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Abstract
We prove the weight elimination direction of the Serre weight conjectures as for-
mulated by Herzig for forms of U.n/ which are compact at infinity and split at places
dividing p in generic situations. That is, we show that all modular weights for a mod
p Galois representation are contained in the set predicted by Herzig. Under some
additional hypotheses, we also show modularity of all the “obvious” weights.
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1. Introduction
Let p be a prime. In 1973, Serre conjectured that every irreducible odd 2-dimensional
Fp-representation r of Gal.Q=Q/ comes from a modular form. He later refined the
conjecture into the strong form which asserts that every such r arises from a modu-
lar form of a specific minimal weight and prime-to-p level determined by the local
properties of r (see [38]). The recipe for the minimal weight is more subtle than the
minimal level and, as Serre suggested at the time, reflects the deeper structures of a
“mod p Langlands philosophy.” The landmark proof of Serre’s original conjecture
due to Kisin and Khare–Wintenberger relies crucially on knowing that the weak form
implies the strong form.

The first comprehensive conjecture for Hilbert modular forms is due to Buzzard–
Diamond–Jarvis (BDJ) in [5]. The weight k � 2 is replaced by the notion of Serre
weights, irreducible representations of GL2.Fq/ in this case. Furthermore, there is no
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longer a notion of minimal weight; rather, BDJ define a collection of Serre weights for
which a given r should be modular. The weight part (weak H) strong) of the BDJ
conjecture is now a theorem due to the work of many people (see [16]–[18], [36]).

Building on the work of Ash–Doud–Pollack in [1] and others, Herzig in [23]
formulated a vast generalization of the weight part of Serre’s conjecture to tame
n-dimensional Galois representations which was further extended by Gee–Herzig–
Savitt in [15]. In our earlier work [31] and [32] with S. Morra, we establish the weak
implies strong conjecture for tame 3-dimensional Galois representations (and for def-
inite unitary groups unramified at p). However, results for n > 3 were limited to a few
partial results (see [2], [13], [14]). In this paper, we establish the weight elimination
direction of the weight part of Serre’s conjecture for n-dimensional Galois represen-
tations in generic situations, namely, the set of modular weights is a subset of the set
of weights predicted by [23].

To describe these conjectures, let F be an imaginary CM number field unramified
at p. Let FC be the maximal totally real subfield. Assume that FC ¤Q, and assume
that all primes of FC above p split in F . Let G be a unitary group over FC which
is isomorphic to U.n/ at each infinite place and split at each prime above p. Let
r WGal.F =F /!GLn.Fp/ be an irreducible odd continuous representation.

A global Serre weight is an irreducible representation V of GLn.OFC;p/, which
are all of the form

N
vjp Vv with Vv an irreducible representation of GLn.kv/, where

kv is the residue field of FC at v. In Definition 4.2.5, we define what it means for
r to be modular of weight V . Roughly speaking, this means the Hecke eigensystem
associated to r appears in a space of automorphic forms for G of weight V . For each
place v, fix a place ev of F dividing v, and define �v WD r jGal.F ev=Fev/. We now state
the main theorem.

THEOREM 1.0.1
Let r W Gal.F =F /! GLn.Fp/ be an irreducible odd representation. Assume that p
is unramified in F , and assume that, for all places v j p of FC, �v is .6n�2/-generic
(see Definition 2.2.5). Then,

r is modular of weight
O
vjp

Vv H) Vv 2W
‹.�ss

v / for all v j p;

where W ‹.�ss
v / is defined by [23].

The set W ‹.�ss
v / is an explicit collection of irreducible representations of

GLn.kv/ given by a representation-theoretic recipe. Conjecture 1.1 of [23] pre-
dicts that the reverse implication should also be true when �v is semisimple for all
v’s (assuming r is modular). In fact, we prove a partial converse which shows the
modularity of a subset of the predicted weights as discussed below (Theorem 1.0.4).
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Remark 1.0.2
(1) When n D 3 and p splits completely in FC, this result is due to [11], [25],

[35], and [34].
(2) When �v is not semisimple, there is no explicit conjecture, but one expects

there to be a strict subset W ‹.�v/ � W
‹.�ss

v / which predicts the modular
weights. When nD 3, this will be taken up in [33].

(3) Our methods are purely local, and so at least with some technical assumptions
a version of Theorem 1.0.1 should hold in other global setups as well, for
example, unitary Shimura varieties.

A key feature of the BDJ conjecture and a motivation for the generalizations is
the relation between the weight recipe and p-adic Hodge theory properties of the
local representation �v . Let K=Qp be a finite unramified extension, and consider
� WGK!GLn.Fp/. When nD 2, the weight recipe is in terms of the existence of the
crystalline lifts of � in small (between Œ0;p�) Hodge–Tate weights. In Herzig’s con-
jecture, one expects (at least for � semisimple) that W ‹.�/ should also be predicted
by the existence of crystalline lifts in small weights (see [15, Section 1.5 or Section 5]
for a detailed discussion). However, the range of “small” Hodge–Tate weights is now
Œ0; .n� 1/p� and determining reductions of n-dimensional crystalline representations
in this range is still well beyond the current technology in p-adic Hodge theory.

We consider another local problem, namely, reductions of tamely crystalline
representations with fixed (parallel) Hodge–Tate weights � WD .n � 1;n � 2; : : : ; 0/.
A tamely crystalline representation is a Qp-representation of GK which becomes
crystalline when restricted to GL for L=K a tame extension. The descent from L=K

is then encoded in a tame inertial type � . For short, we will call these representations
of type .�; �/. For generic � , we give a complete description of the semisimple Galois
representations which are reductions mod p of representations of type .�; �/ (see
Theorems 3.2.1 and 4.4.3).

If � is a Galois stable lattice in a representation of type .�; �/, then by deep results
in integral p-adic Hodge theory due to Kisin in [28] building on work of Breuil, one
can associate a semilinear algebra object, a Kisin module M with Hodge type � and
descent data of type � . A. Caraiani and the third author in [7] construct a moduli stack
of Kisin modules Y �;� with Hodge type� � and tame inertial type � . An upper bound
on which � can arise as the reduction of a representation of type .�; �/ comes from a
description of the special fiber of Y �;� . To describe the special fiber, [7] relates Y �;�

to a local model M.�/ constructed by Pappas and Zhu in [37]. The special fiber of
M.�/ is a closed subscheme of an affine flag variety. The coherence conjecture of
Pappas and Rapoport, proved by Zhu in [40], allows [37] to describe the special fiber
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as a union of affine Schubert cells resolving a deep and long-standing question in the
subject.

By classifying mod p Kisin modules of type .�; �/, we arrive at a combinatorial
upper bound for the semisimple � that arise as the reduction of a representation of type
.�; �/ in terms of a subset Adm.�/ � eW of the extended affine Weyl group of GLn
called the �-admissible elements originally introduced by Kottwitz and Rapoport.
More precisely, we assign to any semisimple � a relative position ew.�; �/� 2 eW called
the (dual) shape (Definitions 2.1.2, 3.2.11, and 3.2.19). (Technically, the shape is
associated with a Kisin module with descent data, but, in generic situations, there is a
unique Kisin module which corresponds to �.)

THEOREM 1.0.3 (Theorem 4.4.3)
A .6n� 2/-generic semisimple Galois representation � has a lift of type .�; �/ if and
only if ew.�; �/� 2Adm.�/.

We first use the “only if” direction of Theorem 1.0.3 to reduce weight elimination
(Theorem 1.0.1) to a representation theory/combinatorics problem. For simplicity,
assume that K DQp . If F.�/ is a Serre weight for GLn.Fp/ with p-restricted high-
est weight � which is not in W ‹.�/, one has to exhibit a tame GLn.OK/-type �.�/
such that F.�/ is a Jordan–Hölder factor of the reduction �.�/ and ew.�; �/� is not
�-admissible. Initially, this might seem daunting, since there are many types which
contain F.�/. In fact, it suffices to consider only the types which “obviously” contain
F.�/, namely, the Deligne–Lusztig representations Rs.ewh � �C �/ for s 2W.GLn/
(see Section 4 for undefined notation). Precisely, we show that if, for all s 2W.GLn/,
the shape of � relative to Rs.ewh � �C �/ is �-admissible, then F.�/ 2W ‹.�/. The
argument uses alcove geometry to relate admissibility to a description of W ‹.�/ in
terms of dominant p-restricted alcoves and linkage due to Herzig. In turn, we use this
relationship together with Theorem 1.0.4 below and global arguments to establish the
“if” direction of Theorem 1.0.3.

We now discuss our second main theorem, which represents partial progress
toward the other direction of the weight part of Serre’s conjecture. Among the pre-
dicted weights, there is a distinguished subset Wobv.�/�W

‹.�/ called obvious Serre
weights. Obvious weights are defined precisely in Definition 7.1.3 of [15], but roughly
correspond to the Hodge–Tate weights (with an �-shift) in which � has a crystalline
lift which is the direct sum of inductions of characters from unramified extensions.
When nD 2, there are only obvious weights, so the naive generalization of the weight
part of Serre’s conjecture would be that Wobv.�/’s are exactly the modular weights.
Despite their name, the modularity of these weights is by no means obvious. However,
they are more easily accessed via automorphy lifting techniques. For example, [14]
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obtains essentially complete results on the modularity of ordinary obvious weights in
the ordinary setting. When � is a generic direct sum of characters, there are .nŠ/ŒKWQp�

obvious weights of which only nŠ are ordinary. In [2], Barnet-Lamb, Gee, and Ger-
aghty prove the modularity of the obvious weights when n D 3 and obtain partial
results when n > 3. Using Theorem 1.0.1 and a generalization of part of [31] on
potentially crystalline deformation rings, we extend these results to GLn.

THEOREM 1.0.4
Let r W Gal.F =F /! GLn.Fp/ be an irreducible representation satisfying Taylor–
Wiles conditions. Assume that p is unramified in F , and assume that, for all places
v j p, �v is semisimple and .6n� 2/-generic. If r is modular of any obvious weight,
then r is modular of all obvious weights.

Before giving an overview of the paper, we summarize the relationship between
the methods and results of this paper and those of [31], which are for n D 3. The
results about shapes of mod p Kisin modules and the triviality of the Kisin vari-
ety under genericity conditions in [31, Sections 2–3] generalize directly to the n-
dimensional setting. Establishing these generalizations is enough to prove the only-if
direction of Theorem 1.0.3. The only-if direction is the necessary local input to estab-
lish weight elimination (Theorem 1.0.1).

To prove Theorem 1.0.4, we compute certain potentially crystalline deformations,
which requires generalizing arguments of [31, Sections 4–5]. The deformation rings
are computed explicitly in [31] for all shapes. Here, we compute the deformation rings
only for shapes of the form translation by a permutation of .0; 1; : : : ; n � 1/. (When
n D 3, this corresponds to the shapes ˛ˇ˛� and ˇ�˛� appearing in tables at the
end of [31].) For these special shapes, the deformation rings turn out to be formally
smooth, and this is the necessary local input to prove Theorem 1.0.4.

We now give an overview of the paper. In Section 2, we begin with some back-
ground on affine Weyl groups, Serre weights, tame types, and inertial local Langlands.
In Section 3, we prove the main local results in p-adic Hodge theory. Sections 3.1–3.3
are direct generalizations to n-dimensional Galois representations of results of [31]
and [32] on Kisin modules with descent data. In Section 3.4, we show that if � has
special shape with respect to � , then the potentially crystalline deformation ring of
type .�; �/ is formally smooth and we deduce the existence of potentially diagonaliz-
able lifts.

The main theorems appear in Section 4. Weight elimination is in Section 4.2. The
modularity of the obvious weights is in Section 4.3, and in Section 4.4, we complete
the proof of Theorem 1.0.3, the local reduction problem using global input.
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1.1. Notation and conventions
Fix n � 2. Let p be a prime with p > n. Fix a finite unramified extension K=Qp of
degree f . Let k denote the residue field ofK of cardinality q D pf . Let OK WDW.k/

be the ring of integers of K . We denote the arithmetic Frobenius automorphism on
OK by ', which acts as raising to the pth power on the residue field. Let GK D
Gal.K=K/. Let IK denote the inertia subgroup, and let WK denote the Weil group.

Let E=Qp be finite extension assumed to be sufficiently large such that, for any
unramified extension K 0=K of degree the order of an element of Sn �Sn, E contains
a copy of K 0. Let O be the ring of integers of E with uniformizer $ and residue
field F. We fix an embedding �0 of K into E (equivalently an embedding k into F).
Define �j D �0 ı '�j .

For r � 1, we fix a compatible system of .prf � 1/st roots $r D .�p/
1

prf �1 2

K . The choice of root $1 defines a character !$1 W IK ! O�K . Using our choice of
embedding �0, we get a fundamental character of niveau f :

!f WD �0 ı!$1 W IK!O�:

We fix once and for all a sequence p WD .pn/n2N, where pn 2Qp verify ppnC1 D pn
and p0 D�p. We let K1 WD

S
n2NK.pn/ and GK1 WDGal.Qp=K1/.

Let G D Resk=FpGLn. Let T � GLn be the diagonal torus, and let T D
Resk=FpT be a maximal torus of G. Let Z � T denote the center of G. Let
W.G/ D W.GLn/Hom.k;F/ denote the Weyl group of G. Similarly, let X�.T / be
the (geometric) characters of T , which is equipped with an action of Frobenius 	 .
We have an action of 	 on W.G/ by the formula 	.w/.	.
//D 	.w.
//. There are
isomorphisms W.G/ŠW.GLn/f and X�.T /Š X�.T /f where the j th entry cor-
responds to the embedding �j . Under this identification, the action of 	 is such that
if 
 D .
j / 2 X�.T /, then 	.
/j D 
j�1. Let ƒR � X�.T / (resp., ƒR � X

�.T /)
denote the root lattice for GLn (resp., G).

Let Wa (resp., eW ) denote the (resp., extended) affine Weyl group for GLn. Simi-
larly, we will use W a ŠW

f
a (resp., eW Š eW f ) to denote the (resp., extended) affine

Weyl group of G. Recall that

Wa DƒR �W.GLn/; eW DX�.T /�W.GLn/

and similarly forW a and eW . We use t� 2 eW to denote translation by 
 2X�.T /. The
action of 	 on X�.T / and W.G/ extends naturally to eW .

Let RC � R (resp., RC;_ � R_) denote the subset of positive roots (resp., pos-
itive coroots) in the set of roots (resp., coroots) with respect to the upper triangular
Borel subgroup in each embedding. Define dominant (co)characters with respect to
this choice of positive roots.
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We fix an isomorphism X�.T /Š Zn in the standard way, where the standard i th
basis element "i D .0; : : : ; 1; : : : ; 0/ (with the 1 in the i th position) of the right-hand
side corresponds to extracting the i th diagonal entry of a diagonal matrix. Dually
we get a standard isomorphism X�.T /Š Zn, and let ¹"_i º denote the dual basis. Let
�0 D .n� 1;n� 2; : : : ; 0/ 2X

�.T / be a fixed lift of the half sum of positive roots for
GLn. Define �D .�0; �0; : : : ; �0/ 2X�.T /. In the paper, sometimes we will consider
simultaneously the group G D Resk=FpGLn for multiple k’s. In such a situation, the
symbol � will be used for the above element for any of the groups that appear, and it
will always be clear which group it occurs in. Note that �j D �0 for any j . We will
always denote the duality pairing between a free Z-module and its dual (e.g., X�.T /
and X�.T /) by h�; �i.

For any ring S , we define Mn.S/ to be the set of n� n matrix with entries in S .
If ˛D "i � "j is a root of GLn, we also call the .i; j /th entry of a matrix X 2Mn.S/

the ˛th entry. We will make use of both notations Xij and X˛ for this entry.
If P is a statement, the symbol ıP 2 ¹0; 1º takes value 1 if P is true, and 0 if P is

false. IfW is a de Rham representation of GK over E , then for each � 2Hom.K;E/,
we write HT�.W / for the multiset of Hodge–Tate weights labeled by embedding �
normalized such that the p-adic cyclotomic character has Hodge–Tate weight ¹1º for
every �. For �D .�j / 2X�.T /, we say that an n-dimensional representation W has
Hodge–Tate weights � if

HT�j .W /D ¹�1;j ;�2;j ; : : : ;�n;j º:

An inertial type is a representation � W IK!GLn.E/with open kernel and which
extends to WK . We say that an n-dimensional potentially semistable representation
� W GK ! GLn.E/ has type .�; �/ if � has Hodge–Tate weights � and the Weil–
Deligne representation WD.�/ restricted to IK is isomorphic to � . Note that this
differs from the conventions of [15] via a shift by �.

Let ArtK W K� ! W ab
K denote the Artin map normalized so that uniformizers

correspond to geometric Frobenius elements. For � an inertial type, we use �.�/
to denote the finite-dimensional smooth irreducible Qp-representation of GLn.OK/
associated to � by the “inertial local Langlands correspondence” (see Section 2.3). In
fact, in all situations, �.�/ will be defined over E . If V is a finite-length representa-
tion, then we use JH.V / to denote the set of Jordan–Hölder factors.

2. Background

2.1. Affine Weyl group
Fix the dominant base alcove for the apartment of .GLn; T / which defines a Bruhat
order onWa denoted by�. If is the stabilizer of the base alcove, then eW DWa�
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and so eW inherits a Bruhat order in the standard way: for ew1;ew2 2Wa and ew 2,ew1ew � ew2ew if and only if ew1 � ew2, and elements in different right Wa-cosets are
incomparable. We also have the natural generalization  for G and a Bruhat order oneW . We now recall the definition of the admissible set as introduced by Kottwitz and
Rapoport.

Definition 2.1.1
Let �0 2X�.T /. Then define

Adm.�0/ WD
®ew 2 eW ˇ̌ ew � tw.�0/ for some w 2W.GLn/

¯
:

Similarly, if �D .�j / 2X�.T /, then define Adm.�/D
Q
j Adm.�j /� eW .

When working on the Galois side, it is natural to work with the partially ordered
group eW _ (resp., eW _), which is identified with eW (resp., eW ) as a group, but whose
Bruhat order, also denoted by �, is defined by the antidominant base alcove. For any
character � 2X�.T /, define the subset Adm_.�/� eW _ as in Definition 2.1.1.

Definition 2.1.2
Define a bijection ew 7! ew� between eW _ and eW as follows:
(1) for wD .wj / 2W.G/, define w� WD .w�j / 2W.G/ by w�j Dw

�1
f �1�j

;
(2) for 
 D .
j / 2X�.T /, define 
� WD .
�j / 2X

�.T / by 
�j D 
f �1�j ;

(3) for ewDwt� 2 eW _, define ew� 2 eW by ew� WD t��w�.
Note that ew 7! ew� is an antihomomorphism. By specializing to the case f D 1, we
obtain a bijective antihomomorphism between eW _ and eW .

We now record a few basic lemmas for later.

LEMMA 2.1.3
We have ew1 � ew2 in eW _ if and only if ew�1 � ew�2 in eW .

Proof
Suppose that ew2 has a reduced expression .

Q
˛2I s˛/� , where each s˛ is an affine

reflection along a wall of the antidominant base alcove and � stabilizes the antidomi-
nant base alcove. Then ew�2 is the product�Y

˛2I

��s�˛

�
��; (2.1)

where ��s�˛ D �
�s�˛.�

�/�1. (The order of factors indexed by I should of course be
reversed from the reduced factorization of ew2.) It is easy to check that �� is in 
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and that each ��s�˛ is an affine reflection along a wall of the dominant base alcove.
From this, we see that `.ew�2 / � `.ew2/. (Note that the lengths are with respect to
different sets of generating reflections.) By symmetry, we see that `.ew�2 / D `.ew2/
so that (2.1) is a reduced expression. Since ew1 � ew2 in eW _ if and only if ew1 has a
reduced expression .

Q
˛2J s˛/� , where J is some subsequence of I , and similarly

for ew�1 , the result follows.

LEMMA 2.1.4
For ew 2 eW _, we have ew 2Adm_.�/ if and only if ew� 2Adm.��/.

Proof
This follows from Lemma 2.1.3.

LEMMA 2.1.5
Let � 2X�.T / be a dominant weight. If t�s 2Adm.�/, then

max
®ˇ̌
h
;˛_i

ˇ̌ ˇ̌
˛_ 2R_

¯
�max

®ˇ̌
h�;˛_i

ˇ̌ ˇ̌
˛_ 2R_

¯
:

Proof
We reduce immediately to the case f D 1. By a result of Kottwitz–Rapoport (see
Theorem 3.2 in [19]), t�s is �-permissible, which means in particular that 
 is in the
convex hull of the Weyl group orbit of �. The claim is that the inequality holds for
any 
 in the convex hull. For this, we can replace 
 with the dominant representative
in its Weyl group orbit. Convexity then says that � � 
 is an R-linear combination
of positive roots where all of the coefficients are nonnegative. If ˛_

h
is the highest

positive coroot, then for any positive coroot ˛, we have

h
;˛_i � h
;˛_h i:

It suffices then to observe that h
;˛_
h
i � h�;˛_

h
i, which follows from that fact that

˛_
h

is dominant.

Recall that p-alcoves of G are defined to be the connected components of�
X�.T /˝R

�
n
®
x
ˇ̌
˛_.xC �/D pm

¯
˛_2R_;m2Z

:

Define the collection of p-restricted dominant weights

X1.T /D
®
� 2X�.T /

ˇ̌
0� h�;˛_i � p � 1 for all simple positive coroots ˛_

¯
:

A p-alcoveC is called p-restricted ifC \X�.T /�X1.T /. We say that � 2X1.T / is
regular p-restricted if furthermore h�;˛_i< p�1 for all simple positive coroots ˛_.
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Recall also that

X0.T /D
®
� 2X�.T /

ˇ̌
h�;˛_i D 0 for all coroots ˛_

¯
:

Definition 2.1.6
Define the dot action of eW on X�.T /˝R by

ew � x D .wt�/ � x Dw.xC �C p
/� �:
In the literature, this is often thought of as an action of W.G/� pX�.T /, but it

will be convenient to include the p-scaling in the definition. Recall that the groupW a

acts simply transitively on the collection of p-alcoves. Let C 0 denote the dominant
base p-alcove, that is, the alcove containing 0.

Definition 2.1.7
Let � 2 X�.T / be a weight. We say that � lies m-deep in its alcove if there exist
integers n˛ 2 Z such that pn˛ Cm< h�C �;˛_i < p.n˛ C 1/ �m for all positive
coroots ˛_ 2R_;C.

For example, a dominant weight � D .�j / 2 X�.T / is m-deep in C 0 if m <

h�j C �0; ˛
_
j i< p �m for all j D 0; : : : ; f � 1 and all positive coroots ˛_j 2R

_;C.

2.2. Tame types and Serre weights
We begin with some setup. An inertial type � W IK!GLn.E/ is a representation with
open kernel which extends to the Weil group ofK . An inertial type is tame if it factors
through tame inertia. All our tame types will be defined over O.

Tame inertial types have a combinatorial description which we will now recall
(see [23, (6.15)] or [15, Definition 8.2.2]). Let .w;�/ 2W.G/ �X�.T /. As in [23,
(4.1)] (see also the paragraph preceding [15, Definition 10.1.12]), for any .
; �/ 2
X�.T /�W.G/, define

.�;�/.w;�/D
�
�w	.�/�1; �.�/C p
 � �w	.�/�1	.
/

�
; (2.2)

and we write .w;�/� .w0;�0/ if there exists .
; �/ such that .�;�/.w;�/D .w0;�0/.
Let r be the order of an element of Sn. For any such r , we choose an embedding

� 00 of the unramified extension K 0=K of degree r into E extending �0. Let e0 D
pf r � 1, let e D pf � 1, and let f 0 D f r . Using our choice of e0th root of .�p/

in Section 1.1, we get a fundamental character !f 0 W IK !O� such that !
e0

e

f 0
D !f .

The following describes all isomorphism classes of tame inertial types for K .
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Definition 2.2.1
Define an inertial type �.w;�/ W IK ! GLn.O/ as follows. If w D .s0; : : : ; sf �1/,
then set s� D s0sf �1sf �2 � � � s1 2W.GLn/ and ˛ 2X�.T / such that ˛0 D �0, ˛j D
s�11 s�12 : : : s�1j .�j / for 1� j � f � 1. Let r denote the order of s� . Then,

�.w;�/
def
D

M
1�i�n

!

P
0�k�r�1 a.0/

sk� .i/
pf k

f 0
(2.3)

where a.0/ WD
Pf�1
jD0 ˛jp

j 2 Zn. Note that .w;�/ � ..s� ; 1; : : : ; 1/;˛/ and
�.w;�/Š �..s� ; 1; : : : ; 1/;˛/ by construction.

For any O-valued inertial type � , we use � W IK ! GLn.F/ to denote the reduc-
tion to the residue field. Note that, since !f 0 is the Teichmüller lift of its reduction to
F, for tame inertial types, � determines � .

We say that a pair .w;�/ 2W.G/ �X�.T / is good if .Tw ; �w;	/ is maximally
split (see [15, Section 9.2] for the definitions of .Tw ; �w;	/ and maximally split). This
definition is consistent with [23, Definition 6.19] by [23, Proposition 6.20]. As in [15,
Section 9.2], which follows [26], we attach a Deligne–Lusztig representation to a
good pair .w;�/ 2W.G/ �X�.T /, which we denote by Rw.�/. For any tame rep-
resentation � W IK ! GLn.F/ which extends to GK , there is an associated E-valued
GLn.OK/-representation V.�/ defined in [15, Proposition 9.2.1]. (In [15, Proposi-
tion 9.2.1], it is denoted V
.�/.) By [15, Proposition 9.2.3] if � Š �.w;�/, then

V.�/DRw.�/: (2.4)

Remark 2.2.2
The condition that .w;�/ is good guarantees that the Deligne–Lusztig representation
Rw.�/ is a genuine representation (and not only virtual; see [15, Proposition 9.2.1]).
The genericity condition defined below will guarantee that Rw.�/ is in fact (abso-
lutely) irreducible over E .

LEMMA 2.2.3
Suppose that ��� 2X�.T / is in alcove C 0. Then .w;�/ is good for any w 2W.G/.

Proof
Let .T �w ; s/ be the F �-stable maximal torus of G� and semisimple element

s 2 T �w
F � corresponding to .Tw ; �w;	/ as in [15, Section 9.2(ii)]. As in the proof

of [15, Lemma 10.1.10], let s0 be .g�
F �.w�1/

/�1sF.g�
F �.w�1/

/. (Recall that

.g�
F �.w�1/

/�1F.g�
F �.w�1/

/ 2N.T �/ represents F �.w�1/ as in [15, Section 9.2(ii)].)

By the proof of [15, Lemma 10.1.10], if the Weyl group of T �w in ZG�.s/, which
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is isomorphic to StabW .s0/, is trivial, then the claim follows. Suppose that s˛ is
in StabW .s0/ (which is generated by reflections). Let d be the order of w	 as an
automorphism of X�.T /. (In particular, f divides d .) Then by the proof of [15,
Lemma 10.1.10],

d�1X
iD0

pi
˝
�; .w	/i˛_

˛
(2.5)

is divisible by pd � 1. Since �� � is in C 0, this divisibility forces h�; .w	/i˛_i to
be p�1 for all i or 1�p for all i . Thus, either .w	/i˛_ are highest coroots inR_ for
all i , or they are lowest coroots for all i . (Note thatR_ has exactly f highest coroots.)
This in turn implies that .w	/i˛_ D 	 i˛_ for all 0 � i � d � 1, by comparing the
unique nonzero component on both sides. Since d � f , this implies that w fixes 	 i˛
for all i and that s�i˛ 2 StabW .s0/ for all i . We conclude that StabW .s0/ is hs�i˛ii
and centralizes w. From this, we see that ZG�.s/ is isomorphic to Resk=FpGL2 � T 0

for some torus T 0, and T �w is T 2 � T 0, where T 2 � Resk=FpGL2 is a maximally split
torus. Then by definition, .Tw ; �w;	/ is maximally split.

PROPOSITION 2.2.4
Let .w;�/ and .w0;�0/ be in W.G/ � X�.T /. If .w;�/ � .w0;�0/, then the tame
inertial types �.w;�/ and �.w0;�0/ are isomorphic. If ��� and �0�� are in alcove
C 0 and the tame inertial types �.w;�/ and �.w0;�0/ are isomorphic, then .w;�/�
.w0;�0/.

Proof
The first part follows from a direct computation. For the second part, .Tw ; �w;	/ and
.Tw0 ; �w0;	0/ are maximally split by Lemma 2.2.3. The second part now follows from
[15, Proposition 9.2.1].

Definition 2.2.5
Let � be a tame inertial type.
(1) Define � to be m-generic if there is an isomorphism � Š �.s;�C �/ for some

s 2W.G/ and � 2X�.T / which is m-deep in alcove C 0.
(2) Define � W GK ! GLn.F/ to be m-generic if �ssjIK Š �.s;� C �/ for � 2

X�.T / which is m-deep in alcove C 0.
(3) We say that � (resp., �) is generic if it is n-generic (resp., 3n-generic).
(4) A lowest alcove presentation of � is a pair .s;�/ 2 W.G/ � X�.T / where

� 2 C 0 such that � Š �.s;�C �/ (which by definition exists exactly when �
is 0-generic).
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Remark 2.2.6
The results in Section 3.2 hold for � which are n-generic and � which are 2n-generic.
For Section 3.4, we will use .2n � 1/-generic to control the monodromy condition.
In most of Section 4, � will be .6n � 2/-generic because of representation-theoretic
input and a reliance on [12] to eliminate weights near the alcove walls. For example,
Proposition 4.1.3 requires the type to be 2n-generic, which combined with [12] forces
� to be .6n� 2/-generic. A more careful analysis would likely improve this bound.

Remark 2.2.7
Since the bounds for genericity do not depend on p, as p gets large, most semisimple
representations will be generic.

Concretely, � is m-generic if there exists an isomorphism � Š �.s;�C �/ with
�j C �j D .a1;j ; a2;j ; : : : ; an;j / such that, for all j ,

m< jai;j � ak;j j< p �m; for all 1� i ¤ k � n:

Remark 2.2.8
The notion of generic here is slightly stronger than that of [31] when nD 3 and [12]
in general. Comparing with Definition 2.1 in [31] and Definition 2 in [12], we see that
if � is m-generic as in Definition 2.2.5, then it is m-generic in the sense of [31] and
[12]. If it is m-generic in the sense of [31] and [12], then it is .m� 1/-generic in the
sense of Definition 2.2.5. The difference being that the first inequality above is strict.
Both [31] and [12] state genericity as a condition on a presentation as in (2.3), that
is, as a condition on the ˛j ’s. To compare the two definitions, note that if .s;�/ is a
lowest alcove presentation, then ˛j is in the Weyl group orbit of �j C �j .

Definition 2.2.9
We say that a tame inertial type � is regular if the characters appearing in � as in (2.3)
are pairwise distinct.

Note that 1-generic implies regular, but regular is a weaker condition.

Definition 2.2.10
A Serre weight is an irreducible representation of GLn.Fpf /. If � 2 X1.T / is a p-
restricted dominant weight, then F.�/ denotes the associated Serre weight which is
the socle of the (dual) Weyl module, W.�/, with highest weight �. A Serre weight
V is regular if V Š F.�/ for a regular p-restricted weight � (see discussion after
Lemma 2.1.5).
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We recall that the map � 7! F.�/ induces a bijection between X1.T /=

.p � 	/X0.T / and the set of isomorphism classes of Serre weights (see [15,
Lemma 9.2.4]).

Let w0 denote the longest elements of W.G/. Recall the self-bijection on regular
p-restricted weights defined by � 7!w0 � .��p�/ which induces a map R on regular
Serre weights (see [15, p. 54]). If we let ewh WDw0t�� , then

R
�
F.�/

�
D F

�
w0 � .�� p�/

�
D F.ewh � �/:

Note that ewh �C 0 is the highest p-restricted p-alcove.
We are now ready to state the Serre weight recipe following [23] and [15].

Definition 2.2.11 (see [15, Definition 9.2.5])
Let � be a generic semisimple n-dimensional representation of Gal.K=K/. Then,

W ‹.�/ WD
®
R
�
F.�/

�
W F.�/ is a Jordan–Hölder constituent of V .�jIK /

¯
;

where V .�jIK / denotes the semisimplification of a reduction modulo $ of V.�jIK /.
Define Wobv.�/�W

‹.�/ as in [15, Definition 7.1.3].

We give another characterization of the obvious weights.

PROPOSITION 2.2.12
Let � be generic and semisimple. Then for � 2X1.T /, F.�/ 2Wobv.�/ if and only if
�jIK Š �.w;�C �/ for some w 2W.G/.

Proof
See [15, Proposition 9.3.7].

COROLLARY 2.2.13
Let � be n-generic and semisimple. Then jWobv.�/j D .nŠ/

f .

Proof
Since � is n-generic, �jIK Š �.s;�C�/ for some �which is n-deep in C 0. We define
a map

W.G/!Wobv.�/;

� 7! F.�0/;

where .�s	.�/�1;�0C �/D .�;�/.s;�C �/ and 
 2X�.T / is the unique element up
to X0.T / such that .t��/ �C 0 is p-restricted. Explicitly,
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�0 D �.�C �/C p
 � �s	.�/�1	.
/� �D .t��/ ��� �s	.�/
�1	.
/: (2.6)

The inequality jh
;˛_ij � jh�;˛_ij< n from Lemma 2.1.5 coupled with the fact that
� is n-deep in C 0 implies that �0 is in the alcove .t��/ � C 0. By Proposition 2.2.12,
F.�0/ is in Wobv.�/, so that our map lands in the claimed set.

We now prove surjectivity. Consider any pair .
; �/, and let �0 be such that
.�s	.�/�1;�0 C �/D.�;�/ .s;�C �/. Assume that �0 is p-restricted. Any obvious
weight is of this form by Propositions 2.2.4 and 2.2.12. We claim then that .t��/ �C 0
is p-restricted and so .
; �/ is one of the pairs above. Since �0 is p-restricted, for any
coroot ˛_,

0�
ˇ̌
h�0C �;˛_i

ˇ̌
D
ˇ̌˝
�.�C �/C p
 � �s	.�/�1	.
/; ˛_

˛ˇ̌
� p.n� 1/:

Since � is n-deep in alcove C 0, we have n < jh�.�C �/;˛_ij< p�n. We conclude
that ˇ̌˝

p
 � �s	.�/�1	.
/; ˛_
˛ˇ̌
< n.p � 1/:

Set M D max˛_¹jh
;˛_ijº. We deduce that .p � 1/M < n.p � 1/ and so M < n.
SinceM <n and .t��/ �� is n-deep in its alcove, we deduce that �0 lies in the alcove
.t��/ �C 0. Since �0 is p-restricted so is .t��/ �C 0.

For injectivity, suppose that .�;�/.s;� C �/ 	.�
0;� 0/ .s;� C �/ mod .p �

	/X0.T /. Then restricting the part in X�.T / to Z, we see that .p � 	/
jZ 	
.p � 	/
0jZ mod .p � 	/nX�.Z/. Since p � 	 acts injectively on X�.Z/, we
deduce that 
jZ 	 
0jZ mod nX�.Z/, so after modifying 
0 by an element in
X0.T / we can now assume that 
 � 
0 2ƒR.

As observed at the beginning of the proof, the fact that � is n-deep in C 0 implies
that the part in X�.T / of .�;�/.s;� C �/ lies in alcove t�� � C 0. Thus, the above
equality implies an equality of alcoves .t��/ �C 0 D .t�0� 0/ �C 0. Combining this with
the decomposition eW DW a � shows that 
 D 
0 and � D � 0, thus giving what we
want.

Definition 2.2.14
We say that F.�/ 2Wobv.�/ is the obvious weight associated to w 2W.G/ ifw maps
to F.�/ in the bijection from the proof of Corollary 2.2.13. (Note that this depends
on the choice of .s;�/ such that �jIK Š �.s;�C �/ and � is n-deep in C0.)

PROPOSITION 2.2.15
Assume that � is d -generic with d � 1. Then for any lowest alcove presentation
.s0;�0/ of � , �0 lies .d �1/-deep in alcove C 0. Furthermore, if .s;�/ is a fixed lowest
alcove presentation of � , then the collection of lowest alcove presentations is given by®

.s0;�0/ 2W.G/�X�.T /
ˇ̌
.s0;�0C �/D .�;�/.s;�C �/; t�� 2

¯
:
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Proof
The proof is similar to that of Corollary 2.2.13. Fix a presentation .s;�/ with �
d -deep in C 0. For any other presentation .s0;�0/, .s0;�0 C �/ D .�;�/.s;�C �/ by
Proposition 2.2.4 so

�0 D .t��/ ��� �s	.�/
�1	.
/

as in (2.6). Since �0 2 C 0, for all ˛_,

0 <
ˇ̌˝
�.�C �/C p
 � �s	.�/�1	.
/; ˛_

˛ˇ̌
� p � 1:

The same argument in Corollary 2.2.13 shows that if M D max˛_¹jh
;˛_ijº, then
M < 2.

Thus, if � is d -deep in C 0, then �0 D .t��/ ��� �s	.�/�1	.
/ is .d � 1/-deep
in .t��/ � C 0. Since �0 is in C 0, we see that t�� 2 and �0 is .d � 1/-deep in C 0.
We have thus shown that all lowest alcove presentations occur in the set described in
the statement of the proposition.

Finally, we observe that any pair .s0;�0/ in the set described in the proposi-
tion indeed gives a lowest alcove presentation. This is because if t�� 2 , then
jh
;˛_ij � 1. Using that � is at least d -deep in C 0 and d � 1, we conclude that
�0 is also in C 0.

PROPOSITION 2.2.16
Let � be a weight which is d -deep in a p-restricted alcove C with d � n. Then
for any s 2 W.G/ and any lowest alcove presentation .s0;�0/ of �.s;�C �/, �0 is
.d � nC 1/-deep in C 0. Moreover, �.s;�C �/ is at least .d � nC 1/-generic.

Proof
The same argument as in Corollary 2.2.13 shows that .s0;�0C �/D .�;�/.s; �C �/

with .t��/ � C D C 0. The result now follows because jh
;˛_ij � n � 1 for all
coroots ˛_.

2.3. Inertial local Langlands
In this section, we establish some simple instances of the inertial local Langlands fol-
lowing [11, Section 2.4]. We let Bn �GLn be the Borel subgroup consisting of upper
triangular matrices. Fix an isomorphism i W Qp Š C. As above let K � Qp be the
unramified extension of degree f . Let recK;C denote the local Langlands correspon-
dence for GLn.K/ of [21]. Using i , define a local Langlands correspondence recK
over Qp such that i ı recK D recK;C ı i . We first recall the existence statement.
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THEOREM 2.3.1
Let � be an inertial type. Then there is a finite-dimensional smooth irreducible
Qp-representation �.�/ of GLn.OK/ such that if 	 is any irreducible smooth Qp-
representation of GLn.K/, then 	jGLn.OK / contains a unique copy of �.�/ as a
subrepresentation if and only if recK.	/jIK Š � and N D 0 on recK.	/. If 	 is an
irreducible smooth Qp-representation of GLn.K/ such that

HomGLn.OK /.IndGLn.k/
Bn.k/

�niD1 �i ; 	/¤ 0;

then recK.	/jIK Š
Ln
iD1 �i ıArt�1K jIK .

Proof
The first part is [6, Theorem 3.7]. We now prove the second part. One proves
as in the proof of [11, Proposition 2.4.1(ii)] that 	 is a subrepresentation of

n�IndGLn.K/
Bn.K/

ı
�1=2
Bn

�niD1e�i , for some e�i extending �i as in [11, Proposition 2.4.1(ii)].
Then the result follows as in [11, Proposition 2.4.1(ii)] (though N.	/ is not necessar-
ily zero in our context).

What we will need is an explicit �.�/ in the case when � is a tame inertial
type. Let K 0=K denote an unramified extension of degree r with residue fields k0=k.
A character � W k0�!Q

�

p is primitive if all its Gal.k0=k/-conjugates are distinct. Fol-
lowing [23, Section 4], let �.�/D .�1/r�1R�Tw denote the cuspidal representation of
GLr.k/ parameterized by � .

PROPOSITION 2.3.2
Let � W k0�! Q

�

p be a primitive character. Let � D
Lr�1
iD0.� ı Art�1K0 /

.i/jIK , where
�.i/ denotes the i th Frobenius twist. Then �.�/ can be taken to be �.�/ interpreted
as a GLr.OK/-representation via the reduction map GLr .OK/!GLr.k/.

Proof
See [11, Proposition 2.4.1(i)].

Definition 2.3.3
Let nD

P`
jD1 rj be a partition of n. For each j , let �j be a primitive character for the

extension of degree rj of k. Define PInd.�.�1/; : : : ; �.�`// to be the parabolic induc-
tion to GLn.k/ of

N
j �.�j / as a representation of the rational points of a parabolic

P 
B with Levi subgroup
Q
j GLrj .

PROPOSITION 2.3.4
Let � D

L`
jD1 �j , where �j is a cuspidal inertial type associated to primitive char-
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acters �j of degree rj as in Proposition 2.3.2. Assume that the cuspidal types �.�j /
are pairwise distinct. Then �.�/ can be taken to be PInd.�.�1/; : : : ; �.�`//.

Proof
This follows from Section 6 of [37], where �.�/ is constructed as �P .�/ for maxi-
mal P (see also Section 3.6 of [6]). In the case of principal series, see also Proposi-
tion 2.4.1(ii) in [11].

COROLLARY 2.3.5
Let � D �.w;�/ be a regular tame inertial type (Definition 2.2.9). Then �.�/ can be
taken to be Rw.�/.

Proof
As in Definition 2.2.1, we immediately reduce to the case in which w D .s� ; id;
: : : ; id/. The condition of being regular corresponds to the pairwise distinctness con-
dition in Proposition 2.3.4. Finally, we use Lemma 4.7 of [23] to relate the parabolic
induction in Proposition 2.3.4 to the Deligne–Lusztig representation Rw.�/.

From now on, for any regular tame inertial type, we let �.�/ be as in Corol-
lary 2.3.5.

Remark 2.3.6
Note that, for a regular tame inertial type � , by Corollary 2.3.5 and (2.4)

V.�/Š �.�/:

3. Local results
In this section, we prove the main results on reductions of potentially crystalline rep-
resentations which will be used for weight elimination in Section 4.1.

3.1. Étale '-modules
In this section, we consider étale '-modules associated to affine Weyl group elements
and determine their corresponding semisimple Galois representations. The key result
is Proposition 3.1.2, which relates the Galois representation to the tame types defined
in Section 2.2.

Let OE denote the p-adic completion of SŒ 1
v
�, where S WD OK�v� is endowed

with a Frobenius morphism ' extending the Frobenius on OK such that '.v/D vp .
Let R be a local, complete Noetherian O-algebra with finite residue field. By base
change, the ring OE b̋ZpR is naturally endowed with a Frobenius endomorphism
', and we write ˆ-Modét.R/ for the category of étale .';OE b̋ZpR/-modules. Its
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objects are finite-type projective modules M over OE b̋ZpR, endowed with a Frobe-
nius semilinear endomorphism �M WM!M inducing an isomorphism on the pull-
back: id˝' �M W '�.M/

�
�!M.

Since K1=K is totally wildly ramified, the subgroup GK1 of GK projects sur-
jectively to the tame quotient of GK . Hence, the restriction map

ReptF.GK/! RepF.GK1/

is fully faithful, where Rept denotes the subcategory of tame representations. We
use ReptF.GK1/ to denote the essential image of this map and will often implic-
itly identify these representations of GK1 with their canonical extensions to GK .
Note that this essential image contains exactly representations of GK1 which
are trivial on GK1 \ GKt , where Kt is the maximal tamely ramified extension
of K .

For any complete local Noetherian O-algebra R with finite residue field, by the
theory of norm fields, there is an antiequivalence of categories (see [30, Lemma 1.2.7]
for a version with coefficients)

V� Wˆ-Modét.R/! RepR.GK1/:

IfK 0 is finite unramified extension ofK , letK 01 DK1˝K K
0, and we can similarly

consider the category of étale '-modules overK 0 denotedˆ-Modét
K0.R/ together with

the antiequivalence V�K0 Wˆ-Modét
K0.R/! RepR.GK01/.

For any .M; �M/ 2 ˆ-Modét.R/, we decompose M D
L
j M.j / over embed-

dings �j W W.k/ ! O with the induced maps �.j /
M
W M.j / ! M.jC1/. We are

now ready to define “semisimple” étale '-modules. We fix an embedding eW _ D
X�.T /�W.GLn/ ,! NGLn.T /.F..v/// given by � 7! v	 and identifying W.GLn/
with the subgroup of permutation matrices. Here, for � D .a1; : : : ; an/ we define
v	 to be the diagonal matrix with entries vai . (We interpret X�.T / as the group
of cocharacters of the dual torus, and v	 is the associated cocharacter evaluated
at v.)

Definition 3.1.1
For any ew D .ewj / 2 eW _ and D D .Dj / 2 T .F/, define M.ew;D/ 2 ˆ-Modét.F/

to be the free module over OE ˝Zp F of rank n such that the Frobenius �.j /
M

is
given by the matrix Dj ewj 2 NGLn.T /.F..v/// (with respect to the standard basis).
Set M.ew/ WDM.ew; Id/.
PROPOSITION 3.1.2
Let M.ew;D/ be as in Definition 3.1.1 with ewD st	 2 eW _. Then, V�.M.ew;D// lies
in ReptF.GK1/ and
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V�
�
M.ew;D/�jIK Š �.s�;��/:

In particular, the restriction to inertia does not depend on D.

Proof
Assume that .s�1 ;�

�
1/ � .s

�
2 ;�

�
2/ via conjugation by .
�; ��/. Then for any D1 2

T .F/, there exists a D2 2 T .F/ such that '-conjugation by t��1.�/� induces an
isomorphism M.s1t	1 ;D1/ Š M.s2t	2 ;D2/ by (2.2) . For any ew, by an appro-
priate conjugation, we can assume ewj D 1 for j ¤ f � 1. Let ewf �1 D s�10 t	0
with �0 D .a1; : : : ; an/ 2 Zn, and let r denote the order of s0. Consider the base
change

M0 WDM.ew;D/˝W.k/W.k0/;
where k0=k is a finite extension of degree r . Let �M0 denote the Frobenius on M0.
A straightforward computation as in [32, Lemma 3.3.3] shows that there exists a basis
.ei / for .M0/.0/ (the piece corresponding to the fixed embedding � 00 W W.k

0/! O)
such that

�
f r

M0
.ei /D div

Pr�1
mD0 asmC1

0
.i/
pfm

ei

for some scalars di determined by D. Following Proposition 2.1.7 in [8] and using
our choice of embedding � 00 W W.k

0/ ! O, one can determine V�K0.M
0/ from

�
f r

M0
. If K 01 D K1 ˝W.k/ W.k

0/, then there are unramified characters �i such
that

V�K0.M
0/Š

� nM
iD1

�i!

Pr�1
mD0p

fma
s
mC1
0

.i/

rf

�ˇ̌̌
G
K01

:

Hence, V�.M.ew;D// is tame, and by comparison with (2.3),

V�
�
M.ew;D/�jIK Š ��.s0; 1; : : : ; 1/; .�0; 0; : : : ; 0/�:

3.2. Semisimple Kisin modules
In this section, we generalize [31] from GL3 to GLn and study reductions of Kisin
modules with descent. For the convenience of the reader, we first state the main theo-
rem which is used for weight elimination in Section 4. The theorem will be a conse-
quence of Theorem 3.2.26 about reductions of Kisin modules with descent data. The
proof appears at the end of the subsection.

THEOREM 3.2.1
Let � Š �.s;� C �/ be 1-generic with lowest alcove presentation .s;�/, and let
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� 2X�.T /. Let � be the reduction of a potentially crystalline representation of type
.�; �/. Assume that either (1) � is a principal series type and �ss is a direct sum of
characters or (2) �D � and � is generic. Then there exists .w; 
/ 2W.G/�X�.T /
such that

�ssjIK Š �.w; 
C �/ and s�1t��	w 2Adm.�/:

Remark 3.2.2
The element s�1t��	w in Theorem 3.2.1(2) is later defined to be ew�.�; �/ in Defini-
tion 4.1.6.

We continue to use the notation of Section 2.2. Let � W IK ! GLn.E/ be a tame
inertial type. We will assume throughout that � is 1-generic and fix a lowest alcove
presentation .s;�/ where � 2 C 0 (i.e., � Š �.s;�C �/).

If s D .s0; : : : ; sf �1/ and � D .�j /0�j�f�1 2 X
�.T /, we take s�

def
D

s0sf �1sf �2 � � � s1 2 W.GLn/ and ˛.s;	/ 2 X�.T / such that ˛.s;	/;j D s�11 s�12 � � �

s�1j .�j C �j / for 1 � j � f � 1 and ˛.s;	/;0 D �0 C �0. Let r denote the order of
s� and f 0 D rf . As in Definition 2.2.1, �.s;�C �/ Š �..s� ; 1; : : : ; 1/;˛.s;	//, and
concretely,

� Š

nM
iD1

�i with �i WD !

P
0�k�r�1 a.0/

.s;�/;sk� .i/
pf k

f 0
; (3.1)

where a.0/
.s;	/
D
Pf �1
jD0 ˛.s;	/;jp

j 2 Zn (compare with (2.3)). By fixing a choice of
lowest alcove presentation, we also fix the order of the characters �i as above.

Remark 3.2.3
In [31] and [32], the notion of lowest alcove presentation does not appear. Everything
is written for presentations of the form �..s� ; 1; : : : ; 1/;˛.s;	// (see, e.g., the begin-
ning of Section 2.1, Section 6.1 of [31], or Section 3.1 of [32]). In the notation of
Section 6.1 of [31] and Section 3.1 of [32], ˛.s;	/;j D .a1;j ; a2;j ; a3;j /. If

sor WD .s
�1
1 s�12 � � � s

�1
f �1; s

�1
1 s�12 � � � s

�1
f �2; : : : ; s

�1
1 ; 1/ 2W.G/;

then s�or.˛.s;	// D � C �, and conjugation by .0; s�or/ changes one presentation to
the other. The element sor is called the orientation of ˛.s;	/ (see Definition 2.6 and
equation (2.2) in [31]).

Remark 3.2.4
Comparing (3.1) with the equation at the beginning of [31, Section 2.1] or [32, Sec-
tion 3.1], the exponents differ by a minus sign. This is because of a dual that appears
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in Definition 3.2.5 which makes everything consistent. See Remark 3.2.7 for more
details.

We continue to write K (resp., K 0) for the unramified extension of Qp of degree

f (resp., f 0
def
D f r ). If r D 1, we say that � is a principal series type. Otherwise,

we write � 0 for the base change of � to K 0=K (which is just � considered as a
principal series type for GK0 ). We record the relevant data for � 0. Define ˛0

.s;	/
2

X�.T /Hom.k0;F/ ŠX�.T /f
0

(using the fixed choice of embedding � 00) by

˛0.s;	/;jCkf WD s
�k
� .˛.s;	/;j / for 0� j � f � 1; 0� k � r � 1:

If �K0.w0;�0/ is the analogous construction of tame types over K 0 for .w0;�0/ 2
.W.GLn/ � X�.T //Hom.k0;F/, then � 0 Š �K0.1;˛0.s;	// by direct comparison using

(3.1). The orientation s0or 2W.GLn/f
0

of ˛0
.s;	/

in the sense of Definition 2.6 in [31]
is given by (compare with [31, Proposition 6.1])

s0or;jCkf WD s
kC1
� sor;j for 0� j � f � 1; 0� k � r � 1: (3.2)

Note that ˛0
.s;	/;jCkf

is in the W.GLn/-orbit of �j C �j . If .s;�/ is a lowest
alcove presentation with � m-deep in alcove C 0, then for all coroots ˛_ of GLn and
0� j 0 � f 0 � 1,

m<
ˇ̌
h˛.s;	/;j 0 ; ˛

_i
ˇ̌
< p �m and

.s0or;j 0/
�1.˛0.s;	/;f 0�1�j 0/D �f �1�j C �f �1�j is dominant;

(3.3)

where j 	 j 0 mod f .

Define L0 WD K 0.$r/ D K 0..�p/
1

prf �1 /, and let �0 WD Gal.L0=K 0/ � � WD
Gal.L0=K/. Note that � defines an O-valued representation of �0. For any com-
plete local Noetherian O-algebra with residue field F0 finite over F, let SL0;R WD

.W.k0/˝Zp R/�u0�. We endow SL0;R with an action of � as follows. For any � in

�0, �.u0/D �.$r /
$r

u0 and � acts trivially on the coefficients. If � 2Gal.L0=Qp/ is the

lift of Frobenius on W.k0/ which fixes $r , then �f generates Gal.K 0=K/ acting in
the natural way on W.k0/ and trivially on both u0 and R. Set vD .u0/p

rf �1, and note
that

.SL0;R/
D1 D

�
W.k/˝Zp R

�
�v�:

As usual, ' WSL0;R!SL0;R acts as � on W.k0/, acts trivially on R, and sends u0 to
.u0/p .

For any positive integer h, let Y Œ0;h�;� .R/ be the category of Kisin modules over
L0 with tame descent of type � and height in Œ0; h� as defined in Section 3 of [7] if
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� is a principal series type. For other types, we refer to Section 6 of [31] for further
background.

Definition 3.2.5
An element .M; �M; ¹bgº/ 2 Y Œ0;h�;� .R/ is a Kisin module .M; �M/ over SL0;R ([31,
Definition 2.3]) with height less than h together with a semilinear action of � which
commutes with �M such that, for each 0� j � f 0 � 1,

M.j / mod u0 Š �_˝O R

as �0-representations. In particular, the semilinear action induces an isomorphism
.�f /�.M/ŠM (see [31, Section 6.1]) as elements of Y Œ0;h�;�

0
.R/.

Remark 3.2.6
As explained in [31, Section 6.1], the data of an extension of the action of �0 to an
action of � is equivalent to the choice of an isomorphism .�f /�.M/ŠM satisfying
an appropriate cocycle condition. We will use both points of view interchangeably.

Remark 3.2.7
The appearance of �_ in the definition is due to the fact that we are using the con-
travariant functors to Galois representations to be consistent with [31] and [32] as
opposed to the covariant versions which appear in [7] and [11]. In [31], we did not
use the notation �_. Instead, we included it in our description of descent data by hav-
ing a minus sign in the equation before [31, Definition 2.1]. The notion of a Kisin
module with tame descent data of type � here is consistent with what appears in [31,
Definition 2.1].

Recall that we have fixed a lowest alcove presentation .s;�/ with � 2 C 0. Defi-
nitions 3.2.11 and 3.2.8 as well as the matrix of partial Frobenius A.j / below depend
on the choice of presentation (see Remark 3.2.12).

Recall the following definition.

Definition 3.2.8
For any complete local Noetherian O-algebra R, an eigenbasis ˇ for M 2 Y Œ0;h�;� .R/

is a (ordered) basis ˇ.j
0/ D .f

.j 0/
1 ; f

.j 0/
2 ; : : : ; f

.j 0/
n / of M.j 0/ for each 0 � j 0 < f 0

such that �0 acts on f .j
0/

i via the character ��1i from (3.1) and such that .�f /�.ˇ/D
ˇ (see [31, Definition 2.8] and [32, Definition 3.1.1] for details).

Note that, since the order of �0 is prime to p and O is assumed to be suffi-
ciently large, eigenbases exist for any M 2 Y Œ0;h�;� .R/ when R is a complete local
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Noetherian O-algebra as above. Given M 2 Y Œ0;h�;� .R/ together with an eigenbasis
ˇ, the matrix of the partial Frobenius �.j

0/

M;s0
or;j 0C1

.n/
with respect to ˇ is defined as in

Definition 2.11 of [31]. Namely, let �.j
0/

M;s0
or;j 0C1

.n/
W '�.M/

.j 0/
�
s0

or;j 0C1
.n/
!M

.j 0C1/
�
s0

or;j 0C1
.n/

be the Frobenius map on the �s0
or;j 0C1

.n/ isotypic pieces of M.j 0C1/ and '�.M/.j
0/,

respectively. For any 0� j 0 � f 0 � 1, set

a0.j
0/

.s;	/
D

f 0�1X
iD0

˛0.s;	/;�j 0Cip
i ; (3.4)

where �j 0C i is taken modulo f 0.
If ˇ.j

0C1/ D .f
.j 0C1/
1 ; : : : ; f

.j 0C1/
n /, then as in Lemma 2.9 in [31],

®
.u0/

a0.j
0C1/

.s;�/;i
�a0.j

0C1/

.s;�/;s0
or;j 0C1

.n/
f
.j 0C1/
i

¯n
iD1

is a basis of M.j 0C1/
�
s0

or;j 0C1
.n/

. Similarly, if ˇ.j
0/ D .f

.j 0/
1 ; : : : ; f

.j 0/
n /, then

®
.u0/

a0.j
0C1/

.s;�/;i
�a0.j

0C1/

.s;�/;s0
or;j 0C1

.n/
˝ f

.j 0/
i

¯n
iD1

is a basis for '�.M/
.j 0/
�
s0

or;j 0C1
.n/

. We order these bases such that the u0-multiple of

fs0
or;j 0C1

.i/ is the i th basis vector. Note that the orientation s0or is chosen such that, for

all i < k,

pf
0

� 1 > a0.j
0C1/

.s;	/;s0
or;j 0C1

.i/
� a0.j

0C1/

.s;	/;s0
or;j 0C1

.k/
> 0; (3.5)

so that all the exponents which appear are positive. The inequalities are strict because
� is regular (since � is 1-generic).

The matrix of the j 0th partial Frobenius with respect to these bases ordered as
above will be denoted by A.j

0/ DMatˇ .�
.j 0/

M;s0
or;j 0C1

.n/
/. We stress that the notion of

eigenbasis and the definition of A.j
0/ depend on the chosen presentation of � , as well

as our choice of the ordering of the characters in � . By our requirement that ˇ is �f -
invariant, A.j

0/ only depends on j 0 mod f . We also observe that the height condition
implies vh.A.j

0//�1 2Mn.R�v�/.
For any O-algebra R, define

� I.R/ WD ¹M 2GLn.R�v�/ jM mod v is upper triangularº;
� I1.R/ WD ¹M 2GLn.R�v�/ jM mod v is upper triangular unipotentº;
� for any m� 1, Dm.R/ WD ¹M 2GLn.R�v�/ jM mod vm is diagonalº.
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For any M 2Matn.R..u0/// and g 2GLn.R..u0///, define

Ad.g/.M/ WD gMg�1: (3.6)

We can now record the effect of changing the eigenbasis ˇ on the matrices A.j /,
which is the generalization of Propositions 2.15 and 2.16 in [31].

PROPOSITION 3.2.9
Let R be a complete local Noetherian O-algebra. Let M 2 Y Œ0;h�;� .R/ together with
two eigenbases ˇ.j / WD .f .j /1 ; f

.j /
2 ; : : : ; f

.j /
n / and ˇ0.j / WD .f 0.j /1 ; f

0.j /
2 ; : : : ; f

0.j /
n /

be related by

.f
0.j /
1 ; f

0.j /
2 ; : : : ; f 0.j /n /D.j / D .f

.j /
1 ; f

.j /
2 ; : : : ; f .j /n /

with D.j / 2 GLn.R�u0�/. Let us write A.j /
def
D Matˇ .�

.j /

M;s0or;jC1.n/
/ and A0.j /

def
D

Matˇ 0.�
.j /

M;s0or;jC1.n/
/ as above. Set I .j /

def
D Ad..s0or;j /

�1.u0/�a0.j /
.s;�//.D.j // 2 I.R/,

which only depends on j mod f . Then for all 0� j � f 0 � 1,

A0.j / D I .jC1/A.j /
�
s�j .I

.j /;'/.s�j /
�1
�
;

where

I .j /;'
def
D v	

�
j
C��

j
�
'.I .j //�1

�
v
�	�

j
���
j :

Furthermore, if � is m-deep in alcove C 0, then I .j /;' 2DmC1.R/.

Proof
The formula for change of basis only depends on M as a Kisin module over L0 for
the principal series type � 0. The fact that I .j / only depends on j mod f follows
from the fact that ˇ is fixed by �f . The rest of the proof is the same as in Proposi-
tion 2.15 of [31], but we note that the sj ’s which appear in Proposition 2.15 of [31]
are called s0or;j ’s here. We use that .s0or;jC1/

�1s0or;j D s
�
j by (3.2) and Remark 3.2.3.

Also, we use that, for 0� j � f � 1, .s0or;j /
�1.˛0

.s;	/;f �1�j
/D �f �1�j C �f�1�j

(see (3.3)). That I .j / 2 I.R/ follows from (3.5), which follows from the fact that
the characters appearing in � are distinct (see Proposition 4.6 in [7]). The fact that
I .j /;' 2DmC1.R/ is straightforward (compare with Proposition 2.16 in [31]).

Remark 3.2.10
In the situation of Proposition 3.2.9, we call the tuple .I .j // 2 I.R/f

0
the change of

basis tuple from ˇ to ˇ0. It satisfies I .j / D I .k/ if j 	 k mod f . Conversely, any
tuple in I.R/f

0
with this property is the change of basis tuple from ˇ to another
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eigenbasis ˇ0. (This uses our running assumption that � is 1-generic.) In other words,
given ˇ, the data of an eigenbasis ˇ0 is the same as the data of the tuple .I .j //.

Recall (from [7, Definition 5.5]) the notion of shape.

Definition 3.2.11
If � is a principal series type, the shape of a Kisin module M 2 Y Œ0;h�;� .F0/ is the ele-
ment ewD .ew0;ew1; : : : ;ewf�1/ 2 eW _ D .eW _/Hom.k;F/ such that, for any eigenbasis ˇ

and any 0� j � f � 1, the matrix A.j / DMatˇ .�
.j /

M;s0or;jC1.n/
/ lies in I.F0/ewjI.F0/.

(Recall the fixed inclusion eW _ ,!NGLn.T /.F..v/// before Definition 3.1.1.)
For a nonprincipal series type � , we define the shape via base change as in [31,

Definition 6.10]. By definition, an element M 2 Y Œ0;h�;� .F0/ consists of an element
M0 2 Y Œ0;h�;�

0
.F0/ together with an isomorphism .�f /�.M0/ ŠM0 satisfying the

cocycle condition as in [31, Definition 6.3]. By the principal series type case, we have
the shape of M0, which is an element ew0 D .ew00;ew01; : : : ;ew0f 0�1/ 2 .eW _/Hom.k0;F/. By

the isomorphism .�f /�.M0/ŠM0 and our requirement that eigenbases are compati-
ble with it, the components of ew0 corresponding to two embeddings k0 ,! F are equal
if they restrict to the same embedding k ,! F. In our numbering, this gives ew0j Dew0
jCf

. We then define the shape ew of M as the element ew D .ew00;ew01; : : : ;ew0f�1/ 2eW _ D .eW _/Hom.k;F/.

Remark 3.2.12
Proposition 3.2.9 shows that the shape of a Kisin module is well defined. The shape
of a Kisin module depends mildly on the choice of a lowest alcove presentation of �
(and the associated ordered characters �i in (3.1)). For a different choice of presenta-
tion, the shape changes by an outer automorphism of W a coming from the action of
the fundamental group (see [31, Corollary 2.24]). Everything we do depends on the
choice of a lowest alcove presentation, and we will always fix it at the outset before
talking about objects such as A.j / DMatˇ .�

.j /

M;s0or;jC1.n/
/, and so on.

Remark 3.2.13
The shape (Definition 3.2.19) is a kind of relative position between the two tame rep-
resentations �ss and � . The shape is closely related to the geometry of the potentially
crystalline deformation ring of type .�; �/ as studied in [31].

Recall the functor from Section 6.1 of [31]:

T �dd W Y
Œ0;h�;� .R/! RepR.GK1/:
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Let � 2 X�.T / be effective, that is, �j D .ai;j / with ai;j � 0. We will need finer
control of the shape of the Kisin module in the case when � is semisimple. For any �
that is effective, we have a closed substack Y �;� � Y Œ0;h�;� constructed in [7, Propo-
sition 5.2] (see also [31, Section 3.1]). Then for any finite extension F0=F, Y �;� .F0/ is
the full subgroupoid of Y Œ0;h�;� .F0/ (for any sufficiently large h) consisting of Kisin
modules whose shapes lie in Adm_.�/ by [7, Proposition 5.4].

Definition 3.2.14
Let M 2 Y Œ0;h�;� .F0/, where F0=F is a finite extension. We say that M is semisimple
of shape ewD .ewj / 2 eW _ if there exists an eigenbasis ˇ of M such that

A.j / DMatˇ .�
.j /

M;s0or;jC1.n/
/ 2 T

�
F0�v�

�ewj
for 0� j � f 0 � 1.

Remark 3.2.15
Since the set of monomial matrices (i.e., matrices that have at most one nonzero entry
in each row and column) in I.F0/ewjI.F0/ is exactly T .F0�v�/ewj , the above condition
is equivalent to A.j / being a monomial matrix.

PROPOSITION 3.2.16
If M is semisimple of shape ew D .ewj / 2 eW _, then there exists an eigenbasis ˇ such
that

A.j / 2 T .F0/ewj for 0� j � f � 1:

Proof
By definition, there exists an eigenbasis ˇ such thatA.j / DDj ewj forDj 2 T .F0�v�/.
Let Dj D Dj mod v. For 0 � j � f 0 � 1, set I .jC1/ D DjD

�1
j 2 I.F0/ with j

considered mod f . Then .I .j // 2 I.F0/f
0

defines an f 0-tuple as in Remark 3.2.10.
By Proposition 3.2.9, there is an eigenbasis ˇ1 for M such that the matrix of partial
Frobenius with respect to ˇ1 is

A
.j /
1 D I

.jC1/A.j /s�j .I
.j /;'/�1.s�j /

�1 DDj ewj s�j .I .j /;'/�1.s�j /�1:
Since I .j / 	 1 mod v and is an element of T .F0�v�/, s�j .I

.j /;'/�1.s�j /
�1 	 1

mod vp and is an element of T .F0�v�/. We conclude that A.j /1 D D1;j ewj , where
D1;j 	 Dj mod vp . Repeating this process, we can inductively construct a
sequence of eigenbases ˇm such that the matrix of partial Frobenius with respect
to ˇm has the form Dm;j ewj , where Dm;j 	 Dj mod vp

m
. The sequence ˇm

converges to an eigenbasis with the desired property.
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COROLLARY 3.2.17
Let .s;�/ be a lowest alcove presentation for � . If M 2 Y Œ0;h�;� .F0/ is semisimple of
shape ew 2 eW _, then T �

dd
.M/ is semisimple and (after extending coefficients)

T �dd .M/jIK ŠV�
�
M.ews�t	�C��/�jIK Š �.w; 
C �/;

where ews�t	� Dw�t�� .

Proof
The second isomorphism is from Proposition 3.1.2. This first isomorphism follows
from a direct computation of the étale '-module M D .MŒ1=u0�/D1 as in [32,
Proposition 3.1.2, Corollary 3.1.3]. We briefly go through the main points.

Let ˇ D .ˇ.j // be an eigenbasis for M as in Proposition 3.2.16. We start by
considering a basis ě0 for M

0
WD .MŒ1=u0�/

0D1 as follows: for 0 � j 0 � f 0 � 1,

if ˇ.j
0/ D .f

.j 0/
1 ; : : : ; f

.j 0/
n /, define ě0;.j 0/ D ..u0/a0.j 0/.s;�/:1f

.j 0/
1 ; : : : ; .u0/a

0.j 0/
.s;�/;nf

.j 0/
n /,

which is a basis for M
0.j 0/

. The matrix for �.j
0/

M
0 WM

0.j 0/
!M

0.j 0C1/
with respect toě0 is given by

s0or;j 0C1A
.j 0/.s0or;j 0C1/

�1.u0/
pa0.j

0/
.s;�/
�a0.j

0C1/
.s;�/ :

Since pa0.j
0/

.s;	/
� a0.j

0C1/

.s;	/
D .pf

0
� 1/˛0

.s;	/;f 0�1�j 0
, this is the same as

s0or;j 0C1A
.j 0/.s0or;j 0C1/

�1v
˛0
.s;�/;f 0�1�j 0 :

Define ěby ě.j 0/ D ě0.j 0/s0or;j 0 . Let j 0 D j C if for 0� j � f � 1. Then the matrix

for �.j
0/

M
0 with respect to ě is given by

A.j
0/.s0or;j 0C1/

�1s0or;j 0v
.s0

or;j 0
/�1.˛0

.s;�/;f 0�1�j 0
/
DA.j

0/s�j v
	�
j
C��

j

using (3.2) and (3.3). Since .�f /�.ě.j 0//D ě.j 0�f /, this descends to a basis of M WD

.MŒ1=u0�/D1 D .M
0
/�
fD1 such that Frobenius �.j /

M
WM

.j /
!M

.jC1/
is given by

A.j /s�j v
	�
j
C��

j DDj ewj s�j v	�jC��j
for D D .Dj / 2 T .F0/f using Proposition 3.2.16. Thus, M ŠM.ews�t	�C�� ;D/
(Definition 3.1.1).

Before proving the main theorems of the section, we show that, in generic situa-
tions, the Kisin module which gives rise to � is necessarily unique (if one exists); that
is, the Kisin variety is trivial.
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PROPOSITION 3.2.18
Assume that � is generic.
(1) Let M;M

0
2 Y �;� .F0/ for some finite extension F0=F. If T �

dd
.M/Š T �

dd
.M0/,

then MŠM0.
(2) Let M 2 Y �;� .F0/, and let � WD T �

dd
.M/. Define a groupoid

tM D
®
.M; ı0/

ˇ̌
M 2 Y �;�

�
F0Œ"�="2

�
; ı0 WM="M

�
�!M

¯
:

Then the functor T �
dd

induces a fully faithful functor

T �tan W tM! RepF0Œ"�="2.GK1/�

D
®
.�; �0/

ˇ̌
� 2 RepF0Œ"�="2.GK1/; �0 W � mod "

�
�! �

¯
:

Proof
We fix a lowest alcove presentation .s;�/ of � such that � is n-deep in alcove C 0 to
perform all calculations. For part (1), since the GK1 -representations are isomorphic,
we have MŒ1=u0�ŠM

0
Œ1=u0� as étale '-modules with descent datum. We pick two

eigenbases ˇ, ˇ0 of M, M
0
, and let .D.j // 2 .GLn.F0..u0////f

0
be the f 0-tuple which

expresses the basis ˇ0 in terms of ˇ as in Proposition 3.2.9. Note thatD.j / DD.jCf /,
since our eigenbases are compatible with the action of �f . The same computation in
the proof of [31, Theorem 3.2] with 2 replaced everywhere by n�1 (see Remark 2.2.8
for the comparison of the genericity in the present paper with that of [31]) now shows
that D.j / 2GLn.F0�u0�/ for all j .

Part (2) is similar to part (1). The argument in the proof of [31, Proposition 3.4]
adapts to our situation.

Definition 3.2.19
Assume that � is generic with a chosen lowest alcove presentation .s;�/. If there
exists M 2 Y �;� .F/ such that T �

dd
.M/Š �jGK1 , then define ew.�; �/ 2 Adm_.�/ to

be the shape of M. This is well defined by Proposition 3.2.18.

A key input for weight elimination is the following.

THEOREM 3.2.20
Assume that either (1) � is a regular principal series type or (2) � D � and � is
generic. If � has a potentially crystalline lift with type .�; �/ where � is effective, then
there is a Kisin module M 2 Y �;� .F/ such that T �

dd
.M/Š �jGK1 .

Proof
If � is a principal series type, this is direct consequence of [7, Proposition 5.4 and
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Corollary 5.18] (also see [7, Remark 5.6], which compares the stratification of the
moduli of the Kisin module with Definition 3.2.11). Proposition 5.4 in [7] crucially
uses results about local models from [37].

For case (2), by the case (1), there exists a Kisin module M
0
2 Y �;�

0
.F/ with

T �
dd;K0

.M
0
/ D �jG

K01
, where T �

dd;K0
is the analogous functor over K 0. Since �

extends to GK1 , we have an isomorphism � W .�f /�.M
0
Œ1=u0�/ŠM

0
Œ1=u0� (satisfy-

ing an appropriate cocycle condition; see [31, Section 6.1]). Since � is generic, by the
proof of Proposition 3.2.18, �..�f /�.M

0
//DM

0
inside M

0
Œ1=u0�. Thus, M

0
defines

an element of Y �;� .F/ and hence has shape in Adm_.�/.

Remark 3.2.21
Our definition of Adm_.�/ (Definition 2.1.1) is in terms of the Bruhat order on the
(extended) affine Weyl group for GLn using our choice of antidominant base alcove
for the standard apartment. The Bruhat order which appears in [7, Section 5] comes
from the closure relation on the affine flag variety with respect to the standard Iwahori
subgroup, the subgroup I.F/ of matrices which are upper triangular mod v. The sub-
group I.F/ is the stabilizer of the antidominant base alcove; hence the Bruhat order
(and hence the admissible set as well) in [7, Section 5] is the same as ours.

The following proposition gives us control on Y �;� .F0/.

PROPOSITION 3.2.22
Assume that � is generic. Let M 2 Y Œ0;n�1�;� .F0/, let ˇ be an eigenbasis of M, and let
A.j / DMatˇ .�

.j /

M;s0or;jC1.n/
/. Then the assignmentˇ0 7! .Matˇ 0.�

.j /

M;s0or;jC1.n/
//0�j<f 0

defines a bijection between the set of eigenbases ˇ0 such that ˇ0 D ˇ mod u0 and the
set tuples of the form .XjA

.j //0�j<f 0 such that
� Xj 2 I1.F

0/ for all j ;
� Xj DXk if j 	 k mod f .

Proof
Throughout this proof, we adopt the same notation as in Proposition 3.2.9: we let
.D.j // be the tuple of matrices expressing ˇ in terms of ˇ0, from which we get
the matrices I .j /, I .j /;' . Observe that the condition ˇ0 	 ˇ mod u0 is equivalent to
D.j / 	 1 mod u0 and also equivalent to I .j / 2 I1.F

0/. If these equivalent conditions
hold, then I .j /;' 	 1 mod vnC1, since � is assumed to be generic. We also observe
that if j 	 k mod f , then the j th and kth components of any tuple of matrices that
we work with are equal.

Since M 2 Y Œ0;n�1�;� .F0/ we have vn�1.A.j //�1 2Mn.F
0�v�/. This gives us a

bound on the denominators of .A.j //�1.
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First we check that our assignment is actually defined, in the sense that the col-
lection A0.j / DMatˇ 0.�

.j /

M;s0or;jC1.n/
/ associated to ˇ0 is really of the prescribed form.

By Proposition 3.2.9 we have

Xj DA
0.j /.A.j //�1 D I .jC1/A.j /

�
s�j .I

.j /;'/.s�j /
�1
�
.A.j //�1:

It is clear that Xj DXk if j 	 k mod f . As observed above, I .j /;' 	 1 mod vnC1;
hence we can write s�j .I

.j /;'/.s�j /
�1 D 1 C vnC1Yj with Yj 2 Mn.F

0�v�/. Since

vn�1.A.j //�1 2Mn.F
0�v�/, we get

Xj DA
0.j /.A.j //�1 D I .jC1/

�
1C vnC1A.j /Yj .A

.j //�1
�
2 I1.F

0/

as desired.
Next, we show that our assignment is surjective. Thus we are given .Xj / with

Xj 2 I1.F
0/, and we need to solve the system of equations

Xj D I
.jC1/A.j /

�
s�j .I

.j /;'/.s�j /
�1
�
.A.j //�1

with I .j / 2 I1.F
0/. To do this, we carry out the same limiting procedure as in the proof

of Lemma 2.20 of [31], using I .j /;' 	 1 mod vnC1 and vn�1.A.j //�1 2Mn.F
0�v�/

to establish convergence to a solution.
Finally, we show that our assignment is injective. This means that we have to

show that if there are two collections .I .j //; .I 0.j // 2 I1.F
0/f
0

corresponding to
eigenbases ˇ0; ˇ00 such that

I .jC1/A.j /
�
s�j .I

.j /;'/.s�j /
�1
�
.A.j //�1 D I 0.jC1/A.j /

�
s�j .I

0.j /;'/.s�j /
�1
�
.A.j //�1;

then I .j / D I 0.j / for all j . By replacing ˇ with ˇ00 and A.j / with A00.j /, we reduce to
the case when I 0.j / D 1. Thus, it suffices to show that if

I .jC1/A.j /
�
s�j .I

.j /;'/.s�j /
�1
�
.A.j //�1 D 1;

then I .j / D 1 for all j .
Indeed, by the observations at the beginning of the proof,

A.j /.s�j .I
.j /;'/.s�j /

�1/.A.j //�1 	 1 mod v2

for all j ; thus, I .j / 	 1 mod v2 for all j . Suppose that we already have I .j / 	
1 mod vı for some ı � 2 and for all j . Then I .j /;' 	 1 mod vpı�n�1, and
hence A.j /.s�j .I

.j /;'/.s�j /
�1/.A.j //�1 	 1 mod vpı�2n for all j . Hence, also

I .j / 	 1 mod vpı�2n for all j . Since pı � 2n > ı (the existence of a generic �
implies p > 2nC 1), this shows that I .j / 	 1 mod arbitrarily high powers of v for
all j . This shows I .j / D 1 for all j .
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We now discuss the notion of a gauge basis, which provides certain normal forms
for Kisin modules. For a root ˛ D �i � �j of GLn, recall that the .i; j /th entry of an
n � n matrix A is also called the ˛th entry and is denoted by A˛ . For any statement
?, define ı? to be 1 if ? is true and 0 if ? is false.

For any ew D wt� 2 eW _ and any ring R, we define the subset Uew.R/ �
GLn.R..v/// to be the set of X 2GLn.R..v/// satisfying the following conditions.
� The diagonal entries of X are in R�.
� For any root ˛ of GLn, the ˛th entry X˛ is of the form

P
i aiv

i 2 R..v//,
where ai D 0 unless ı˛<0 � i < �h
;˛_i C ıw.˛/<0. In particular, X˛ D 0
unless ı˛<0 <�h
;˛_i C ıw.˛/<0.

By a standard computation with affine root groups, the natural map

ewUew.F0/! I1.F
0/nI.F0/ewI.F0/

is a bijection, for any extension F0 of F.
The following definition generalizes Definition 2.22 of [31].

Definition 3.2.23
Let M 2 Y �;� .F0/ with shape .ewj /. A gauge basis ˇ for M is an eigenbasis for M
such that A.j / DMatˇ .�

.j /

M;s0or;jC1.n/
/ belongs to ewjUewj .F0/ for all 0� j < f .

Example 3.2.24
When nD 3, the list of �-admissible elements Adm_.�/ is given in [31, Table 1]. For
each ew 2 Adm_.�/ up to outer automorphism, [31, Table 4] lists the set ewjUewj .F/
which consists of the possible matrices of partial Frobenii for pairs .M; ˇ/ with shapeew, where ˇ is a gauge basis.

For � generic, Proposition 3.2.22 shows that gauge bases exist and are unique up
to scaling by the subgroup of T .F0/f

0
consisting of tuples whose j th and kth entries

are the same for j 	 k mod f .

Remark 3.2.25
Assume that � is generic. If M 2 Y �;� .F0/ is semisimple of shape ew D .ewj /, then
Proposition 3.2.16 shows that there is an eigenbasis ˇ with the property that A.j / D
Matˇ .�

.j /

M;s0or;jC1.n/
/ belongs to T .F0/ewj D ewjT .F0/ � ewjUewj .F0/. Such an eigen-

basis is therefore a gauge basis, and we deduce that the matrices of partial Frobenii
with respect to any gauge basis have this form. In particular, they are all mono-
mial matrices. Conversely, if there is a gauge basis for which the matrices of partial
Frobenii is monomial, then M 2 Y �;� .F0/ is semisimple, by Remark 3.2.15.
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THEOREM 3.2.26
Let � WGK!GLn.F/ be a semisimple representation, and let � be a 1-generic type.
Assume that either (1) � is a direct sum of characters, or (2) �D � and � is generic.
If there exists a Kisin module M 2 Y �;� .F/ such that T �

dd
.M/Š �jGK1 , then there

exist a finite extension F0=F and a semisimple Kisin module M
0
2 Y �;� .F0/ with shape

in Adm_.�/ (see Definition 3.2.14) such that (after extending scalars) T �
dd
.M
0
/ Š

�jGK1 . Furthermore, we can take F0 D F in case (2).

Proof
Let Mdd DMŒ1=u0�. It is an étale '-module over L0 with descent datum to K .

We first treat the case where � is a direct sum of characters. Since V�
dd

is an
equivalence of categories and � is a direct sum of characters, Mdd D

Ln
iD1Mi ,

where each Mi has rank 1, is stable under �Mdd
and the descent datum.

Let Y �;�
Mdd

be the Kisin variety parameterizing lattices in Mdd which lie in Y �;� ,

that is, which have shape in Adm_.�/. When � is principal series type, Y �;�
Mdd

is
defined as in Definition 3.1 in [31] and is shown there to be a projective scheme
over F. In general, we define Y �;�

Mdd
to be the closed subscheme of fixed points on

Y
�;� 0

Mdd
for the natural action of �f . Note that by assumption Y �;�

Mdd
is nonempty.

The torus T D Gnm acts on Mdd by scaling individually in each factor of the
above decomposition. As a consequence, we get an algebraic action of T on the pro-
jective variety Y �;�

Mdd
. Any such action has a fixed point (possibly after passing to a

finite extension F0 of F). Let M
0
� Y

�;�
Mdd

.F0/ be a T -fixed point. Let  i W T ! Gm

denote projection onto the i th coordinate, and set M
0

i WD .M
0
/ i . Then

M
0
D

nM
iD1

M
0

i : (3.7)

Since the T -action commutes with �Mdd
and�, each M

0

i is stable under both; hence

M
0

i is in fact a rank 1 Kisin module with descent datum. Any choice of eigenbasis
which respects this decomposition shows that M

0
is semisimple. Because M

0
is in

Y �;� .F0/, it is semisimple with an admissible shape ew 2Adm_.�/.
Now suppose that � is generic, but � is not necessarily a direct sum of charac-

ters. In this case, M is the unique element of Y �;� .F/ such that T �
dd
.M/Š �jGK1

by Proposition 3.2.18. We pick an unramified extension MK=K 0 such that �jG MK is a

direct sum of characters. Let M� be the base change of � to MK , and let MMDM˝W.k0/
W. Mk/ be the base change of the Kisin module M to MKL0. Since M� is still generic by

Lemma 3.3.1, MM is the unique lattice in MMŒ1=u0� which belongs to Y �; M� .F/. By the
above argument, the set of such Kisin lattices must have a semisimple element (pos-
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sibly after extending F); thus MM is semisimple. Fix a gauge basis ˇ of M, and let M̌

be the induced eigenbasis of MM. It is easy to check that it is a gauge basis of MM. By

Remark 3.2.25, the matrices of partial Frobenii of MM with respect to M̌ are monomial;
hence the same is true for the matrices of partial Frobenii of M with respect to ˇ.
This shows that M 2 Y �;� .F/ is semisimple.

Remark 3.2.27
In the proof of Theorem 3.2.26, while�0 acts on .M

0

1/
.j / mod u0 through one of the

characters of � , it need not be the same character for each j . This is why, even though
�M is “diagonal,” the individual A.j /’s need not be diagonal, but only monomial.

Proof of Theorem 3.2.1
If � is the reduction of a potentially crystalline representation of type .�; �/, by a
standard argument (see, e.g., [12, Lemma 5]), �ss is also the reduction (after possi-
ble extending scalars) of a potentially crystalline representation of type .�; �/. So,
without loss of generality, we assume that � is semisimple. After twisting, we may
assume that � is effective. Then, by Theorem 3.2.20 combined with Theorem 3.2.26,
after possibly replacing F by a finite extension, there exists a semisimple Kisin mod-
ule M 2 Y �;� .F/ of shape ew 2Adm_.�/ such that �jGK1 Š T

�
dd
.M/.

If we write

ews�t	�C�� Dw�t��C��
for .w; 
/ 2W.G/�X�.T /, then, by Corollary 3.2.17,

�ssjIK Š �.w; 
C �/:

Furthermore, by Lemma 2.1.4,

ew� D s�1t��	w 2Adm.�/:

3.3. Genericity conditions

LEMMA 3.3.1
Let K 0=K be an unramified extension. If � is an m-generic tame inertial type, then
� jIK0 is also m-generic. Similarly, if � WGK ! GLn.F/ is an m-generic representa-
tion, then �jGK0 is m-generic.

Proof
Let r be the degree of K 0=K . Let �K0 denote the analogous construction as in
Definition 2.2.1 with K replaced by K 0 (using the compatible .pr

0f � 1/-system
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of roots of �p from Section 1.1 for all r 0 and an embedding � 00 W K
0 ! E

extending �0). Then, for .w0;�0/ 2 W.G/r � X�.T /r , there is a tame inertial
type �K0.w

0;�0/ W IK0 ! GLn.O/. For .w;�/ 2 W.G/ � X�.T /, let �.w;�/ D
..w;w; : : : ;w/; .�;�; : : : ;�// 2W.G/r �X�.T /r . Then,

�.w;�/jIK0 Š �K0
�
�.w;�/

�
: (3.8)

This can be checked by direct computation. Alternatively, one can appeal to Propo-
sition 3.1.2, which says, in particular, that V�.M.w�t	� ;D//jIK Š �.w;�/ for any
D 2 T .F/. If k0 is the residue field of k, then restricting to GK0 corresponds to ten-
soring with k0 on the étale '-module side. We see immediately that

M.w�t	� ;D/˝k k
0

DM
�
.w�t	� ;w

�t	� ; : : : ;w
�t	�/;D

0
�

for D0 D .D; : : : ;D/ 2 T .F/r

and so �.w;�/jIK Š �K0.�.w;�//. Applying Teichmüller lifts yields (3.8).
Let G0 D Resk0=kG. Let C 00 be the analogous lowest alcove with k replaced by

k0 viewed as a subset ofX�.T /r˝R. Let � Š �.s;�C�/ with � m-deep in C 0. Then
clearly �.s; �/ is a lowest alcove presentation with �.�/ m-deep in C 00. The argument
for � is the same.

PROPOSITION 3.3.2
Let � be a 1-generic tame inertial type. Assume that � is semisimple and m-generic
where m > n. If � is the reduction of a potentially crystalline representation of type
.�; �/, then � is .m� n/-generic. In particular, if � is 2n-generic, then � is generic.

Proof
Let .s;�/ be a lowest alcove presentation for � . First, assume that � is a direct sum of
characters, and assume that � is a principal series. By Theorem 3.2.1, we have

�jIK Š �.w;�
0C �/

with s�1t	0�	w 2 Adm.�/. Define 
 D �0 � �. By Lemma 2.1.5, for any ˛_ 2 R_

we have ˇ̌
h
;˛_i

ˇ̌
� n� 1: (3.9)

Since � is m-generic, there exists .
0; �/ 2X�.T /�W.G/ such that

�.�0C �/C p
0 � �w	.�/�1	.
0/� �

is m-deep in alcove C 0. Hence, for any ˛_ 2R_,
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m<
ˇ̌˝
�.�0C �/C p
0 � �w	.��1/	.
0/; ˛_

˛ˇ̌
< p �m: (3.10)

Since � is in C 0,ˇ̌
h�0C �;��1˛_i

ˇ̌
D
ˇ̌
h�C �C 
; ��1˛_i

ˇ̌
< pC n� 1:

It follows that ˇ̌˝
p
0 � �w	.��1/	.
0/; ˛_

˛ˇ̌
< 2pC n�m� 1

for all ˛_ 2 R_. Let M D max˛_2R_¹jh

0; ˛_ijº. By choosing ˛_ so that

jh
0; ˛_ij D M in the above inequality, we get .p � 1/M < 2p C n � m � 1;
hence, M < 2. Thus, we have shown jh
0; ˛_ij � 1 for all ˛_ 2 R_. Hence, for all
˛_ 2R_, ˇ̌˝

�w	.��1/	.
0/; ˛_
˛ˇ̌
� 1: (3.11)

Since

�.�0C �/C p
0 � �w	.��1/	.
0/D �.�C �/C �.
/C p
0 � �w	.��1/	.
0/;

inequalities (3.9) (with ˛_ replaced by ��1˛_), (3.10), (3.11), and the equality �0 D
�C 
 together imply that

m� n <
ˇ̌˝
�.�C �/C p
0; ˛_

˛ˇ̌
D
ˇ̌
h�C �;��1˛_i C ph
0; ˛_i

ˇ̌
< p �mC n

for all coroots ˛_. It follows that, for any coroot ˛_, the integer h�C �;˛_i is not
congruent modulo p to any integer between n�m and m� n. But since � 2 C 0, for
any positive coroot ˛_ we also have that 0 < h�C �;˛_i < p, and thus we in fact
have

m� n < h�C �;˛_i< p �mC n:

This shows that � is .m� n/-generic.
Finally, if � is not the direct sum of characters or � is not a principal series, let

K 0=K be an unramified extension over which both become true. By Lemma 3.3.1,
�jGK0 is m-generic. We will use notation from the proof of Lemma 3.3.1. By (3.8),
�.s;�/ is a lowest alcove presentation for � jIK0 . The same argument as above with K
replaced by K 0 shows that �.�/ is .m� n/-deep in C 00. Hence, � is .m� n/-deep in
C 0.

3.4. Potential diagonalizability
Let � be a tame representation. The goal of this section is to show that, for certain
sufficiently generic tame types � , all potentially crystalline lifts of � of type .�; �/ are
potentially diagonalizable in the sense of [3]. The main theorem is the following.
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THEOREM 3.4.1
Let � Š �.s;�/ be a tame type with a lowest alcove presentation .s;�� �/ such that
�� � is .2n� 1/-deep in C 0. Let � WGK!GLn.F/ be a semisimple representation.
Assume that there exists M 2 Y �;� .F/ of shape .twj .�0//j , where wj 2W.GLn/ and
such that T �

dd
.M/ Š �jGK1 . Then the framed potentially crystalline deformation

ring R�;�� is nonzero and formally smooth.

Remark 3.4.2
The proof of Theorem 3.4.1 uses the techniques introduced in [31] for nD 3. When
nD 3, the shapes twj .�0/ as in the theorem correspond to the shapes ˛ˇ˛� and ˇ�˛�
(and their cyclic permutations) in the tables at the end of [31]. In [31, Table 6], the
reader can see that the deformation ring for these shapes is formally smooth.

For the rest of the section, we will be in the setting of the theorem. By Theo-
rem 3.2.26 and the uniqueness of M (see Theorem 3.2.18), M is semisimple. We fix
a gauge basis ˇ of M. By Remark 3.2.25, for all j , the matrices of the j th partial
Frobenius with respect to ˇ have the form

A
.j /
DDj v

wj .�0/ (3.12)

with Dj 2 T .F/.
We will need the following result, which gives a normal form for deformations

of the pair .M; ˇ/

PROPOSITION 3.4.3
Let R be complete local Noetherian O-algebra with maximal ideal m and residue
field F, and let � Š �.s;�/ be a type with ��� n-deep in C 0. Let M 2 Y Œ0;n�1�;� .R/
be such that M˝ FŠM. Then there exists an eigenbasis ˇ lifting ˇ such that the
matrices of partial Frobenii .A.j //0�j�f 0�1 with respect to ˇ satisfy the following
degree bounds:

A
.j /

ik
2 vıi>kRŒv� and has degree less than ıi�k C

˝
wj .�0/; "

_
k

˛
:

(Note that automatically A.j /
ik
2 vıi>kR�v�). Furthermore, such ˇ is uniquely deter-

mined up to scaling by the group ¹.tj / 2 ker.T .R/! T .F//f
0
j tj D tk for j 	

k mod f º.

Example 3.4.4
Let n D 3, let f D 1, and let � be a generic principal series type. Let M be a
Kisin module with shape t.1;2;0/ D ˇ�˛� in the notation of [31], and choose a gauge
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basis ˇ. Proposition 3.4.3 says that any lift M with height in Œ0; n� 1� has an eigen-
basis ˇ lifting ˇ such that the matrix A.0/ has polynomial entries with degrees0

@ 1 � 1 < 0

� 1 2 < 0

� 1 � 2 0

1
A ;

where the entries below the diagonal are divisible by v (compare with [31, Table 5]
where degree bounds are given for all admissible shapes).

Remark 3.4.5
Our method of proof for Proposition 3.4.3 can be adapted easily (with more burden-
some notation) to treat semisimple Kisin modules M of more general shapes. On the
other hand, the generalization to the situation where M is not semisimple requires
more work. We only treat the case covered in Proposition 3.4.3 in this paper as this is
all that we need. We leave the generalizations to future work.

Proof of Proposition 3.4.3
The proof is a straightforward generalization of the arguments in [31, Section 4]. As
in [31, Section 4], we introduce a semivaluation on R given by vR.r/Dmax¹k 2N j
k � 0; r 2mkº and vR.0/D1. For P D

P
i riv

i 2R�v�, define d.P /Dmini ..nC
3/vR.ri /C i/. For a matrix X with entries in R�v�, define d.X/ to be the minimum
of d.Xij /, where the Xij ’s are the entries of X , and for a tuple of matrices .Xj /j 2
Mn.R�v�/f

0
we define d..Xj /j /Dminj d.Xj /. Note that in all cases d takes values

in Z�0 [ ¹1º. We have:
� d.a C b/ � min¹d.a/; d.b/º for a, b both in either R�v�, Mn.R�v�/, or

Mn.R�v�/f
0
;

� d.ab/� d.a/C d.b/ for a, b both in either R�v� or Mn.R�v�/.
On any of the spaces R�v�, Mn.R�v�/, or Mn.R�v�/f

0
, the function kak D 2�d.a/

defines a norm, which is furthermore submultiplicative in the first two cases. Thus,
each of these spaces is endowed with a metric topology, which is easily checked to be
complete.

For each 0 � j � f 0 � 1, we define the truncation operator Trj WMn.R�v�/!

Mn.R�v�/ as follows: for X 2Mn.R�v�/,
� if i < k, then Trj .X/ik is the sum of the terms in Xik 2 R�v� of degree at

least hwj .�0/; "_k i;
� if i � k, then Trj .X/ik is the sum of the terms in Xik 2 R�v� of degree

greater than hwj .�0/; "_k i.
In other words Trj .X/ kills off precisely the part ofX that satisfies the degree bounds
on A.j / in the conclusion. It is clearly an idempotent additive map. We observe that
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our degree bounds are chosen precisely so that the image Trj is the subspace of
X such that Xv�wj .�0/ 2Mn.R�v�/ is integral and is furthermore upper triangular
nilpotent mod v.

Note also, since d.vP /D 1C d.P / for P 2R�v�, we have

d
�
Trj .X/v

�wj .�0/
�
� d

�
Trj .X/

�
� nC 1� d.X/� nC 1: (3.13)

We also define Tr WMn.R�v�/f
0
!Mn.R�v�/f

0
by Tr..Xj /j /D .Trj .Xj //j .

We will show that, for any given eigenbasis ˇ of M lifting ˇ, there is a unique ˇ0

lifting ˇ such that ˇ0 	 ˇ mod u0, and ˇ0 satisfies the conclusion of the proposition.
This proves the proposition, since the set of all possible ˇ’s mod u0 forms a torsor for
the group ¹.tj / 2 ker.T .R/! T .F//f

0
j tj D tk for j 	 k mod f º.

We now fix an eigenbasis ˇ lifting ˇ. Our strategy will be to interpret the problem
of finding ˇ0 as finding a fixed point for a certain mapping on a complete subspace
of Mn.R�v�/f

0
. We then show that this mapping is contracting on this subspace, and

the proposition follows by the contraction mapping theorem.
By Remark 3.2.10, prescribing any other eigenbasis ˇ0 of M is the same as

prescribing a change of basis tuple .I .j //j 2 I.R/f
0

such that I .j / depends only
on j mod f . The condition that ˇ0 also lifts ˇ is equivalent to I .j / 	 1 mod m,
and the condition that ˇ0 	 ˇ mod u0 is equivalent to I .j / 2 I1.R/. Thus, the tuple
.Xj /j D .I

.j / � 1/j satisfies
� Xj depends only on j mod f ;
� Xj 	 0 mod m;
� Xj is upper triangular nilpotent mod v.
This leads us to define the subspace V �Mn.R�v�/f

0
consisting of tuples satisfying

all these conditions. Clearly V is stable under componentwise addition and is easily
seen to be a closed subspace and, hence, is also complete.

Let .A.j //j be the tuple of matrices of partial Frobenii with respect to ˇ. Since

ˇ lifts ˇ, A
.j /

has the form given in (3.12); thus, we can decompose

A.j / DDj v
wj .�0/CMj

with Dj 2 T .R/ and Mj 2Mn.m�v�/. We can and will assume that this decomposi-
tion has been chosen so that Dj and Mj only depend on j mod f .

By Proposition 3.2.9, our problem of finding ˇ0 now reduces to finding .Xj /j 2
V such that for all j

Trj
�
.1CXjC1/

�
A.j /Ad.s�j v

	�
j /
�
'
�
.1CXj /

�1
��
D 0 (3.14)

by Proposition 3.2.9. (Recall that Ad.g/.M/ WD gMg�1.) To lighten the notation, we
put Yj D Yj .Xj /D Ad.s�j v

	�
j /.'..1CXj /

�1// and think of it as a function in Xj .
We now rewrite the left-hand side of the above equation as
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Trj
�
.1CXjC1/.Djv

wj .�0/CMj /
�
CTrj

�
.1CXjC1/A

.j /.Yj � 1/
�

D Trj .Dj v
wj .�0//CTrj .XjC1Djv

wj .�0//

CTrj
�
.1CXjC1/Mj

�
CTrj

�
.1CXjC1/A

.j /.Yj � 1/
�

DXjC1Dj v
wj .�0/CTrj

�
.1CXjC1/Mj

�
CTrj

�
.1CXjC1/A

.j /.Yj � 1/
�
;

where the last equality is due to the fact that XjC1 2Mn.R�v�/ is upper triangular
nilpotent mod v.

Thus (3.14) is equivalent to .Xj /j being a fixed point of the map H W V !
Mn.R�v�/f

0
given by

H
�
.Xj /j

�
D
�
�
�
Trj�1

�
.1CXj /Mj�1

�
CTrj�1

�
.1CXj /A

.j�1/
�
Yj�1.Xj�1/� 1

���
v�wj�1.�0/.Dj�1/

�1
�
j
:

Note that the assumption � � � is n-deep in C 0 implies that .Yj � 1/j 2 V , so that
each expression that gets truncated is indeed in the domain of definition of the appro-
priate truncation operator.

ClearlyH..Xj /j / satisfies the first property defining V . NowH..Xj /j / satisfies
the second property defining V , since truncation operators preserve the property of

being 0 mod m, and Mj D 0 mod m since A
.j /

satisfied the correct degree bounds.
Finally, the description of the image of Trj implies that H..Xj /j / satisfies the third
property defining V . Thus H maps V to V .

The proof of the proposition is complete once we have the following.

LEMMA 3.4.6
We have

d
�
H.a/�H.b/

�
� d.a� b/C 1

for a; b 2 V .

Proof
Put aD .Xj /j and b D .Xj C�j /j . Put ıD d.a� b/Dminj d.�j /.

On the .j C 1/th component, we have�
H.a/jC1 �H.b/jC1

�
Dj v

wj .�0/

D Trj .�jC1Mj /CTrj
�
.1CXjC1C�jC1/A

.j /
�
Yj .Xj C�j /� 1

��
�Trj

�
.1CXjC1/A

.j /
�
Yj .Xj /� 1

��
D Trj .�jC1Mj /CTrj

�
�jC1A

.j /
�
Yj .Xj C�j /� 1

��
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CTrj
�
.1CXjC1/A

.j /
�
Yj .Xj C�j /� Yj .Xj /

��
For the first term, since Mj 2Mn.m�v�/, d.Mj /� nC 3. Thus

d
�
Trj .�jC1Mj /

�
� d.�jC1/C d.Mj /� ıC nC 3:

For the second term, as observed before, Yj .Xj C �j / � 1 2Mn.m�v�/, and we
similarly have

d
�
Trj

�
�jC1A

.j /
�
Yj .Xj C�j /� 1

���
� ıC nC 3:

For the third term, we observe

d
�
Trj

�
.1CXjC1/A

.j /
�
Yj .Xj C�j /� Yj .Xj /

���
� d

�
Yj .Xj C�j /� Yj .Xj /

�
D d

�
�Ad.s�j v

	�
j /
�
'
�
.1CXj C�j /

�1
�
'.�j /'

�
.1CXj /

�1
���

� d
�
Ad.s�j v

	�
j /
�
'.�j /

��
D d

�
Ad.v	

�
j /
�
'.�j /

��
;

where the second inequality is due to the fact that Ad.s�j v
	�
j /.'.X// 2Mn.R�v�/ for

X 2 I1.R/. (This uses that � � � is 0-deep in alcove C 0.) For the diagonal entries,
we have

d
��

Ad.v	
�
j /
�
'.�j /

��
i i

�
D d

�
'.�j /i i

�
� p � 1C d

�
.�j /i i

�
� p � 1C ı � ıC n

by the observation that d.'.P //D pC d.'.P=v//� pC d.P=v/D p � 1C d.P /
for P 2 vR�v�. For the ˛th entry where ˛ is a root of GLn, we have

d
��

Ad.v	
�
j /
�
'.�j /

��
˛

�
D d

�
'.�j /˛

�
C h��j ; ˛

_i:

By the above observation, the fact that .�j /˛ 2 vR�v� for ˛ < 0, and the fact that
�� � is n-deep in alcove C 0, we conclude that for all roots ˛

d
��

Ad.v	
�
j /
�
'.�j /

��
˛

�
� ıC n:

Thus,

d
�
Trj

�
.1CXjC1/A

.j /
�
Yj .Xj C�j /� Yj .Xj /

���
� ıC n:

Putting everything together, we obtain

d
�
H.a/jC1 �H.b/jC1

�
� d

��
H.a/jC1 �H.b/jC1

�
Dj v

wj .�0/
�
� nC 1

� ıC n� nC 1D ıC 1

as desired.



2474 LE, LE HUNG, and LEVIN

Thus we deduce that the map H W V ! V is a contraction mapping. In particular,
H has a unique fixed point in V , which is what we wanted.

We call a basis as above a gauge basis (lifting ˇ) of the deformation M of M.
This is consistent with [31, Definition 4.15]. Since we have fixed the data .M; ˇ/, we
will suppress the dependence on ˇ.

For each 0 � j < f 0, the deformation problem that assigns to each Artinian O-

algebra A with residue field F the set of matrices Aj 2Mn.A�v�/ lifting A
.j /

and
satisfying the degree bounds in Proposition 3.4.3 is clearly representable by a com-
plete local Noetherian O-algebra Rj , which is a formal power series ring over O. It
carries the universal matrix Auniv

j .

For any Artinian O-algebra A with residue field F, let D�;ˇ

M
.A/ be the category

of pairs .MA; ˇA/ deforming .M; ˇ/, where MA 2 Y
�;� .A/ and ˇA is a gauge basis

of MA. We would like to give an “explicit” presentation for D�;ˇ

M
as in [31, The-

orem 4.17]. Define Rexpl
wj .�0/

to be the quotient of the formal power series ring Rj
above by the height � � relations:
� detAuniv

j D x�j .vC p/
n.n�1/=2 where x�j 2 .Rj �v�/�;

� .vCp/k.k�1/=2 divides each k�k minor of Auniv
j . Note that the condition that

.vC p/l divides P 2Rj �v� can be expressed as

P jvD�p D 0;
d

dv
P
ˇ̌̌
vD�p

D 0; : : : ;
� d
dv

�l�1
P
ˇ̌̌
vD�p

D 0;

which are algebraic conditions in the coefficients of P .

PROPOSITION 3.4.7
The functor D�;ˇ

M
is representable by the complete local Noetherian O-algebra

R
�;ˇ

M
D
dO

0�j<f
.R

expl
wj .�0/

/p-flat, red: (3.15)

Proof

By Proposition 3.4.3, there exists a closed immersion D�;ˇ

M
,! Spf b̋0�j<fRj (note

that Y �;� is closed in Y Œ0;n�1�;� ) so D�;ˇ

M
is representable by a quotient R�;ˇ

M
ofcN

0�j<fRj . By [7, Theorem 5.3], Y �;� is equisingular to the local model M.�/.

Since the addition of a gauge basis is formally smooth, R�;ˇ
M

is p-flat and reduced. It

suffices then to compare Qp-points of R�;ˇ
M

and cN0�j<f .R
expl
wj .�0/

/p-flat, red.

Let F=E be a finite extension with ring of integers OF . Let x WcN0�j<fRj !

OF with associated Kisin module Mx and the matrix of partial Frobenii given by
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Aj;x . By Theorem 5.13 in [7], Mx lies in Y �;� .OF / and, hence, D�;ˇ

M
.OF / if and

only if MxŒ1=p� has p-adic Hodge type � �. In our notation, MxŒ1=p� has p-adic
Hodge type � � if, for each j , the filtration on M

.j /
x;�

s0or.n/
Œ1=p� is of type �j with

�j � �0. The filtration is induced by the partial Frobenius with matrix Aj;x and so
this is equivalent to the condition that the elementary divisors of Aj;x as a matrix over

F �v C p� are .v C p/	j for each 0 � j < f . Thus, Mx lies in D�;ˇ

M
.OF / if and

only if the elementary divisors of Aj;x as a matrix over F �v C p� are bounded by
.vC p/�0 for each 0� j < f . But this condition is exactly the divisibility condition
on the minors and the determinant condition onAj;x imposed by the relations defining
R

expl
wj .�0/

.

Let .Muniv; ˇuniv/ be the universal pair living over R�;ˇ
M

.

PROPOSITION 3.4.8
(1) Over R�;ˇ

M
, the universal matrices of partial Frobenii of Muniv with respect to

ˇuniv have the form

A.j /;univ DDuniv
j .vC p/wj .�0/U .j /;univ

for 0� j < f , where
� Duniv

j 2 T .R
�;ˇ

M
/ lifts Dj ;

� w�1j U .j /;univwj is lower triangular unipotent, and for any root ˛ D
"i � "k of GLn, its ˛th entry is a polynomial with topologically nilpo-
tent coefficients of the form v

ıwj .˛/<0f
.j /
˛ .v/, where degf .j /˛ .v/ <

�h˛_; �0i D i � k.

(2) R
�;ˇ

M
is the formal power series ring over O generated by the coefficients

X
.j /;l
˛ of f .j /˛ (where 0 � j < f , ˛ < 0 is a negative root of GLn, 0 � l <

�h˛_; �0i) and the variables c.j /i i D .D
univ
j /i i � Œ.Dj /i i � (where 1 � i � n,

0� j < f , and Œ�� denotes the Teichmüller lift).

Example 3.4.9
In the situation of Example 3.4.4, that is, for nD 3, f D 1, � a generic principal series
type, and M having shape t.1;2;0/ D ˇ�˛� , the proposition asserts that the universal

deformation of .M; ˇ/ living over R�;ˇ
M

has matrix of Frobenius of the form

0
@.vC p/c�11 .vC p/c12 0

0 .vC p/2c�22 0

vc31 v.c32C .vC p/c
0
32/ c�33

1
A ;
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where the starred coefficients are units and the nonstarred coefficients are topologi-

cally nilpotent. This is exactly what is given in Table 5 of [31]. The ring R�;ˇ
M

is a
power series ring over c12; c31; c32; c032; c

�
11 � Œc

�
11�; c

�
22 � Œc

�
22�; c

�
33 � Œc

�
33�.

Proof
(1) We work with fixed j and set B D w�1j A.j /;univwj . The fact that A.j /;univ obeys
the degree bounds in Proposition 3.4.3 implies that
� Bi i 2R

�;ˇ

M
Œv� and has degree � n� i ;

� for any root ˛ D "i � "k of GLn, v�ıwj .˛/<0Bik is in R�;ˇ
M
Œv� and has degree

less than n� k.
We claim that these conditions together with the height � relations force B to be

lower triangular, Bi i to be ui .vCp/n�i with ui 2 .R
�;ˇ

M
/�, and Bik to be divisible by

v
ıwj ."i�"k/<0.vCp/n�i . This finishes the proof, since we can then uniquely factorize

B DDj .vC p/
�0U

with Dj 2 T .R
�;ˇ

M
/ and U lower triangular unipotent (whose entries obey degree

bounds deduced from the bounds for B), and conjugating by wj yields the desired
factorization of A.j /;univ. Note that the nondiagonal entries of U are necessarily topo-
logically nilpotent since B is diagonal modulo the maximal ideal.

We now prove the claim by downward induction on the index of the rows and
columns. We start by showing the claim for entries in the nth column and nth row

of B . The degree bounds imply Bin D 0 for i < n, while Bnn 2 R
�;ˇ

M
. Furthermore,

Bnn is a unit since it lifts a unit in the residue field. The claim is empty for all other
entries of the nth row of B . Suppose the claim holds for all entries in the last k � 1
rows and columns. Then the induction hypothesis and the condition that each k � k
minor of A.j /;univ (and hence also each k � k minor of of B) is divisible by .v C
p/k.k�1/=2 imply the following.
� Looking at the minor formed by the last k columns, the last .k � 1/ rows, and

the i th row of B for i � n� kC 1, we get

.vC p/k.k�1/=2 jBi.n�kC1/

k�2Y
lD0

un�l.vC p/
l I

thus, .vC p/k�1 j Bi.n�kC1/. For i D n� k C 1, since B.n�kC1/.n�kC1/ has
degree � k � 1, we must have B.n�kC1/.n�kC1/ D u.n�kC1/.vC p/k�1, and
u.n�kC1/ is a unit since it lifts a unit in the residue field. On the other hand,
for i < n� k C 1, the degree bounds imply that Bi.n�kC1/ is of the form vı

times a polynomial of degree less than k � 1, for ı 2 ¹0; 1º. However, if p is
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regular in a ring R, then the condition that vP is divisible by .v C p/l for
P 2RŒv� is equivalent to P being divisible by .vCp/l . (This can be seen by
using the interpretation of this condition in terms of vanishing up to .l � 1/th-

order derivatives of P evaluated at v D �p.) Since p is regular in R�;ˇ
M

, we
conclude that Bi.n�kC1/ D 0.

� Looking at the minor formed by the last k rows, the last k � 1 columns, and
the i th column of B for i < n� kC 1, we get

.vC p/k.k�1/=2 jB.n�kC1/i

k�2Y
lD0

un�l.vC p/
l I

thus, .v C p/k�1 j B.n�kC1/i . We get the claim about divisibility by

v
ıwj ."n�kC1�"i /<0.vC p/k�1 of B.n�kC1/i by the same reasoning as above.

(2) We observe that, for a polynomial P 2RŒv� with given degree, the condition
that P is divisible by .vC p/l is equivalent to solving the first l coefficients of P in
terms of the remaining ones.

Thus, for j , there is a quotient eRj of the ring Rj over which the universal matrix
with degree bounds Auniv

j has the form in the first part of the proposition (as this
is equivalent to asking that each entry either is 0 or is divisible by certain powers
of v C p and v), and eRj is exactly the power series ring in the variables described
in the second part of the proposition. Furthermore, as the specialization of the uni-
versal matrix Auniv

j to eRj clearly satisfies the determinant and the height conditions

defining Rexpl
wj .�0/

, we conclude that there is a factorization Rj �R
expl
wj .�0/

� eRj . Part

(1) then shows that there is a factorization cN0�j<fR
expl
wj .�0/

�cN
0�j<f

eRj �R
�;ˇ

M
.

But since cN0�j<f
eRj is a power series ring—hence reduced and p-flat—and R�;ˇ

M

is the maximal reduced and p-flat quotient of cN0�j<fR
expl
wj .�0/

, the last quotient map
is an isomorphism.

We now recall the monodromy condition on the universal Kisin module Muniv

over R�;ˇ
M

, as in [31, Section 5.1] and [28]. We refer to [31] for undefined sym-

bols. On Muniv˝O
rig

R
�;ˇ

M

, there is a canonical derivation over the differential operator

��u0 d
d.u0/

, the monodromy operator, which is meromorphic along �. (In fact, it has
poles of order � n � 2 due to the finite height conditions we imposed.) The mon-
odromy condition is the condition that this operator has no poles. On the closed points

of SpecR�;ˇ
M
Œ 1
p
�, this condition precisely cuts out the (Zariski-closed) locus where the

induced Kisin module comes from a potentially crystalline representation (which is
necessarily of inertial type � and Hodge–Tate weight � �).
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We recall some more deformation problems attached to the current situation, sim-
ilar to [31, Definition 5.10] (when � is principal series) and [31, Section 6.2] (for gen-
eral � ). All data below are understood to be compatible with the given data �, M, ˇ,
and so on.
(1) R

�;�
� is the framed potentially crystalline deformation ring of type .�; �/ as in

[29]. By [29, Theorem 3.3.4], if this ring is not zero, it has Krull dimension
dimR�;�� D

n.n�1/f
2
C n2 C 1. We denote the deformation problem it repre-

sents as D�;�
� .

(2) Let R�;�
M;�

denote the complete local Noetherian O-algebra which represents
the deformation problem

D
�;�
M;�

.A/ WD
®
.MA; �A; ıA/

ˇ̌
MA 2 Y

	;� .A/;

�A 2D
�;�
� .A/; ıA W T

�
dd .MA/Š .�A/jGK1

¯
:

Thanks to Proposition 3.2.18 (and our running hypothesis that � is generic),
this deformation problem is representable and, in fact, is representable byR�;��
as explained in [31, Section 5.2].

(3) Let R�;ˇ;�
M;�

denote the complete local Noetherian O-algebra which represents
the deformation problem

D
�;ˇ;�
M;�

.A/D
®
.MA; �A; ıA; ˇA/

ˇ̌
.MA; �A; ıA/ 2D

�;�
M;�

.A/;

ˇA a gauge basis for MA

¯
:

(4) Let R�;ˇ;�
M

denote the complete local Noetherian O-algebra which repre-
sents the deformation problem of triples .MA; ˇA; eA/, where .MA; ˇA/ 2

D
�;ˇ

M
.A/ and eA is a basis of T �

dd
.MA/ lifting the basis on �jGK1 so that

.T �
dd
.MA/; eA/ is a framed deformation of �jGK1 .

(5) Let R�;ˇ;r
M

denote the O-flat and reduced quotient of R
�;ˇ

M
such that

SpecR�;ˇ;r
M

Œ1=p� is the locus where the monodromy condition holds on

SpecR�;ˇ
M
Œ1=p�. We define R�;ˇ;�;r

M
from R

�;ˇ;�
M

in a similar way.

We recall [31, Diagram (5.9)], which summarizes the relationship between the
above deformation problems. The square is Cartesian and “f.s.” stands for “formally
smooth.”
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SpfR�;ˇ;�;r
M

f:s:

SpfR�;ˇ;r
M

SpfR�;ˇ;�
M;�

f:s:

�

SpfR�;ˇ;�
M

f:s:

SpfR�;ˇ
M

SpfR�;�� SpfR�;�
M;�

�

(3.16)

The maps which are formally smooth correspond to forgetting either a framing on
the Galois representation or a gauge basis on the Kisin modules. (The fact that adding
gauge basis is a formally smooth operation is due to Proposition 3.4.3.) The fact
that the horizontal arrow below the dotted arrow is a closed immersion is due to our
assumption that � is (at least) generic, which implies ad.�/ is cyclotomic free (e.g., by
looking at the inertial weights, which are easily read off by applying Corollary 3.2.17),
and hence the argument of [31, Proposition 5.11] applies. This shows that if the dotted
arrow exists, then it must be a closed immersion. We show below that the dotted
arrow exists and is furthermore an isomorphism. The fact that it is an isomorphism
rather than just a closed immersion is because, in the present situation, the elementary
divisors of the matrices of partial Frobenii of M with respect to ˇ are exactly .v C
p/�0 , and thus, no lift M of M can satisfy a height � � relation for � < �.

PROPOSITION 3.4.10
The natural map R�;ˇ

M
! R

�;ˇ;�
M;�

factors through the quotient R�;ˇ;r
M

. The induced
map � is an isomorphism.

Proof
The proof is completely analogous to the proof of [31, Theorem 5.12]. As both target
rings are reduced and p-flat, we only need to check that the factorization exists on
closed points of the generic fibers. However, this is just the statement that a Kisin
module coming from a potentially crystalline Galois representation satisfies the mon-
odromy condition.

To see that the map � is an isomorphism, we note that the only closed points in

SpecR�;ˇ;�;r
M

Œ 1
p
� that do not come from SpecR�;ˇ;�

M;�
Œ 1
p
� are those for which the j th

component of the underlying Kisin module has elementary divisors strictly dominated
by .vCp/�0 , for some 0� j < f . (This corresponds to the condition that the Hodge–
Tate weight of the j th embedding of the corresponding Galois representation is less
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than �0.) However, this possibility is ruled out by the form of the universal Kisin
module given in Proposition 3.4.8

COROLLARY 3.4.11
For �; � as in Theorem 3.4.1, there exists a closed point x 2 SpecR�;�� Œ 1

p
� such that

the corresponding Galois representation �x becomes a direct sum of characters after
restriction to a finite-index subgroup. In particular, R�;�� ¤ 0.

Proof
Recall that we have fixed a gauge basis ˇ of M such that, for all j , the matrices of
the j th partial Frobenius with respect to ˇ have the form

A
.j /
DDj v

wj .�0/ (3.17)

with Dj 2 T .F/. Using Proposition 3.4.8, we can produce an O point of R�;ˇ
M

such
that the matrices of partial Frobenii are monomial matrices of the form

A.j / DDj .vC p/
wj .�0/

by choosing diagonal matrices Dj 2 T .O/ lifting Dj . A Kisin module of this form
becomes isomorphic to a direct sum of rank 1 Kisin modules after passing to a finite
unramified extension MK of K 0. Since the monodromy condition can be checked after
base change and always holds for rank 1 Kisin modules (by an easy computation),
we deduce that the above Kisin module satisfies the monodromy condition. Lifting
this point along the formally smooth maps in the diagram (3.16) yields a closed point
x 2 SpecR�;�� Œ 1

p
�. As the underlying Kisin module of x decomposes into a direct sum

of rank 1 Kisin modules over MK , �x becomes a direct sum of characters over MK .
Alternatively, we can also directly produce �x as a direct sum of inductions of

(potentially crystalline) characters for unramified extensions ofK and then check that
it comes from a Kisin module with the above form and, hence, has type .�; �/.

PROPOSITION 3.4.12
We have that R�;ˇ;r

M
=$ is a quotient of a power series ring over F in n.nC1/f

2
vari-

ables.

Proof

We work overRDR�;ˇ
M

with universal Kisin module MDMuniv and universal gauge

basis ˇ. This determines the matrices A.j / as before. It will suffice to analyze the
monodromy condition on M viewed as a Kisin module over K 0 with descent data
corresponding to the base changed type � 0 (which is a principal series type), and we
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will do so by closely following the computations in [31, Section 5.1] (especially [31,
Theorem 5.6]). As in [31], we have the matrices C .j / which are determined by the
A.j /’s and our chosen presentation of � , and we have a ring O

rig
R . We note that the

variable u in [31] corresponds to our variable u0, the variable v there is the same as
our vD .u0/e

0
, and E.u/ there is .u0/e

0
C pD vC p. Exactly as in [31, Lemma 5.2]

we have a formula for the j th component N .j /
1 of the monodromy operator:

N .j /
1 DN

.j /
1 C

1X
iD1

� i�1Y
kD0

'k.C .j�k�1//
�
'i .N

.j�i/
1 /

� 0Y
kDi�1

'k.C .j�k�1/;�/
�
;

where C .j /;� WD .vC p/.C .j //�1,

N
.j /
1 D �u

0 d

du0
.C .j�1//.C .j�1//�1;

and the convergence happens inside �2�nMatn.O
rig
R /.

As in [31, Theorem 5.6] we can write

pn�1�n�2N .j /
1 D .p�/

n�1u0
d

du0
.C .j�1//.C .j�1//�1C

1X
iD1

X
.j /
i ;

where

X
.j /
i WD

'iC1.�/n�1

pi.n�2/

� i�1Y
kD0

'k.C .j�k�1//
�
'i
�
u0
d

du0
C .j�i�1/

�

�
� 0Y
kDi

'k
�
.vC p/n�2C .j�k�1/;�

��
:

If z 2 Zn, we use the shorthand Diag.z/ to denote the diagonal matrix with entries
z1; z2; : : : ; zn. Also for M;N 2Mn.R�v�/; ŒM;N � WDMN � NM . By “removing
the descent data” as in [31, Theorem 5.6] (see (3.6) for notation), we obtain

pn�1Ad
�
.s0or;j /

�1.u0/
�a0.j /
.s;�/

�
.�n�2N .j /

1 /

D�'.�/n�1PN .A
.j�1//C

1X
iD1

'iC1.�/n�1Z
.j /
i ;

where (see [31, Lemma 5.4])

PN .A
.j�1//

def
D
�
�e0v

d

dv
A.j�1/ �

�
Diag

�
.s0or;j /

�1.a0.j /
.s;	/

/
�
;A.j�1/

��
� .vC p/n�1.A.j�1//�1
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and

Z
.j /
i DAd

�
.s0or;j /

�1.u0/
�a0.j /
.s;�/

�� 1

'iC1.�/n�1
X
.j /
i

�
:

Now exactly as in the last part of the proof of [31, Theorem 5.6], using that � 0

is .2n � 1/-generic, we get Z.j /i 2 v.2n�2/p
i�1

pi.n�2/
Mn.R�v�/ for i > 1 and Z

.j /
1 2

v2n�1

pn�2
Mn.R�v�/. This fact together with a simple computation with derivatives

shows that M .j / WD 1
'.�/n�1

P1
iD1 '

iC1.�/n�1Z
.j /
i satisfies . d

dv
/tM .j /jvD�p 2

p2n�1�.n�2/�tMn.R/ and . d
dv
/tv�1M .j /jvD�p 2 p2n�1�.n�2/�t�1Mn.R/ for

0� t � n� 3.
As in the proof of [31, Proposition 5.3], the monodromy condition is equivalent

to �n�2N .j /
1 vanishing to order n� 2 at u0 D .�p/

1
e0 . Thus the upshot of the above

discussion is that the monodromy condition is equivalent to �PN .A.j�1//CM .j /

vanishing to order n� 2 at vD�p in Mn.O
rig
R /. Note that this condition is preserved

under multiplication by any power of v and can be expressed as the vanishing of all
derivatives . d

dv
/t at vD�p for 0� t � n� 3 .

We now recall Proposition 3.4.8, which gives the decomposition

A.j / DDj .vC p/
wj .�0/U .j /;

and R D R�;ˇ
M

is the formal power series ring over O in the variables X .j /;l˛ (where
0� j < f , ˛ < 0 is a negative root of GLn, and 0� l <�h�0; ˛_i/ and the variables
c
.j /
i i (where 1� i � n, 0� j < f ), which (up to a translation in the case of c.j /i i ) give

the coefficients of the entries of U .j / and Dj , respectively.
Substituting the above expression, we get

PN .A
.j�1//D�.vC p/n�1

�
e0v

d

dv
.vC p/wj�1.�0/

�
.vC p/�wj�1.�0/

� .vC p/n�1Ad
�
Dj�1.vC p/

wj�1.�0/
���

e0v
d

dv
U .j�1/

C
�
Diag

�
.s0or;j /

�1.a0.j /
.s;	/

/
�
;U .j�1/

��
.U .j�1//�1

�
:

To understand the second term, recall that also from Proposition 3.4.8, for each neg-
ative root ˛D "i � "k of GLn, the ˛th entry of w�1j�1U

.j�1/wj�1 is given by

v
ıwj .˛/<0f .j�1/˛ .v/D v

ıwj�1.˛/<0

�h�0;˛
_i�1X

lD0

X .j�1/;l˛ vl :
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Thus, the ˛th entry of Ad..Dj�1wj�1/�1/.PN .A.j�1/// is of the form

� .vC p/n�1Ch�0;˛
_i
�
e0v

d

dv
C
˝
.s0or;j /

�1.a0.j /
.s;	/

/;wj�1˛
_
˛�

� .v
ıwj�1.˛/<0f .j�1/˛ /C � � � /

D�.vC p/n�1Ch�0;˛
_i
��h�0;˛_i�1X

lD0

�
e0.l C ıwj�1.˛/<0/

C
˝
.s0or;j /

�1.a0.j /
.s;	/

/;wj�1˛
_
˛�
X .j�1/;l˛ v

lCıwj�1.˛/<0 C � � �
�
;

where the ellipsis in the first expression is an R-linear combination of terms of the
form

e0
d

dv
.v
ıwj�1.˛0/<0f .j�1/˛0

/
Y
i¤0

v
ıwj�1.˛i /<0f .j�1/˛i

and Y
i

v
ıwj�1.˛i /<0f .j�1/˛i

;

where the ˛i ’s are negative roots of GLn with ˛D
P
i ˛i and the sum has at least two

terms. In particular, the remaining terms are polynomials divisible by vıwj�1.˛/<0

and whose coefficients only involve X .j�1/˛0 for roots ˛0 strictly larger than ˛. Thus,

the monodromy condition on the ˛th entry of v�ıwj�1.˛/<0 Ad.w�1j�1.Dj�1/
�1/�

.�PN .A
.j�1//CM .j // has the form

� d
dv

�t�
.vC p/n�1Ch�0;˛

_i
��h�0;˛_i�1X

lD0

�
e0.l C ıwj�1.˛/<0/

C
˝
.s0or;j /

�1.a0.j /
.s;	/

/;wj�1˛
_
˛�
X .j�1/;l˛ vl

��ˇ̌̌
vD�p

DO
�
.X

.j�1/;l
˛0 /0>˛0>˛;l

�
CO.p2n�1�.n�2/�t�1/

for 0� t � n�3, where the right-hand side only involves variables indexed by strictly
larger roots and a term inR that is divisible by p2n�1�.n�2/�t�1 and hence is divisible
by p.

Thus, the above system of equations holds in the quotient R�;ˇ;r
M

=$ of R, where
it implies (noting e0 D�1 in F)
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� d
dv

�t��h�0;˛_i�1X
lD0

�
�l � ıwj�1.˛/<0

C
˝
.s0or;j /

�1.a0.j /
.s;	/

/;wj�1˛
_
˛�
X .j�1/;l˛ vl

�ˇ̌̌
vD0

DO
�
.X

.j�1/;l
˛0 /0>˛0>˛;l

�
for 0 � t � .n � 3/ � .n � 1C h�0; ˛_i/ D �h�0; ˛_i � 2. Since � is generic and
p > n, all the coefficients �l � ıw�1

j�1
.˛/<0 C h.s

0
or;j /

�1.a0.j /
.s;	/

/;wj�1˛
_i as well as

the constants introduced by taking derivatives are nonzero in F, and hence this system
of equations solves X .j�1/;l˛ for l < �h�0; ˛_i � 1 in terms of variables indexed

by strictly larger roots. It follows that R�;ˇ;r
M

=$ is topologically generated by the

top degree coefficients of f .j /˛ and the c.j /i i � Œc
.j /
i i � for 0 � j < f , 1 � i � n, and

negative roots ˛ of GLn. Hence it is topologically generated by n.n� 1/f=2Cnf D
n.nC 1/f=2 elements.

Proof of Theorem 3.4.1
We already knowR�;�� ¤ 0 by Corollary 3.4.11. We look at diagram (3.16). By Propo-

sition 3.4.3, SpfR�;ˇ;�
M;�

! SpfR�;�� is a torsor for .bGm/nf ; hence d
def
D dimR�;ˇ;�

M;�
D

dimR�;�� Cnf D n.n�1/f=2Cn
2Cnf C1D n.nC1/f=2Cn2C1. On the other

hand, SpfR�;ˇ;�;r
M

! SpfR�;ˇ;r
M

is formally smooth of relative dimension n2; hence

Proposition 3.4.12 shows that there is a surjection O�x1; : : : ; xd�1� � R
�;ˇ;�;r
M

.

From Proposition 3.4.10, we obtain a surjection O�x1; : : : ; xd�1� � R
�;ˇ;�
M;�

. Since

the quotient ring has dimension d D dim O�x1; : : : ; xd�1�, the kernel of this surjec-
tion must be trivial; hence the surjection is an isomorphism. It follows that R�;�� is
formally smooth over O.

COROLLARY 3.4.13
With �; � as in Theorem 3.4.1, any potentially crystalline lift of � of type .�; �/ is
potentially diagonalizable.

Proof
This follows from Theorem 3.4.1 and Corollary 3.4.11.

4. Main results
In this section, we deduce our main results using Section 3. In Section 4.2, we deduce
weight elimination in an axiomatic context and in the context of definite unitary
groups. In Section 4.3, we use weight elimination and the change of weight techniques
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of [3] to deduce the modularity of obvious weights. In Section 4.4, we use the above
results to classify congruences between RACSDC (regular algebraic, conjugate self-
dual, cuspidal) GLn-automorphic representations of trivial weight and generic tame
type � in residually tame cases and solve the lifting problem for residually tame Galois
representations to potentially crystalline representations of type .�; �/. We introduce
combinatorial results on Serre weights and affine Weyl groups as needed. The key
theme in these combinatorial results is the close relationship between certain reduced
factorizations of admissible elements and Jantzen’s description of the Jordan–Hölder
factors of types.

Recall the (nonstandard) definition of the dot action in Definition 2.1.6. We write
W Ca �

eW C for the subsets of W a � eW , respectively, which map C 0 to a dominant
alcove under this dot action.

Let� eW be the stabilizer of C 0. Then we have the decomposition eW DW a�

. We extend the Coxeter length function ` on W a to eW by setting `.ewı/D `.ew/ ifew 2W a and ı 2. Recall that one can calculate lengths from minimal galleries (see
[19, Section 2]). We will use galleries in a fixed direction (see [19, Definition 5.2]),
which are necessarily minimal by [19, Lemma 5.3].

Recall the upper arrow (") ordering on p-alcoves (see [27, Section II.6.5]), and
extend it to eW by writing ew1 " ew2 if ew1 � C 0 " ew2 � C 0 and W aew1 D W aew2 forew1 and ew2 2 eW (elements of different right W a-cosets are incomparable). We also
use " to denote the ordering on X�.T / defined in [27, Section II.6.4]. Recall from
Section 2.1 the Bruhat ordering � on W a defined by the dominant base alcove. As
with the upper arrow ordering, we extend this to a partial ordering on eW by settingew1ı � ew2ı if ew1 and ew2 2W a, ew1 � ew2, and ı 2 (and elements of different right
W a-cosets are incomparable).

Let ewh D w0t�� 2 eW . Note that ewh � C 0 is the highest p-restricted alcove andewh � �DR.�/ from Definition 2.2.11.

4.1. Combinatorics of weights and types
In this section, we deduce the key combinatorial results, especially Corollary 4.1.12.
We will use the following theorem of Wang (see [39, Theorem 4.3]) without com-
ment.

THEOREM 4.1.1
If ew1 and ew2 2 eW C, then ew1 � ew2 if and only if ew1 " ew2.

We also use the following proposition without comment.
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PROPOSITION 4.1.2
If ew1 and ew2 2 eW , then ew1 " ew2 if and only if ewhew2 " ewhew1 if and only if ew�1

h
ew2 "ew�1

h
ew1.

Proof
From the definition of the up ordering, it is clear that w0 reverses and translation
preserves the ordering. The proposition now follows from the definition of ewh.

PROPOSITION 4.1.3
Suppose that � is 2n-deep in C 0, and suppose that � is a p-restricted weight. Then
F.�/ 2 JH.Rs.�C �// if and only if there exists ewDwt� 2 eW C such that

ew � .�� s	
/ " ewh � � and ew �C 0 " ewh �C 0: (4.1)

Proof
We use [15, Proposition 10.1.8]. (Note that, by the depth assumption, the proof of [15,
Proposition 10.1.2] based on [26, Satz 4.3] applies.) The proposition cited shows that
F.�/ 2 JH.Rs.�C �// if and only if there is 
 such that

�t� � .�� s	
/ " ewh � � for all � 2W.G/: (4.2)

It suffices to show that the existence of 
 satisfying (4.2) and ew 2 eW C satisfying (4.1)
are equivalent.

We begin with the “backward” implication, for which the following remark is
useful.

Remark 4.1.4
If ewDwt� satisfies ew �C 0 " ewh �C 0, then 
 lies in the convex hull of the Weyl orbit
of �, and hence max˛_¹jh
;˛_ijº � n� 1.

Suppose that ewDwt� satisfies (4.1). With the depth assumption on �, the above
remark implies that �� s	
 is in C 0 so that wt� � .�� s	
/ is the unique dominant
element of the W.G/ (dot) orbit of �� s	
C p
. This implies that 
 satisfies (4.2).

For the “forward” implication, suppose that 
 satisfies (4.2), and take ew to be
the unique element wt� 2 eW C with w 2 W.G/. Then ew � .� � s	
/ " ewh � � by
assumption, and it suffices to show that ew �C 0 " ewh �C 0. We claim that 
 satisfying
(4.2) must automatically satisfy jh
;˛_ij � n � 1 for all ˛_ 2 R_. Admitting this
claim for the moment, we again have that ew � .�� s	
/ is in alcove ew � C 0, so thatew � .�� s	
/ " ewh � � implies that ew �C 0 " ewh �C 0.

Going back to our claim, (4.2) implies that �Cp
�s	
C� is in the convex hull
of the Weyl orbit of ewh � �C �. The same argument as in the proof of Lemma 2.1.5
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shows that

max
˛_

®ˇ̌
h�C p
 � s	
C �;˛_i

ˇ̌¯
�max

˛_

®ˇ̌
hewh � �C �;˛_iˇ̌¯� p.n� 1/:

The same argument as in the proof of Corollary 2.2.13, using that � is 2n-deep in C 0,
shows that ifM Dmax˛_¹jh
;˛_ijº, then .p�1/M < p.n�1/Cp�2nD .p�2/n,
and thus M � n� 1 as desired.

We will often fix
.P1/ a generic semisimple Galois representation � WGK!GLn.F/;
.P2/ a pair .s�;��/ such that �jIK Š �.s�;�� C �/ with �� in C 0; and
.P3/ a lowest alcove presentation .s;� � �/ of a tame inertial type � Š �.s;�/ W

IK!GLn.O/ such that �� �� 2ƒR. Such a presentation is called compat-
ible with .s�;��/.

Note that, under .P1/ and .P2/, �� is always .3n � 1/-deep in C 0 by Proposi-
tion 2.2.15.

LEMMA 4.1.5
Suppose that �.s;�/Š �.s0;�0/ is 1-generic, suppose that �� � and �0 � � are both
in C 0, and suppose that ���0 2ƒR. Then we have .s;�/D .s0;�0/.

Proof
By Proposition 2.2.15, since .s0;�0 � �/ and .s;�� �/ are two lowest alcove presen-
tations of �.s;�/, we have .s;�/D .�;�/.s0;�0/ with t�� 2. Since ���0 2ƒR, we
also must have that .p � 	/
jZ D 0 or, equivalently, that 
jZ D 0. Combining these
facts, we have that t�� is the identity.

Definition 4.1.6
Fix .P1/–.P3/ as above. Then, we define w D s�1s�, 
 D s�1.�� C � � �/, andew�.�; �/ def

D t�w.

Remark 4.1.7
Definition 4.1.6 a priori depends on the choice of .s�;��/ and the compatible pre-
sentation .s;�� �/ of the type � . By Lemma 4.1.5, if � is 1-generic, there is at most
one compatible presentation, so that Definition 4.1.6 depends only on the choice of
.s�;��/. Furthermore, if a compatible presentation .s;�� �/ exists for one choice of
.s�;��/, then a compatible presentation exists for all other choices, and changing the
choice of .s�;��/ conjugates ew�.�; �/ by an element of .
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PROPOSITION 4.1.8
Let � be a generic type with lowest alcove presentation .s;�� �/. Assume that there
exists M 2 Y �;� .F/ as in Definition 3.2.19 such that T �dd.M/Š �jGK1 , where � is
moreover semisimple. Then there is a pair .s�;��/ as in .P2/ such that .P3/ holds
and ew.�; �/� D ew�.�; �/.
Proof
By Theorem 3.2.26 combined with Corollary 3.2.17, we have

�jIK Š �.w; 
C �/;

where ew.�; �/s�t	���� D w�t�� . Thus, ew.�; �/� D s�1t��	C�w. Since ew.�; �/� 2
Adm.�/, 
 � � 2 ƒR. Moreover, 
 � � C � is in the convex hull of W � by
Remark 4.1.4, so that 
 is 1-deep in C 0, since � � � is n-deep in C 0. Then, by
letting �� D 
 and s� D w, .P2/ and .P3/ are satisfied. Comparing, we see thatew.�; �/� agrees with Definition 4.1.6.

LEMMA 4.1.9
Suppose that ew1;ew2 2 eW C. Then `.ew�12 w0ew1/D `.ew�12 /C `.w0/C `.ew1/.
Proof
The length `.ew/ is the length of a minimal gallery between ew�12 w0ew1 � C 0 and C 0,
which is the length of a minimal gallery between w0ew1 � C 0 and ew2 � C 0. Such a
gallery can be taken to start with a gallery from w0ew1 � C 0 to w0 � C 0, then to C 0,
and then to ew2 � C 0, all in the dominant direction. This decomposition of a minimal
gallery in the dominant direction gives the desired equality.

LEMMA 4.1.10
Fix .P1/–.P2/ as above. Suppose that � 2 X1.T / is 3n-deep in its alcove and such
that, for all s 2W.G/, �.s;ewh � �C �/ is a tame inertial type which admits a com-
patible presentation as in .P3/ and ew�.�; �.s;ewh � �C �// 2 Adm.�/. Then F.�/ 2
W ‹.�/.

Proof
Let s 2W.G/, and let � D �.s;ewh � �C �/. If ewh � � 2e� � C 0 for e� D �t� , then �
has a lowest alcove presentation .��1s	.�/;e��1ewh � �C ��1s	.�
// withe��1ewh �
�C��1s	.�
/ 2n-deep in C 0 by Proposition 2.2.4(1). By assumption, � Š �.s0; �0/
has a lowest alcove presentation .s0; �0 � �/ as in .P3/. Combining these with Propo-
sition 2.2.4(2), we have that s0 D w�12 s	.w2/ and �0 D ew�12 ewh � �C s0	
2 C � for

some ew2 D w2t�2 2 eW C. If we let �.0/ be ew�12 ewh � �, then �.0/ C s0	
2 is in C 0
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since � (and, thus, �.0/) is 3n-deep in its alcove and max˛_¹jh
2; ˛_ijº � n � 1 by
Remark 4.1.4.

Let ewD ew�.�; �/. Then by assumption, we have that �� ��.0/�	
2� � 2ƒR.
Note that this condition and the condition that ewh � � 2 ew2 � C 0 uniquely determinesew2; hence, ew2 does not change when s changes. Thus, as s runs over W.G/, s0 runs
over all of W.G/.

By definition, we have

ewD s0�1t	���.0/�s0��2s� D s0�1tı�s0��2s� D t���2s0�1tıs� 2Adm.�/;

where ıD �� � �.0/. Let � 2W.G/ (unrelated to the use of � in the first paragraph)

be the unique element such that �ts�1
�
ı 2

eW C. Note that the 	-action on eW pre-

serves eW C. We now take s0 D s���1w0	.w2/, so that ewD 	.t��2w�12 /w0�ts�1
�
ı D

	.ew�12 /w0�ts�1
�
ı . Since �ts�1

�
ı 2

eW C, we have that w0	.ew2/ew 2 eW C. Thus,

w0	.w2/ew D t��.w0w2�2/w0	.ew2/ew is in eW C, since �	.w0w2
2/ is a dominant
weight. Note that there is a gallery in the dominant direction from w0	.w2/.C 0/

to w0	.w2/ew.C 0/ passing through C 0 and hence a gallery in the .w0	.w2//�1-
direction from C 0 to ew.C 0/. By [20, Corollary 4.4], ew � t.w0�.w2//�1� . (The
reference [20] uses the Bruhat order defined with respect to the antidominant base
alcove. However, by applying w0-conjugation which interchanges the two Bruhat
orders, the cited corollary holds for the Bruhat order defined with respect to the
dominant base alcove.)

Note that

t.w0�.w2//�1� D
�
w0	.w2/

��1
t�
�
w0	.w2/

�
D
�ew�1h 	.ew2/��1ew�1h w0

�ew�1h 	.ew2/�
D 	.ew2/�1w0�ew�1h 	.ew2/�:

Since `.ew/D `.	.ew2/�1/C `.w0/C `.� ts�1
�
ı/ by Lemma 4.1.9, we conclude that

�ts�1
�
ı � ew�1h 	.ew2/ by standard facts about Coxeter groups. Since both sides of this

inequality are elements of eW C, we conclude that �ts�1
�
ı " ew�1h 	.ew2/. In other words,

we have

	�1.�/t��1.s�1
�
ı/ � .�� � ı/ " �:

By Proposition 4.1.3, F.ew�1
h
�/ 2 JH.Rs�.�� C �// or, equivalently, F.�/ 2W ‹.�/.

Remark 4.1.11
Regarding the hypotheses in Lemma 4.1.10, if � is n-deep in a p-restricted alcove,
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then by Proposition 2.2.16, � D �.s;ewh � �C �/ is 1-generic. By Proposition 2.2.15,
all lowest alcove presentations .s0;�0 � �/ of � are of the form

.s0;�0/D.�;�/ .ewh � �C �/
with .t��ewh/ � � 2 C 0. The condition that there is one compatible lowest alcove pre-
sentation as in .P3/ above is equivalent to .ewh ��C����/jZ 2 .p�	/X�.Z/. This
condition is the condition that the central character of F.�/ agrees with the central
character of any element or, equivalently, all elements of W ‹.�/.

COROLLARY 4.1.12
Suppose that � W GK ! GLn.F/ is a 5n-generic Galois representation. If � is in
X1.T / and .2n� 1/-deep in its alcove and F.�/ is not in W ‹.�ss/, then there exists
an n-generic tame inertial type � such that F.�/ 2 JH.�.�// and � does not have a
potentially crystalline lift of type .�; �/.

Proof
Suppose that � is not 3n-deep. By Proposition 2.2.16 and its proof, the tame type

�
def
D �.1;ewh � �C �/ is n-generic, but not 4n-generic (by comparing .1;ewh � �C �/

with a lowest alcove presentation). By Corollary 2.3.5 and [24, Lemma 2.5], F.�/ 2
JH.�.�.1;ewh � �C �///. Then � is not the reduction of a potentially crystalline rep-
resentation of type .�; �/ by Proposition 3.3.2.

Now suppose that � is 3n-deep in its alcove. Suppose that � is the reduction
of a potentially crystalline representation of type .�; �/ for all � such that F.�/ 2
JH.�.�//. We claim that � can be taken to be �.s;ewh ��C�/ for any s 2W . Suppose
that ewDwt� , and suppose that ewh � � 2 ew �C 0. Let � be ew�1ewh � �Cw�1s	.w
/.
Then �.w�1s	.w/;�C �/Š �.s;ewh � �C �/ by Proposition 2.2.4, and � is 2nC 1-
deep in C 0 by Remark 4.1.4. Then �.�.s;ewh ��C�//DRw�1s�.w/.�C�/ contains
F.�/ as a Jordan–Hölder factor by Proposition 4.1.3 (ew �.��w�1s	.w
//D ewh ��).
Thus, for all s 2W.G/, � is the reduction of a potentially crystalline representation
of type .�; �.s;ewh � �C �//.

By Theorem 3.2.1 and Proposition 4.1.8, for each s 2 W.G/, there is a pair
.s�;��/ for �ss as in .P2/ such that ew�.�ss; �.s;ewh ��C�// 2Adm.�/ (which implies
.P3/ holds). By Remark 4.1.7, these conditions hold for any choice of .s�;��/ satisfy-
ing .P2/, since Adm.�/ is stable under-conjugation. Thus we can use the same pair
.s�;��/ for all choices of s. Then by Lemma 4.1.10, we see that F.�/ 2W ‹.�ss/.

Remark 4.1.13
In the proof of Corollary 4.1.12, we used Proposition 4.1.3 to show that F.�/ 2
JH.�.�.s;ewh � � C �///. This weight is the reflection of an obvious weight or a
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diagonal prediction in [22, Definition 12.8], so the above membership is likely true
with weaker genericity hypotheses on the Deligne–Lusztig representation. Corol-
lary 4.1.12 also probably holds with weaker genericity hypotheses.

4.2. Weight elimination
In this section, we deduce our main weight elimination result (Corollary 4.2.7). We
begin with an axiomatic setup for our method and then proceed to the case of modular
forms for definite unitary groups.

4.2.1. Axiomatic setup
We begin with an axiomatic setup for modular Serre weights. This is related to the
axiomatic setup of [11, Section 4.2]. Let � W GK ! GLn.F/ be a Galois representa-
tion. (We no longer assume .P1/–.P3/.) We write FŒGLn.k/�-mod for the category
of finite FŒGLn.k/�-modules and Vect=F for the category of F-modules (i.e., vector
spaces).

Definition 4.2.1
We say that a functor S W FŒGLn.k/�-mod!Vect=F is an arithmetic cohomology func-
tor for � if
� S ¤ 0;
� whenever S.V /¤ 0 for a Serre weight V and V 2 JH.�.�// for a regular tame

inertial type � , � has a potentially crystalline lift of type .�; �/; and
� whenever S.V /¤ 0 for a Serre weight V and V 2 JH.R1.�//, � has a poten-

tially semistable lift of type .�; �.1;�//.

We now fix an arithmetic cohomology functor S for �.

Definition 4.2.2
We say that � is modular of weight V if S.V /¤ 0. Let W.�/ be the set of isomor-
phism classes of Serre weights for which � is modular. Let Welim.�/ be the subset of
W.�/ consisting of isomorphism classes of Serre weights represented by F.�/, where
� is .2n� 1/-deep in its alcove.

THEOREM 4.2.3
If � is 5n-generic, then Welim.�/�W

‹.�ss/.

Proof
If � is .2n � 1/-deep in its alcove and F.�/ … W ‹.�ss/, then by Corollary 4.1.12
there is a regular (n-generic even) tame inertial type � such that F.�/ 2 JH.�.�//



2492 LE, LE HUNG, and LEVIN

and � does not have a potentially crystalline lift of type .�; �/. We conclude that
F.�/ …W.�/.

Theorem 8 in [12] shows that, for sufficiently generic �, W.�/ does not contain
weights near the boundary of alcoves. Combining this with Theorem 4.2.3, we obtain
an upper bound for W.�/ rather than Welim.�/.

COROLLARY 4.2.4
If � is .6n� 2/-generic, then W.�/�W ‹.�ss/.

Proof
Suppose that � 2X1.T / is 0-deep but not .2n� 1/-deep in its alcove. Let �.0/ be the
unique weight in C 0 linked to �. Then �.0/ is also not .2n� 1/-deep in its alcove so
that �.0/ C � is not 2n-generic in the sense of [12, Definition 2]. We conclude that
� is not .4n � 2/-generic in the sense of [12, Definition 1]. Note that even if � is
not 0-deep in its alcove, this last conclusion still holds. Now � is .6n� 2/-generic in
the sense of [12, Definition 2] by Remark 2.2.8. Then the proof of [12, Theorem 8]
shows that � does not have a potentially semistable lift of type .�; �.1;�//, while
F.�/ 2 JH.R1.�// by [24, Lemma 2.5]. We conclude that F.�/ …W.�/.

4.2.2. Algebraic modular forms for unitary groups
We closely follow the setup of [11, Section 7.1] (see also [25, Section 4.1]). Let F=Q
be a CM field, and let FC be its maximal totally real subfield. Assume that FC ¤Q,
and assume that all places of FC dividing p split in F and are unramified. We write
c for the generator of Gal.F=FC/. For u �1 (resp., v �1) a place of F (resp., FC)
we denote by ku (resp., kv) the residue field of Fu (resp., FCv ).

We let G=FC be a reductive group, which is an outer form of GLn which splits
over F . We assume that G.FCv /Š Un.R/ for all vj1. By the argument of [9, Sec-
tion 3.3], G admits a model G over OFC such that G � O

F
C
v

is reductive for all

places v of FC that split in F . For any such place v of FC and ujv of F we
get an isomorphism �u W G.F

C
v /

�
�! GLn.Fu/ which restricts moreover to an iso-

morphism �u W G .OFCv
/
�
�! GLn.OFu/. Let † be a finite set of places in FC. If

U† �G.A1;†
FC

/ is a compact open subgroup, then the space S.U†/ of infinite-level
algebraic automorphic forms on G is defined to be the set of continuous functions
f WG.FC/nG.A1

FC
/=U†! F, where F is given the discrete topology.

We recall that the level U � G.A1
FC
/ is said to be sufficiently small if, for all

t 2 G.A1
FC
/, the finite group t�1G.FC/t \ U is of order prime to p. We say that

U† is sufficiently small if
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U D U†
Y
v2†

G .O
F
C
v
/

is sufficiently small. For a finite place v of FC we say that U is unramified at v if
v splits in F and one has a decomposition U D G .O

F
C
v
/U v for some compact open

subgroup U v �G.A1;v
FC

/.

Let PU denote the set consisting of finite places u of F such that v
def
D ujFC is

split in F , v � p, and U is unramified at v. If P � PU is a subset of finite com-
plement that is closed under complex conjugation and disjoint from †, we write
TP D OŒT

.i/
u W u 2 P ; i 2 ¹0; 1; : : : ; nº� for the abstract Hecke algebra on P , where

the Hecke operator T .i/u acts on the space S.U†/ as the usual double coset operator

��1u

�
GLn.OFu/

	
$uIdi

Idn�i



GLn.OFu/

�
;

where $u denotes a uniformizer of Fu. If r W GF ! GLn.F/ is a continuous, abso-
lutely irreducible Galois representation, we further write mr for the maximal ideal of
TP with residue field F defined by the formula

det
�
1� r_.Frobu/X

�
D

nX
jD0

.�1/jNFu=Qp .u/
.j2/.T .j /u mod mr/X

j 8u 2P :

Definition 4.2.5
We say that r is modular of (prime-to-†) level U† if S.U†/mr ¤ 0. We say r is
modular if r is modular of some level U†.

Assume that r is modular of level U†, and assume that † contains all places
dividing p and all places divisible by places in F where r is ramified. Fix places
u j v j p of F and FC. Then we define the functor S W FŒGLn.ku/�-mod!Vect=F by

S.V /
def
D HomGLn.OFu /.V

_; S.U†/mr /, where .�/_ denotes the contragradient repre-
sentation and GLn.OFu/ acts on V by inflation and on S.U†/mr via ��1u .

PROPOSITION 4.2.6
If U† is sufficiently small, then S is an arithmetic cohomology functor for r jGFu .

Proof
This essentially follows from the proof of Proposition 7.4.4 of [11]. Note that the mod-
ularity of r of level U† implies that the functor S is nonzero. Suppose that S.V /¤ 0
and V 2 JH.�.�//. Let v0 2† be a place not dividing p (if one exists). Since S.V /
is a smooth representation of G.FCv0 /, there exists a compact open subgroup Kv0 of
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G.O
F
C

v0
/ with nonzero invariants. Inductively choosing Kv0 and replacing S.U†/mr

with

S
�
U†

Y
v02†;v0�p

Kv0
�
mr

;

we assume without loss of generality that † is exactly the places of FC dividing
p, and we write U† D U p . For each place v0 j p of FC, choose a place ev0 j v0
of F such that ev0jFC D v0 and ev D u. For an O�GLn.OF;ev0/�-representation
Vev0 , let Vv0 be the corresponding O�G .OFC;v0/�-representation via �ev . There
exist irreducible F�GLn.OF;ev0/�-representations Vev0 for every v0 j p such that
Vev D V and HomG .O

FC;p
/.
N
v0jp V

_
v0 ; S.U

p/mr / ¤ 0. Choose an O�G .OFC;p/�-
representation W D

N
v0jpWv0 such that Wev is an O-lattice in �.�/, Wev0 is an

O-lattice in an algebraic representation over E for v0 ¤ v (say, a suitable Weyl
module), and Vev0 2 JH.W ev0/ for all v0 j p (where the bar denotes mod $ reduction).
For U p sufficiently small, S.U p/mr is an injective F�G .OFC;p/�-module; hence

HomF�G .O
FC;p

/�.�; S.U
p/mr / is exact. Thus, HomG .O

FC;p
/.W

_
; S.U p/mr / ¤ 0.

Then the proof of [11, Proposition 7.4.4 Ã1] holds without modification and one then
constructs 	 as in the proof of [11, Proposition 7.4.4 Ã1]. Then r_� jGFu provides the
required lift by [11, Theorem 7.2.1], Theorem 2.3.1, and Proposition 2.3.4.

Assume that r is modular. Then r is modular of some sufficiently small level U†.
Let W.r/ be the set of isomorphism classes of irreducible G .OFC;p/-representations
V over F such that

HomG .O
FC;p

/

�
V _; S.U†/mr

�
¤ 0:

For each place v j p of FC choose a placeev j v of F . Let W ‹ev;ss.r/ be W ‹..r jGFev /ss/,

and let W ‹
v;ss.r/ be the set of isomorphism classes of G .O

F
C
v
/-representations over F

corresponding to W ‹ev;ss.r/ via �ev . Note that the definition of W ‹
v;ss.r/ does not depend

on the choice of placeev. Let W ‹
ss.r/ be

N
vjpW

‹
v;ss.r/.

COROLLARY 4.2.7
Suppose that .r jGFev /ss is .6n�2/-generic for all places v j p of FC. We haveW.r/�

W ‹
ss.r/.

Proof
Suppose that HomG .O

FC;p
/.
N
vjp F.�v/

_; S.U p/mr / ¤ 0. For each place v j p of

FC, let Sev be HomGLn.Oev/..�/_; S.U p/mr /. By Proposition 4.2.6, Sev is an arith-
metic cohomology functor for r jGFev , from which we define W.r jGFev / as in Defini-
tion 4.2.2. If F.�ev/ corresponds to F.�v/ via �ev , then Sev.F.�ev// is nonzero, and so
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F.�ev/ 2W.r jGFev /. By Corollary 4.2.4, F.�ev/ 2W ‹
ss.r jGFev /. Thus,

N
vjp F.�v/ 2

W ‹
ss.r/.

4.3. Modularity of “obvious” Serre weights
In this section, we deduce the modularity of obvious Serre weights for sufficiently
generic semisimple local Galois representations under mild hypotheses. We show that
for each obvious weight there is a type containing it as a Jordan–Hölder factor so that
no other Jordan–Hölder factor is modular (Corollary 4.2.7 and Proposition 4.3.6).
Fortunately, these are precisely the types to which we can apply Corollary 3.4.13 and
the results of [3] to deduce the modularity of obvious Serre weights. That these types
isolate weights can be seen as a consequence of Theorem 3.4.1 and the Breuil–Mézard
philosophy (see Remark 4.3.7). We first summarize the results we need from [3] and
refer the reader to [3] for any undefined notation and terminology.

THEOREM 4.3.1
Let p > 2, and let F be a CM field with maximal totally real subfield FC such that
�p … F . Assume that F=FC is split at all places dividing p. Suppose that r WGF !
GLn.Fp/ is an irreducible representation with the following additional properties.
(1) r is potentially diagonalizably automorphic, that is, there is an RACSDC auto-

morphic representation … of GLn.AF / such that
� r Š rp;�.…/; and
� for each place u j p of F , rp;�.…/jGFu is potentially diagonalizable.

(2) The image of r.GF.�p// is adequate.
Let † be a finite set of places of FC containing all places dividing p and all the
places of FC divisible by places at which r ramifies. For each place v 2 †, choose
a place ev j v of F , and choose a lift �ev W GFev ! GLn.Zp/. Suppose that, for v j
p, �ev is potentially crystalline and potentially diagonalizable with distinct Hodge–
Tate weights for every embedding Fev ,!Qp . Then there is an RACSDC automorphic
representation 	 such that
� r Š rp;�.	/;
� 	u is unramified at all places u of F that do not divide a place in †; and
� rp;�.�/jGFev � �ev for all places v 2†.

Proof
This is [2, Theorem 3.1.3], except for two differences:
(1) for places v j p of FC, �ev is allowed to be potentially crystalline rather than

crystalline; and
(2) † may contain places which do not split in F .
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However, the proof of [2, Theorem 3.1.3] still applies with two corresponding modi-
fications:
(1) 	u is not necessarily unramified if u is a place of F dividing p; and
(2) we replace the use of [2, Theorem A.4.1] with [4, Theorem 5.2.1].

Define (see Definition 2.2.11 and Section 2.3)

W ‹.�; �/ WDW ‹.�/\ JH.�.�//:

We can characterizeW ‹.�; �/ in terms of the element ew�.�; �/ from Definition 4.1.6.

PROPOSITION 4.3.2
Fix .P1/–.P3/ from Section 4.1 with �� � 2n-deep in C 0, and let ew D ew�.�; �/D
t�w. Then for � a dominant p-restricted character, F.�/ is in W ‹.�; �/ if and only if
there exist ew�;ew1;ew2 2 eW C with ew� �C 0 p-restricted and w0 2W.G/ such that
� 	�1.ew/D ew�12 w0ew1;
� ew1 " ew� " ew�1h ew2; and
� �D ew� � .�� s	
2 � �/, where ew2 Dw2t�2 .

Proof
Recall from Definition 2.2.11 that F.�/ 2 W ‹.�/ if and only if F.ew�1

h
� �/ 2

JH.Rsw.� C s
// since ewh � � D R.�/. (Recall that � C s
 D �� C � so that

 	 � .mod ƒR/ and sw D s�.) By Proposition 4.1.3, F.�/ 2 JH.�.�// (resp.,

F.ew�1
h
� �/ 2 JH.Rsw.� C s
//) if and only if there exists a ew2 2 eW C (resp.,ew1 2 eW C) such that ew2 � .�� s	
2��/ " ewh �� (resp., ew1 � .�C s
� sw	
1��/ "

�), where ew2 D w2t�2 (resp., ew1 D w1t�1 ) is such that ew2 � C 0 " ewh � C 0 (andew1 � C 0 " ewh � C 0). In summary, F.�/ 2W ‹.�; �/ if and only if there exist ew1 andew2 2 eW C with ewi �C 0 " ewh �C 0 for i D 1; 2 such that

ew1 � .�C s
 � sw	
1 � �/ " � " ew�1h ew2 � .�� s	
2 � �/:
By our assumption, �� D � C s
 � � and � � � are both 2n-deep in C 0, so

Remark 4.1.4 implies that both �C s
 � sw	
1 � � and � � s	
2 � � are in C 0.
Thus, the above condition is equivalent to the existence of ew�;ew1;ew2 2 eW C withew� �C 0 p-restricted such that
� ew1 � .�C s
 � sw
1 � �/ is linked to ew�1

h
ew2 � .�� s	
2 � �/;

� ew1 " ew� " ew�1h ew2; and
� �D ew� � .�� s	
2 � �/.
We claim that ew1 � .�C s
 � sw	
1 � �/ and ew�1

h
ew2 � .�� s	
2 � �/ are linked if

and only if ew2	�1.ew/ew�11 2W.G/.
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We first show that ew1 � .�C s
 � sw	
1 � �/ and ew�1
h
ew2 � .�� s	
2 � �/ are

linked if and only if 
 C 	
2 D w	
1. If 
 C 	
2 D w	
1, then one sees directly
that ew�11 ew�1

h
ew2 is in W a, from which we see that ew1 � .�C s
 � sw	
1 � �/ andew�1

h
ew2 � .� � s	
2 � �/ are linked. Now suppose that ew1 � .�C s
 � sw	
1 � �/

and ew�1
h
ew2 � .� � s	
2 � �/ are linked. Then the restriction of the difference ofew1 � .�C s
� sw	
1��/ and ew�1

h
ew2 � .�� s	
2��/ to the center Z of G must be

trivial. Equivalently, the restriction of .p�	/.
� 
1C 
2/ and therefore 
� 
1C 
2
to Z must be trivial. By noting that 
 	 � mod ƒR, this implies that ew�1ew�1

h
ew2 is

in W a. We conclude that �C s
 � sw	
1 � � and � � s	
2 � � are linked. Since
�C s
 � sw	
1 � � and �� s	
2 � � are both in C 0, they must therefore be equal.
This equality implies the equality 
C 	
2 Dw	
1.

Finally, 
C 	
2 Dw	
1 if and only if

ew2	�1.ew/ew�11 Dw2t�2	�1.t�w/t��1w�11
Dw2	

�1.t��2C��w��1w/w
�1
1 2W.G/:

Remark 4.3.3
Note that F.�/ is an obvious weight (Definition 2.2.14) if and only if ew� D ew1.

LEMMA 4.3.4
Let ew 2 eW , and let w 2 W.G/ and ewC 2 eW C be the unique elements such thatewDwewC. Then ewC � ew.

Proof
The length `.wewC/ is the length of a minimal gallery from C 0 to wewC �C 0, which is
the length of a minimal gallery from w�1 �C 0 to ewC �C 0. A minimal gallery can be
taken through C 0 in the dominant direction. Hence `.wewC/D `.w/C `.ewC/, and
therefore ewC � ew.

PROPOSITION 4.3.5
If ew2 " ew1 and ew2 2 eW C, then ew2 � ew1.

Proof
Letw 2W be the unique element such thatwew1 2 eW C. Then ew1 "wew1 by [27, Sec-
tion II 6.5 (5)]. Then ew2 �wew1 by Theorem 4.1.1. Sincewew1 � ew1 by Lemma 4.3.4,ew2 � ew1.

PROPOSITION 4.3.6
Let �, � , and ew be as in Proposition 4.3.2, and suppose that ew D t�s�1.�/. Then
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W ‹.�; �/D ¹F.�/º, where F.�/ 2Wobv.�/ is the obvious weight corresponding to s
(see Definition 2.2.14).

Proof
Suppose that 	�1.ew/D ts�1.�/ D ew�12 w0ew1, where w0 2W.G/, ew1;ew2 2 eW C, andew1 " ew� " ew�1h ew2 for some ew� with ew� �C 0 p-restricted. We have

`.ts�1.�//� `.ew�12 /C `.w0/C `.ew1/� `�.ewhew�/�1�C `.w0/C `.ew�/
D `

�
.ewhew�/�1w0ew��D `.tw�1

�
.�//;

where w� 2W.G/ is the projection of ew�. The first inequality is obvious, while the
first equality follows from Lemma 4.1.9. For the second inequality, since w0 � w0,
it suffices to show that ew2 � ewhew� and ew1 � ew�. Since ew� " ew�1h ew2, we have thatew2 " ewhew�. Since ew1 and ew2 2 eW C, we have that ew2 � ewhew� and ew1 � ew� by
Proposition 4.3.5.

Since `.ts�1.�// D `.tw�1
�
.�//, we have w0 D w0 and ew2 D ewhew� D ewhew1.

This implies that s D w�. Now suppose that F.�/ 2 W ‹.�; �/. We now use nota-
tion from Proposition 4.3.2, particularly from .P2/ and Definition 4.1.6. Then
by Proposition 4.3.2, � D ew� � .�� � s�	
�/, where we write ew� D w�t�� and
�jIK D �.s�;�� C �/. This is exactly the obvious weight corresponding to s D w�
(Definition 2.2.14).

Remark 4.3.7
One could show using Theorem 3.4.1, Corollary 4.2.7, and Kisin’s approach to
the Breuil–Mézard conjecture that, with the hypotheses of Proposition 4.3.6,
#W ‹.�; �/� 1. This leads to an alternate proof of Proposition 4.3.6, which we
eschew in favor of our more direct approach.

In the setting of Proposition 4.3.6, if ew�.�; �/D t�w�1� for some w 2W.G/, we
say that � is the obvious type for the obvious weight of � corresponding to w. (Note
that this notion depends on the choice of .s�;��/.) Such a type � always exists and is
uniquely determined by the corresponding obvious weight.

We use the setup and notation of Section 4.2.2. For each place v j p of FC choose
a place ev j v of F . Let r W GF ! GLn.F/ be a modular Galois representation such

that, for each place v j p of FC, r jGFev is semisimple. Let Wobv;ev.r/ def
DWobv.r jGFev /.

Let Wobv;v.r/ be the set of isomorphism classes of G .O
F
C
v
/-representations over F

corresponding to Wobv;ev.r/. Note that the definition of Wobv;v.r/ does not depend on
the choice of placeev. Let Wobv.r/ be

N
vjpWobv;v.r/.
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THEOREM 4.3.8
Suppose that �p … F , and suppose that r W GF ! GLn.F/ is a modular Galois rep-
resentation such that r.GF.�p// is adequate. Assume that, for all ev j p, r jGFev is
semisimple and .6n� 2/-generic. Then the following are equivalent:
(1) Wobv.r/\W.r/¤;;
(2) r is potentially diagonalizably automorphic (see Theorem 4.3.1(1)); and
(3) Wobv.r/�W.r/.

Proof
Clearly, (3) implies (1). We next show that (1) implies (2). For each place v j p of
FC, choose a placeev j v of F . Suppose that

N
vjp F.�v/ 2Wobv.r/\W.r/. Then

HomG .O
FC;p

/

�O
vjp

F.�v/
_; S.U p/mr

�
¤ 0

for some sufficiently small compact open subgroup U p �G.A1;p
FC

/. (We can replace
† with the set of places dividing p as in the proof of Proposition 4.2.6.) Say F.�v/
corresponds to F.�ev/ 2 Wobv.r jGFev / via �ev , and say that F.�ev/ 2 Wobv.r jGFev /
(resp., �ev) is the obvious weight (resp., obvious type) for r jGFev corresponding to
wv (after choosing a lowest alcove presentation of r jIFev ). One checks directly from
the definition of obvious type that �ev is 2n-generic, and hence any lowest alcove
presentation of �ev satisfies the hypothesis of Theorem 3.4.1, by Proposition 2.2.15.
Let �.�v/ be the G .O

F
C
v
/-representation corresponding to �.�ev/ via �ev . Note that

S.U p/mr is an injective F�G .OFC;p/�-module as U p is sufficiently small; thus
HomF�G .O

FC;p
/�.�; S.U

p/mr / is exact. Since

HomG .O
FC;p

/

�O
vjp

F.�v/
_; S.U p/mr

�
¤ 0;

we have that

HomG .O
FC;p

/

�O
vjp

�.�v/
_; S.U p/mr

�
¤ 0;

where �.�v/ is the reduction of some O-lattice for each v j p. A nonzero element of

HomG .O
FC;p

/

�O
vjp

�.�v/
_; S.U p/mr

�
¤ 0

gives an automorphic lift rp;�.…/ of r whose restriction at ev is potentially crys-
talline of type .�; �ev/ by [11, Theorem 7.2.1], Theorem 2.3.1, and Proposition 2.3.4.
Thus rp;�.…/jGFu is potentially diagonalizable for each place u j p of F by Corol-
lary 3.4.13.
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Finally, we show that (2) implies (3). Assuming (2), we see that r satisfies the
enumerated hypotheses of Theorem 4.3.1. Suppose now that

N
vjp F.�v/ 2Wobv.r/

is arbitrary, and let F.�ev/, �ev , �.�ev/, and �.�v/ be as in the last paragraph. For
each place v j p of FC, let �ev be a potentially diagonalizable, potentially crys-
talline lift of r jGFev of type .�; �ev/ (say, the lift from Corollary 3.4.11). By Theo-
rem 4.3.1, there is an automorphic lift rp;�.	/ of r whose restriction at ev is poten-
tially crystalline of type .�; �ev/, which is unramified outside the places where r is
ramified. Thus, HomG .O

FC;p
/.
N
vjp �.�v/

_; S.U†/mr / ¤ 0 for any † containing

all places dividing p and all places divisible by places in F where r is ramified and
any sufficiently small U†. By Corollary 4.2.7 and Proposition 4.3.6, we conclude that
HomG .O

FC;p
/.
N
vjp F.�v/

_; S.U†/mr /¤ 0. Thus,
N
vjp F.�v/ 2W.r/.

Remark 4.3.9
In [2], it is shown that if r is modular of a Fontaine–Laffaille weight,

N
vjp F.�v/ 2

Wobv.r/, and p splits completely in F , then

HomG .O
FC;p

/

�O
vjp

W .�v/
_; S.U†/mr

�
¤ 0;

which is strictly weaker than Theorem 4.3.8. In Section 6 of [14], it is shown that if r
is assumed to be modular and ordinary at p, then r is modular of all ordinary obvious
weights. (These are all obvious weights if p splits completely but is strictly smaller
otherwise.) In Section 6 of [14], r is no longer assumed to be semisimple above p.

4.4. Type-changing congruences and a local lifting problem
In this section, we give a classification (Theorem 4.4.3) of congruences between
RACSDC GLn-automorphic representations of trivial weight and generic tame type
whose associated Galois representations are residually tamely ramified at p. We also
solve the corresponding local Galois lifting problem. Throughout this section, we are
in the setting of .P1/–.P3/ from Section 4.1; that is, we fix
(1) a generic semisimple Galois representation � WGK!GLn.F/;
(2) a pair .s�;��/ such that �jIK Š �.s�;�� C �/ with �� in C 0; and
(3) a lowest alcove presentation .s;� � �/ of a tame inertial type � Š �.s;�/ W

IK!GLn.O/ such that �� �� 2ƒR.

PROPOSITION 4.4.1
Let � and � be as above with �� � 2n-deep in C 0.The set W ‹.�; �/ is nonempty if
and only if the set Wobv.�/\ JH.�.�// is nonempty.

Proof
The “if” part of the claim is clear. Suppose that W ‹.�; �/ is nonempty. Let ew D
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ew�.�; �/. By Proposition 4.3.2, 	�1.ew/D ew�12 w0ew1, where w0 2W , ew1;ew2 2 eW C,
and ew1 " ew�1h ew2. Let ! be a weight (unique up to weights whose restrictions to the
derived group are trivial) such that t�!ew1 � .C 0/ is p-restricted. Note that ! is domi-
nant since the set of dominant alcoves is exactly the set of dominant translates of the
restricted ones. Then 	�1.ew/ D .t�w0!ew2/�1w0.t�!ew1/. Let t�w0!ew2 D w�1ew3,
where w 2 W and ew3 2 eW C. It suffices to show that t�!ew1 " ew�1h ew3, since then
by Proposition 4.3.2, taking ew� D t�!ew1 we see that W ‹.�; �/ contains the obvious
weight corresponding to the permutation part of t�!ew1 via the bijection in the proof
of Corollary 2.2.13 (see also Remark 4.3.3).

Using that ew1 " ew�1h ew2, it suffices to show that ew�1
h
ew2 " ew�1h tw0!ew3 or, equiv-

alently, that tw0!ew3 " ew2. Now tw0!ew3 D tw0!�ww0!wew2 by definition. Note that
w0!�ww

0! is a sum of negative roots since ! is dominant. Then tw0!�ww0!wew2 "
wew2 " ew2 by [27, Section II 6.5 (3), (5)].

PROPOSITION 4.4.2
Let � and � be as in Proposition 4.4.1. Then ew�.�; �/ 2 Adm.�/ if and only if
W ‹.�; �/ is nonempty.

Proof
Suppose that W ‹.�; �/ is nonempty, and let ew D ew�.�; �/. By Proposition 4.3.2,
	�1.ew/D ew�12 w0ew1, where w0 2W , ew1;ew2 2 eW C, and ew1 " ew�1h ew2. By an argu-
ment analogous to the proof of Proposition 4.4.1 applied to 	�1.ew�1/D ew�11 w0�1ew2
(i.e., we replace ew, w0, ew1, and ew2 with ew�1, w0�1, ew2, and ew1, respectively), we
can assume without loss of generality that ew2 is p-restricted. It suffices to show that
	�1.ew/� tw�1

2
w0�

. Note that

tw�1
2
w0�
D ew�12 ewht�ew�1h ew2 D ew�12 w0.ew�1h ew2/

and that `.ew�12 w0.ew�1h ew2//D `.ew�12 /C `.w0/C `.ew�1h ew2/ by Lemma 4.1.9. Then
since w0 � w0 and ew1 � ew�1h ew2 by Proposition 4.3.5 (since ew1 " ew�1h ew2), we have
that 	�1.ew/� tw�1

2
w0�

.
Conversely, suppose that ew 2 Adm.�/. Then there exists w2 2 W such that

	�1.ew/ � tw�1
2
w0�

. Let ew2 2 eW C be such that ew2 has projection w2 2 W andew2 � .C 0/ is p-restricted. (Such elements differ by weights whose restrictions
to the derived group are trivial.) Since tw�1

2
w0�
D ew�12 w0.ew�1h ew2/ and

`.ew�12 w0.ew�1h ew2// D `.ew�12 / C `.w0/ C `.ew�1
h
ew2/ as in the last paragraph,

	�1.ew/ D .ew02/�1w0ew01, where ew02 � ew2, ew01 � ew�1h ew2, and w0 � w0. In partic-

ular, w0 2 W.G/. If w01 and w02 2 W.G/ and ewC1 and ewC2 2 eW C are the unique
elements such that ew02 D w02ewC2 and ew01 D w01ewC1 , then ewC2 � ew02 � ew2 andewC1 � ew01 � ew�1h ew2 by Lemma 4.3.4. Thus ewC2 " ew2 and ewC1 " ew�1h ew2. Letting
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w00 D .w02/
�1w0w01, we get that 	�1.ew/D .ewC2 /�1w00ewC1 . Since ewC1 " ew�1h ew2 andewC2 " ew2 or, equivalently, ew�1

h
ew2 " ew�1h ewC2 , we have that ewC1 " ew�1h ewC2 . By the

proof of Proposition 4.4.1 applied to 	�1.ew/D .ewC2 /�1w00ewC1 (i.e., we replace w0,ew1, and ew2 with w00, ewC1 , and ewC2 , respectively), modifying the factorization if
necessary, we can assume without loss of generality that ewC1 �C 0 is p-restricted. By
Proposition 4.3.2 taking ew� to be ewC1 , we see that W ‹.�; �/ is nonempty.

THEOREM 4.4.3
Let � W GK ! GLn.F/ be a .6n� 2/-generic semisimple Galois representation, and
let � be 2n-generic tame inertial type. Let F be a CM field such that �p … F , and
let r W GF ! GLn.F/ be a Galois representation as in Section 4.2.2 satisfying the
following hypotheses.
� r is potentially diagonalizably automorphic; that is, there is an RACSDC auto-

morphic representation … of GLn.AF / such that
– r Š rp;�.…/; and
– for each place u j p of F , rp;�.…/jGFu is potentially diagonalizable.

� The image of r.GF.�p// is adequate.
� r is generic and semisimple at all places dividing p and r jGFev Š � for a placeevjp of F .
Then the following are equivalent:
(1) there is an RACSDC representation… of GLn.AF / such that r Š rp;�.…/ and

the restriction of rp;�.…/ atev is potentially crystalline of type .�; �/;
(2) � has a potentially crystalline lift of type .�; �/;
(3) ew�.�; �/ 2Adm.�/;
(4) W ‹.�; �/¤;; and
(5) Wobv.�/\ JH.�.�//¤;.

Remark 4.4.4
The assumption that � is 2n-generic can be relaxed to n-generic. Suppose that � is n-
generic, but not 2n-generic. Then (4) can be checked to be false, since JH.�.�// will
contain only weights which are not 3n-deep in their alcoves by [23, Theorem 5.2].
(Note that, by the linkage principle, the depth of the Jordan–Hölder factors appearing
in [23, Theorem 5.2] coincides with that of��w�0w0� and max˛_ jh�0w0� ; ˛

_ij � n�1

for all � 2W by Remark 4.1.4.) This implies that (5) is false as well. If (3) holds, then
a direct computation shows that � is 4n-generic, using that max˛_ jhew.0/;˛_ij �
n� 1 for any ew 2Adm.�/. So (3) is false. Then (2) is false by Theorem 3.2.1, which
immediately implies that (1) is false.
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Remark 4.4.5
For � as in the theorem, there always exists a representation r as in the theorem.
Indeed, since � is Fontaine–Laffaille, [10, Conjecture A.3] holds for �. (Alternatively,
one can use Corollary 3.4.13.) Let r W GF ! GLn.F/ be a suitable globalization of
� as constructed by [10, Corollary A.7]. By [10, Corollary A.7 and Lemma A.5],
r satisfies the required hypotheses. Thus, by removing sentences containing r , the
above theorem can be interpreted as giving existence criteria for potentially crystalline
lifts of type .�; �/ for generic semisimple � and tame generic types � .

Proof
First, (1) immediately implies (2). Then (2) implies (3) by Theorem 3.2.1 and Propo-
sition 4.1.8. The equivalence of (3), (4), and (5) follows from Propositions 4.4.1 and
4.4.2. It remains to show that (5) implies (1).

Assume thatWobv.�/\ JH.�.�//¤;. By Theorem 4.3.8,Wobv.r/�W.r/ in the
notation of Section 4.2.2. Following the notation of the proof of Theorem 4.3.8, letN
v0jp F.�v0/ 2Wobv.r/ be such that F.�ev/ 2Wobv.�/ \ JH.�.�//. Then, as in the

proof of Theorem 4.3.8, we obtain the required automorphic representation ….
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