¢, : G(F,}) = GL, (F,) which restricts moreover to an iso-
morphism ¢, : 5((9F+) —> GL, (OF,). Let X be a finite set of places in FT. If

UT < G(A ) is a compact open subgroup, then the space S(UZ) of infinite-level
algebraic automorphlc forms on G is defined to be the set of continuous functions
f G(F+)\G(A )/ U — T, where F is given the discrete topology.

We recall that the level U < G(A ) is said to be sufficiently small if, for all
t e G(A ), the finite group t_lG(F+)t N U is of order prime to p. We say that
UZ is su]ﬁczently small if
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U=U>]] 9(Opt)

veX

is sufficiently small. For a finite place v of F* we say that U is unramified at v if
v splits in F* and one has a decomposition U = §(0 +)U" for some compact open

subgroup UY < G(ATY).

Let #y denote the set consisting of finite places u of F such that v &I Ulp+ is
split in F, v{ p, and U is unramified at v. If $ C Py is a subset of finite com-
plement that is closed under complex conjugation and disjoint from X, we write
T = (9[Tu(i) cueP,i €{0,1,...,n}] for the abstract Hecke algebra on J, where
the Hecke operator Tu(i) acts on the space S(U¥) as the usual double coset operator

_ Id;

where @, denotes a uniformizer of F,,. If 7 : G — GL,(FF) is a continuous, abso-
lutely irreducible Galois representation, we further write my for the maximal ideal of
T with residue field F defined by the formula

n .
det(1 =7 (Frob,)X) = > (=1)/Np, /g, 1) @ (1Y) mod mp) X7 Vu € 2.
j=0

Definition 4.2.5
We say that 7 is modular of (prime-to-X) level UZ if S(U E)mF # 0. We say 7 is
modular if 7 is modular of some level U~.

Assume that 7 is modular of level U, and assume that ¥ contains all places
dividing p and all places divisible by places in F where 7 is ramified. Fix places
u|v|pof Fand FT. Then we define the functor S : F[GL, (k,)]-mod — Vect by

SV) o Homg, 0, (VY. S(U Z)my), where (-)V denotes the contragradient repre-

sentation and GL, (OF, ) acts on V' by inflation and on S(U E)mF via ;1.

PROPOSITION 4.2.6
If UZ is sufficiently small, then S is an arithmetic cohomology functor for ¥|g Fu*

Proof

This essentially follows from the proof of Proposition 7.4.4 of [11]. Note that the mod-
ularity of 7 of level U* implies that the functor S is nonzero. Suppose that S(V) # 0
and V € JH(c(7)). Let v/ € X be a place not dividing p (if one exists). Since S(V)
is a smooth representation of G(FUT), there exists a compact open subgroup K, of
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G (O +) with nonzero invariants. Inductively choosing K, and replacing S(U 2)mF
with

s(u® I1 k) .

my
v'eX v'tp

we assume without loss of generality that ¥ is exactly the places of FT dividing
p, and we write U* = UP. For each place v’ | p of F*, choose a place 7" | v’
of F such that V|p+ = v’ and ¥ = u. For an O[GL,(OF)]-representation
Vi, let Vi be the corresponding O[§(Of+ ,/)]-representation via t7. There
exist irreducible F[GL,(OF 3)]-representations V3 for every v’ | p such that
Vg =V and Homg(@FJrvp)(@v,lp Vo s S(UP) ;) # 0. Choose an O[F(Op+ ,)]-
representation W = @, , Wy such that Wy is an O-lattice in o(7), Wy is an
(-lattice in an algebraic representation over E for v/ # v (say, a suitable Weyl
module), and Vi € JH(WF/) for all v’ | p (where the bar denotes mod @ reduction).
For U? sufficiently small, S(U?)n; is an injective F[¥(Op+ ,)]-module; hence
Homz(g(o,, y)(— S(UP)m,) is exact. Thus, Homg(@Fw)(WV, SUP)m) # 0.
Then the proof of [11, Proposition 7.4.4 A1] holds without modification and one then
constructs 7 as in the proof of [11, Proposition 7.4.4 Al1]. Then rY|g r, brovides the
required lift by [11, Theorem 7.2.1], Theorem 2.3.1, and Proposition 2.3.4. O

Assume that 7 is modular. Then 7 is modular of some sufficiently small level U ~.
Let W(r) be the set of isomorphism classes of irreducible § (O + ,)-representations
V over [F such that

Homgo,., (VY. S(U)m,) #0.

For each place v | p of F* choose a place 7| v of F. Let W»%SS(F) be W?((7|GF,5)SS),
and let Wv?’SS (7) be the set of isomorphism classes of § (0 +)-representations over F

corresponding to W»vi': «(7) via 17. Note that the definition of Wv?,Ss (7) does not depend
on the choice of place . Let W.1(7) be ), , W, (7).

COROLLARY 4.2.7
Suppose that (7|GFH)SS is (6n —2)-generic for all places v | p of F*. We have W(F) C
W3 (7).

Proof

Suppose that Homg(@FJr!p)(@vlp F(Ay)Y,S(U?)w,) # 0. For each place v | p of
F7, let Sy be Homgy, 0)(()Y, S(U?)w,.). By Proposition 4.2.6, Sy is an arith-
metic cohomology functor for 7|g ., from which we define W (|G ) as in Defini-
tion 4.2.2. If F(Ay) corresponds to F'(A,) via (g, then Sy(F (Ay)) is nonzero, and so
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F(A3) € W(F|G ). By Corollary 4.2.4, F(A3) € W (Flg ). Thus, @, , F(Ay) €
Wi (7). O

4.3. Modularity of “obvious” Serre weights

In this section, we deduce the modularity of obvious Serre weights for sufficiently
generic semisimple local Galois representations under mild hypotheses. We show that
for each obvious weight there is a type containing it as a Jordan—Holder factor so that
no other Jordan—-Holder factor is modular (Corollary 4.2.7 and Proposition 4.3.6).
Fortunately, these are precisely the types to which we can apply Corollary 3.4.13 and
the results of [3] to deduce the modularity of obvious Serre weights. That these types
isolate weights can be seen as a consequence of Theorem 3.4.1 and the Breuil-Mézard
philosophy (see Remark 4.3.7). We first summarize the results we need from [3] and
refer the reader to [3] for any undefined notation and terminology.

THEOREM 4.3.1
Let p > 2, and let F be a CM field with maximal totally real subfield F such that
{p ¢ F. Assume that F/F* is split at all places dividing p. Suppose that 7 : Gp —
GL,(F p) is an irreducible representation with the following additional properties.
(1) 7 is potentially diagonalizably automorphic, that is, there is an RACSDC auto-

morphic representation I1 of GL, (A F) such that

. 7 =7,,(I1); and

. for each place u | p of F, rp (I1)|G,, is potentially diagonalizable.
) The image of T(G F(¢,)) is adequate.
Let X be a finite set of places of F containing all places dividing p and all the
places of F™ divisible by places at which 7 ramifies. For each place v € 3, choose
a place V| v of F, and choose a lift py : Gpz — GLn(Zp). Suppose that, for v |
D, pv is potentially crystalline and potentially diagonalizable with distinct Hodge—
Tate weights for every embedding Fy — @p. Then there is an RACSDC automorphic
representation 7 such that

. T =7p,(m);

. 1y is unramified at all places u of F that do not divide a place in ¥; and
. Ipa(0)|G gy ~ pv for all places v € .

Proof

This is [2, Theorem 3.1.3], except for two differences:

(1) for places v | p of FT, py is allowed to be potentially crystalline rather than
crystalline; and

(2) 3 may contain places which do not splitin F.
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However, the proof of [2, Theorem 3.1.3] still applies with two corresponding modi-
fications:

(1) 7y, 18 not necessarily unramified if u is a place of F dividing p; and

2) we replace the use of [2, Theorem A.4.1] with [4, Theorem 5.2.1]. O

Define (see Definition 2.2.11 and Section 2.3)
W¥(p. 7)== W' ([®) NJHGE(1)).
We can characterize W’ (p, t) in terms of the element #* (p, T) from Definition 4.1.6.

PROPOSITION 4.3.2

Fix (P1)—(P3) from Section 4.1 with . — n 2n-deep in Cy, and let W = W*(p, 1) =
tyw. Then for X a dominant p-restricted character, F()) is in W’ (p, t) if and only if
there exist Wy, W1, Wa € E/+ with W), - Co p-restricted and w' € W(G) such that

. rl(w) = wy 'w'wy;

® wl T w,l T w;le,‘ and

. A=Wy - (U —sTVa —n), where Wy = Waty,.
Proof

Recall from Definition 2.2.11 that F(1) € W*(p) if and only if F(fE;l -A) €
JH(Rsy (i + sv)) since Wy, - A = R(A). (Recall that u + sv = pz + 1 so that
v =1 (mod Ap) and sw = s5.) By Proposition 4.1.3, F(A) € JH(c (7)) (resp.,
F,'- 1) e JH(Rsy (1 + sv))) if and only if there exists a W, € E/Jr (resp.,
w; € E/Jr) such that Wy - (u — sV —n) T Wy - A (resp., W - (U +sv —swmvy —n)
A), where W, = waty, (resp., W1 = wity,) is such that w, - Co T Wy - Co (and
Wy -Co 1 Wy - Co). In summary, F(L) € W’(p, ) if and only if there exist W; and
o e W with@; - Co 1 @ - Co for i = 1,2 such that

Wi+ (4 +sv—swrvy —n) P AL W), Wa - (U —s02 — 17).

By our assumption, s = @ + sv —n and u — n are both 2n-deep in Cy, so
Remark 4.1.4 implies that both & + sv —swmv; —n and u — swvy —n are in Cy.
Thus, the above condition is equivalent to the existence of W), Wy, Wy € E+ with
w;, - Co p-restricted such that
. Wi - (1 + sv —swvy — 1) is linked to W, '3 - (u — V2 — 17);

. Wy 1 Wy, t W, ' Wa; and

. A=wy - (n—smv2—n).

We claim that @ - (1 + sv — swwvy — 1) and W, ' W, - (1 — s, — 1) are linked if
and only if wor (W)W, ! € W(G).
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We first show that Wy - (1 + sv — swvy —n) and W;, ' W - (L — s, — 1) are
linked if and only if v + wv, = wavy. If v + 7vy, = wrvy, then one sees directly
that Wy 1w, '3 is in W4, from which we see that W7 - (4 + sv — swwvy — 1) and
YW, - (u — sy, — 1) are linked. Now suppose that @7 - (14 + sV — swmwv; — 1)
and W, 'W, - (1 — swv, — 1) are linked. Then the restriction of the difference of

Wy

Wy - (u +sv—swmvy —n) and W, ', - (u — swv2 — 1) to the center Z of G must be
trivial. Equivalently, the restriction of (p — 7)(v — vy + v,) and therefore v — vy 4 v,
to Z must be trivial. By noting that v = 7 mod A g, this implies that &~ ', !
in W,. We conclude that . + sv — swmv; — 1 and u — swv, — n are linked. Since

17)'2 is

W+ sv—swmvy —nand u — swvy — 1 are both in C, they must therefore be equal.
This equality implies the equality v + mv, = wmv;.
Finally, v + v, = wrv; if and only if

Wom ! (@El_l = wztvzn_l (tyw)t_y, wl_1

= wzn_l(tnv2+v—w7rv1w)w1_1 € W(G). O

Remark 4.3.3
Note that F (1) is an obvious weight (Definition 2.2.14) if and only if W, = w;.

LEMMA 4.3.4
Let W e W, and let w € W(G) and W™ € ﬂ/+ be the unique elements such that
W=wwT. Then wt <W.

Proof

The length £(ww™) is the length of a minimal gallery from C to ww™ - C o, which is
the length of a minimal gallery from w™' - Cq to W - Cy. A minimal gallery can be
taken through C in the dominant direction. Hence £(ww™) = £(w) + £(w ™), and
therefore w+ < w. O

PROPOSITION 4.3.5
~ o~ ~ =+ ~ o~
Ifu)szl and w, € W, then wy < Wj.

Proof

Let w € W be the unique element such that wir; € E/Jr. Then w; 1 ww; by [27, Sec-
tion I16.5 (5)]. Then w, < ww; by Theorem 4.1.1. Since ww; < w; by Lemma 4.3.4,
lfl\)/z < ﬁl. O

PROPOSITION 4.3.6
Let p, T, and W be as in Proposition 4.3.2, and suppose that W = Lus—1(y)- Then
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W, 1) = {F(L)}, where F(X) € Wy (P) is the obvious weight corresponding to s
(see Definition 2.2.14).

Proof

_ e ~ o~ =t
Suppose that 7~ (W) = t;-1(,) = W, ' w1, where w’ € W(G), Wy, W € W, and
wy Y wy 1 ﬁ;lwz for some w), with w) - Co p-restricted. We have

tg—1()) < L5 1) + L(w') + L@01) < L((@hW) ") + E(wo) + £(W))
= L((@hi0) ™ woil) = Lty 1))

where w) € W(G) is the projection of w) . The first inequality is obvious, while the
first equality follows from Lemma 4.1.9. For the second inequality, since w’ < wy,
it suffices to show that W, < W W, and W < Wy. Since W, 1 W), 'W,, we have that
Wy T Wywy. Since w; and Wy € E+, we have that W, < W, w, and W; < W, by
Proposition 4.3.5.

Since £(t—1(,)) = Z(th_l(n)), we have w' = wo and W, = WRWy = Wy W;.
This implies that s = w,. Now suppose that F(1) € W’(p, 7). We now use nota-
tion from Proposition 4.3.2, particularly from (P2) and Definition 4.1.6. Then
by Proposition 4.3.2, A = W), - (s — spwv,), where we write Wy = wyt,, and
plix = t(s5, up + 1). This is exactly the obvious weight corresponding to s = w;,
(Definition 2.2.14). O

Remark 4.3.7

One could show using Theorem 3.4.1, Corollary 4.2.7, and Kisin’s approach to
the Breuil-Mézard conjecture that, with the hypotheses of Proposition 4.3.6,
#W?’(p, ) < 1. This leads to an alternate proof of Proposition 4.3.6, which we
eschew in favor of our more direct approach.

In the setting of Proposition 4.3.6, if W™ (p, ) = t,,,-1, for some w € W(G), we
say that t is the obvious type for the obvious weight of p corresponding to w. (Note
that this notion depends on the choice of (s3, i5).) Such a type t always exists and is
uniquely determined by the corresponding obvious weight.

We use the setup and notation of Section 4.2.2. For each place v | p of FT choose
aplace V| v of F.Let7:Gpg — GL,(F) be a modular Galois representatlon such
that, for each place v | p of F+, 7|g Fy is semisimple. Let Wy, v(r) Wore (|G F~)
Let Wopy,v(7) be the set of isomorphism classes of §(© F+) representations over F
corresponding to Wy 7(7). Note that the definition of WobV » () does not depend on
the choice of place V. Let Wy, (F) be ®v| » Woby,» ().
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THEOREM 4.3.8

Suppose that , ¢ F, and suppose that 7 : Gr — GL,(F) is a modular Galois rep-
resentation such that 7(Gr,)) is adequate. Assume that, for all V| p, 7| s IS
semisimple and (6n — 2)-generic. Then the following are equivalent:

(D Wow(®) NW(F) #0;

(2) T is potentially diagonalizably automorphic (see Theorem 4.3.1(1)); and

(3)  Won(r) CW(T).

Proof

Clearly, (3) implies (1). We next show that (1) implies (2). For each place v | p of
F™, choose a place | v of F. Suppose that Qy)p F(Av) € Woby(F) N W(F). Then
Homg((thp) (® F(AU)V’ S(Up)my) ;é 0

vlp

for some sufficiently small compact open subgroup U”? < G(Afjrp ). (We can replace
> with the set of places dividing p as in the proof of Proposition 4.2.6.) Say F(Ay)
corresponds to F(Ay) € Won(Flg ) via (3, and say that F(A3) € Wory(FlG )
(resp., ty) is the obvious weight (resp., obvious type) for 7|g . corresponding to
w, (after choosing a lowest alcove presentation of 7|; F»,;)- One checks directly from
the definition of obvious type that ty is 2n-generic, and hence any lowest alcove
presentation of 7y satisfies the hypothesis of Theorem 3.4.1, by Proposition 2.2.15.
Let o(ty) be the (O Fv+)-representation corresponding to o (ty) via (. Note that
S(UP)w; is an injective F[§(OF+ ,)]-module as U” is sufficiently small; thus
Hom]F[[g(@FJr,p)]] (-, S(U?)y;) is exact. Since

Homgo,, ) (® F(Ly)Y, S(UP)mF) #0,
vlp
we have that
Homg(0F+gp)(®5(rv)V’ S(Ul’)mf) #0,
vlp
where 7 (1) is the reduction of some @-lattice for each v | p. A nonzero element of
Homgo,, ) (® o(1y)Y, S(UP)mF) #0
vlp

gives an automorphic lift r, ,(IT) of 7 whose restriction at v is potentially crys-
talline of type (1, ty) by [11, Theorem 7.2.1], Theorem 2.3.1, and Proposition 2.3.4.
Thus rp,(IT)|G, is potentially diagonalizable for each place u | p of F' by Corol-
lary 3.4.13.
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Finally, we show that (2) implies (3). Assuming (2), we see that 7 satisfies the
enumerated hypotheses of Theorem 4.3.1. Suppose now that ®v| » F(Ay) € Wory(F)
is arbitrary, and let F(Ay), 3, o(ty), and o(7y) be as in the last paragraph. For
each place v | p of FT, let py be a potentially diagonalizable, potentially crys-
talline lift of 7|g Fy of type (1, ty) (say, the lift from Corollary 3.4.11). By Theo-
rem 4.3.1, there is an automorphic lift r, () of 7 whose restriction at v is poten-
tially crystalline of type (7, t3), which is unramified outside the places where 7 is
ramified. Thus, H°m9(0F+.p)(®v|p ()Y, S(UF) ;) # 0 for any ¥ containing
all places dividing p and all places divisible by places in F' where 7 is ramified and
any sufficiently small U Z. By Corollary 4.2.7 and Proposition 4.3.6, we conclude that

Homg (o, )(Qu), F(Ao)". S(U*)my) # 0. Thus, @, F(Ay) € W(F). O
Remark 4.3.9
In [2], it is shown that if 7 is modular of a Fontaine—Laffaille weight, ®v| » F(Ay) €

Wouy(7), and p splits completely in F, then

Homg((pFJ_p) (®W(}LU)V’ S(Uz)m) £0,

v|p

which is strictly weaker than Theorem 4.3.8. In Section 6 of [14], it is shown that if 7
is assumed to be modular and ordinary at p, then 7 is modular of all ordinary obvious
weights. (These are all obvious weights if p splits completely but is strictly smaller
otherwise.) In Section 6 of [14], 7 is no longer assumed to be semisimple above p.

4.4. Type-changing congruences and a local lifting problem

In this section, we give a classification (Theorem 4.4.3) of congruences between

RACSDC GL,-automorphic representations of trivial weight and generic tame type

whose associated Galois representations are residually tamely ramified at p. We also

solve the corresponding local Galois lifting problem. Throughout this section, we are

in the setting of (P1)—(P3) from Section 4.1; that is, we fix

(1) a generic semisimple Galois representation p : Gx — GL, (IF);

2) a pair (s, p) such that p|7, = T(sp, iy + 1) with uz in Co; and

3) a lowest alcove presentation (s, — 1) of a tame inertial type t = (s, ) :
Ix — GL,(0O) such that u5 —p € Ap.

PROPOSITION 4.4.1
Let p and t be as above with i — 1 2n-deep in Co.The set W’ (p, t) is nonempty if
and only if the set Wy, (p) N JH(G (7)) is nonempty.

Proof
The “if” part of the claim is clear. Suppose that W7 (p, ) is nonempty. Let W =
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w*(p, 7). By Proposition 4.3.2, 7~ 1(W) = W, 'w'w;, where w’' € W, Wy, € E/Jr,
and W1 1 W, ' 5. Let  be a weight (unique up to weights whose restrictions to the
derived group are trivial) such that z_, w7 - (Co) is p-restricted. Note that  is domi-
nant since the set of dominant alcoves is exactly the set of dominant translates of the
restricted ones. Then 7 1(N) = (t_woWs) "W (t_ew1). Let t_y a,wz = wws,
where w € W and w3 € W . It suffices to show that ¢_,w; 1 W, w, 1355, since then
by Proposition 4.3.2, taking W, = ¢_,w; we see that W’(p, T) contains the obvious
weight corresponding to the permutation part of /_,w; via the bijection in the proof
of Corollary 2.2.13 (see also Remark 4.3.3).

Using that 0 1 W, ', it suffices to show that W, ' W2 1 W, ! twye W3 or, equiv-
alently, that ), W3 T Wa. NOW ty0W3 = tyow—ww/eWW2 by definition. Note that
wow —ww'w is a sum of negative roots since w is dominant. Then ) w—ww’eWW2 T
wwy 1 Wy by [27, Section 11 6.5 (3), (5)]. O

PROPOSITION 4.4.2
Let p and t be as in Proposition 4.4.1. Then wW*(p,t) € Adm(n) if and only if
W?(p, T) is nonempty.

Proof
Suppose that W’(p, t) is nonempty, and let & = wW*(p, r). By Proposition 4.3.2,
=1 () = wy 'w'Wy, where w’' € W, Wy, w2 € W, and Wy 1 ), 'W,. By an argu-

ment analogous to the proof of Proposition 4.4.1 applied to 7 ' (w™!) = w'w'~'w;

(i.e., we replace W, w’, Wy, and W, with W', w'~!, W,, and Wy, respectively), we
can assume without loss of generality that w5 is p-restricted. It suffices to show that
~'(w) <1, ~1uwgn- Note that
; = T Bty W = Ty Lo (@7 T2)
wylwon = Wa Whlylly, Wy =Wy wo (W), Wa
and that £(5 'wo (W), 'W2)) = (W5 ") + £(wo) + £(W), ' W,) by Lemma 4.1.9. Then
since w’ < wo and W) < W;, ' W> by Proposition 4.3.5 (since W, 1 W;, ' W), we have
that 7~ (W) <t w3 lwon”
Conversely, suppose that W € Adm(n). Then there exists w, € W such that
r (W) < L5 M won- Let w, € I/_V+ be such that w, has projection wy € W and
2 - (Co) is p-restricted. (Such elements differ by weights whose restrictions
to the derived group are trivial.) Since tyslwon = W5 'wo (W, 'w>) and
(W5 wo (W), '2)) = £(W5 ') + £(wo) + (W, ' W) as in the last paragraph,
a1l (w) = (W)~ 'w' W], where W), < W,, W} < W, 'W,, and w’ < wo. In partic-
ular, w' € W(G). If w} and w), € W(G) and w; and W, € W™ are the unique

elements such that @, = w,w, and W), = w|w;, then W, < W, < W, and

Wy < W) <, W, by Lemma 4.3.4. Thus W5 1 W, and W; 1 W), 'W,. Letting



2502 LE, LE HUNG, and LEVIN

w” = (wh)"'w'wy, we get that 7~} (W) = (W5 )~ w”W;". Since W} 1 W), ' W, and
Wy 1 W, or, equivalently, W, ', 1 W;, ' W, , we have that @ 1 W, 'w; . By the
proof of Proposition 4.4.1 applied to 7 =1 () = (0;)~'w"w; (i.e., we replace w’,
wi, and w, with w”, ﬁfr, and ﬁ; , respectively), modifying the factorization if
necessary, we can assume without loss of generality that W’ fr - Cy is p-restricted. By
Proposition 4.3.2 taking i), to be z'b'fr, we see that W’ (p, t) is nonempty. O

THEOREM 4.4.3

Let p: Gg — GL,(IF) be a (6n — 2)-generic semisimple Galois representation, and

let T be 2n-generic tame inertial type. Let F be a CM field such that {, ¢ F, and

let 7 : G — GL,(F) be a Galois representation as in Section 4.2.2 satisfying the

following hypotheses.

. T is potentially diagonalizably automorphic; that is, there is an RACSDC auto-
morphic representation I1 of GL, (A F) such that
- 7 =7p,(I1); and
- for each place u | p of F, rp (I1)|G,, is potentially diagonalizable.

. The image of T(G F(¢,)) is adequate.

. ¥ is generic and semisimple at all places dividing p and 7|GF5 = p for a place
V|p of F.

Then the following are equivalent:

(1) there is an RACSDC representation Il of GL, (A F) such that7 =7 , ,(I1) and
the restriction of rp,(I1) at U is potentially crystalline of type (1, T);

(2)  p has a potentially crystalline lift of type (n,7);

3)  w*(p,7) € Adm(n);

4) W (p, 1) #0; and

&) Wobv(ﬁ) n JH(E(T)) 7é @.

Remark 4.4.4

The assumption that t is 2n-generic can be relaxed to n-generic. Suppose that  is n-
generic, but not 2n-generic. Then (4) can be checked to be false, since JH(o (7)) will
contain only weights which are not 3n-deep in their alcoves by [23, Theorem 5.2].
(Note that, by the linkage principle, the depth of the Jordan—Holder factors appearing
in [23, Theorem 5.2] coincides with that of 1 —wey, . and maxev |{€y, ., a¥)| <n—1
for all T € W by Remark 4.1.4.) This implies that (5) is false as well. If (3) holds, then
a direct computation shows that t is 4n-generic, using that maxqv [{W(0),aY)| <
n — 1 for any w € Adm(7). So (3) is false. Then (2) is false by Theorem 3.2.1, which

immediately implies that (1) is false.
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Remark 4.4.5

For p as in the theorem, there always exists a representation 7 as in the theorem.
Indeed, since p is Fontaine—Laffaille, [ 10, Conjecture A.3] holds for p. (Alternatively,
one can use Corollary 3.4.13.) Let 7 : GF — GL, (F) be a suitable globalization of
o as constructed by [10, Corollary A.7]. By [10, Corollary A.7 and Lemma A.5],
¥ satisfies the required hypotheses. Thus, by removing sentences containing 7, the
above theorem can be interpreted as giving existence criteria for potentially crystalline
lifts of type (1, t) for generic semisimple p and tame generic types t.

Proof

First, (1) immediately implies (2). Then (2) implies (3) by Theorem 3.2.1 and Propo-
sition 4.1.8. The equivalence of (3), (4), and (5) follows from Propositions 4.4.1 and
4.4.2. Tt remains to show that (5) implies (1).

Assume that Wy (o) NJH(6 (7)) # @. By Theorem 4.3.8, Wy (7) C W(¥) in the
notation of Section 4.2.2. Following the notation of the proof of Theorem 4.3.8, let
®v,|p F(Ay) € Wy () be such that F(Ay) € Wopy(p) N JH(G(7)). Then, as in the
proof of Theorem 4.3.8, we obtain the required automorphic representation IT. O
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