Evolution of Shapes Under Some Stationary 2-D Euler Flows

Chumeng Di, Ethan Roy

June \& July 2019

Abstract

In this report, we investigate how a vertical line segment, a V shape, and a W shape evolve under some basic stationary 2-D Euler flows.

1 Introduction

The solutions of the two-dimensional (2D) Euler Equations are important for understanding the dynamics of vorticity and for many different applications within fluid dynamics. Right now there is plentiful research on both the stationary [5] and rotating smooth solutions [2] to the 2D Euler Equations. However, they take a more traditional complex approach towards analyzing the evolution of 2D Euler flows and their evolutions on the 2-D torus \mathbb{T}^{2}. In this presentation we investigate simpler examples of stationary 2-D Euler flows and their evolutions on the 2-D torus \mathbb{T}^{2}. These examples follow previous research on vortex patches [4] and evidence of a singularities [3] within these equations. Our goal for this research is that it is used as a barebones estimate for vorticity in future analysis on this problem. In this report, we investigate some examples of stationary 2-D Euler flows constructed on the two dimensional torus \mathbb{T}^{2} and how some shapes evolve under them. General Euler equation has the form

$$
\begin{equation*}
\omega_{t}+(u \cdot \nabla) \omega=(\omega \cdot \nabla) u \tag{1.1}
\end{equation*}
$$

where $(\omega \cdot \nabla) u=0$ and ω is scalar in $2-\mathrm{D}$, and $\omega_{t}=0$ when it is stationary. Thus the 2-D stationary Euler equation is given by

$$
\begin{equation*}
(u \cdot \nabla) \omega=0 \tag{1.2}
\end{equation*}
$$

By Biot-Savart law, we have

$$
\begin{equation*}
u=\nabla^{\perp}(-\Delta)^{-1} \omega \tag{1.3}
\end{equation*}
$$

where $\nabla^{\perp}=\left(\partial_{2},-\partial_{1}\right)$. Combining (1.2) and (1.3) we have

$$
\begin{equation*}
\left(\nabla^{\perp}(-\Delta)^{-1} \omega\right) \cdot \nabla \omega=0 \tag{1.4}
\end{equation*}
$$

We denote the stream function ψ by

$$
\begin{equation*}
\psi=(-\Delta)^{-1} \omega \tag{1.5}
\end{equation*}
$$

and thus we have

$$
\begin{equation*}
\nabla^{\perp} \psi \cdot \nabla(-\Delta \psi)=0 \tag{1.6}
\end{equation*}
$$

If $-\Delta \psi=f(\psi)$ [1] for some real-valued smooth function f, then (1.6) holds for those ψ. The eigenfunctions of f, i.e., $f(\psi)=\lambda \psi$, are some simplest examples of stationary 2-D Euler flows.

Stream function of the form

$$
\begin{equation*}
\psi=e^{i\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)} \quad\left(\lambda_{1}, \lambda_{2} \in \mathbb{R}\right) \tag{1.7}
\end{equation*}
$$

is an eigenfunction of $f(\psi)=\lambda \psi$ with eigenvalue $\lambda=\lambda_{1}^{2}+\lambda_{2}^{2}$. In this report we look at six basic forms of stream functions ψ (for $\lambda_{1}, \lambda_{2}>0$) as follows:

$$
\begin{array}{r}
\psi_{1}=\cos \left(\lambda_{2} x_{2}\right), \\
\psi_{2}=\sin \left(\lambda_{2} x_{2}\right), \\
\psi_{3}=\cos \left(\lambda_{1} x_{1}\right), \\
\psi_{4}=\sin \left(\lambda_{1} x_{1}\right), \\
\psi_{5}=\cos \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right), \\
\psi_{6}=\cos \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right) . \tag{6}
\end{array}
$$

We investigate how three shapes evolve under these stream functions. For each shape and each stream function ψ, we want to find velocity u given by

$$
\begin{equation*}
u=\nabla^{\perp} \psi \tag{1.8}
\end{equation*}
$$

displacement X given by

$$
\begin{equation*}
X=\left(x_{1}, x_{2}\right)+u \cdot t \tag{1.9}
\end{equation*}
$$

and accordingly the graph of evolution of the shape under stream flow ψ.

2 Vertical Line Segment

We start by defining a vertical interval $\gamma_{0}=\left\{\left(0, x_{2}\right) \left\lvert\,-\frac{\pi}{\lambda_{2}} \leq x_{2} \leq \frac{\pi}{\lambda_{2}}\right.\right\}$. On this vertical interval, we analyze the six $2 D$ stationary solutions and how they evolve.

$2.1 \psi=\cos \left(\lambda_{2} x_{2}\right)$

If we start with the solution

$$
\begin{equation*}
\psi_{1}=\cos \left(\lambda_{2} x_{2}\right) \tag{2.1.1}
\end{equation*}
$$

then our velocity vector filed u becomes

$$
\begin{equation*}
u\left(x_{1}, x_{2}\right)=\left(-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right), 0\right) \tag{2.1.2}
\end{equation*}
$$

consequently

$$
\begin{equation*}
X=\left(X_{1}, X_{2}\right)=\left(x_{1}-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \tag{2.1.3}
\end{equation*}
$$

And as a result of being on the vertical line segment $x_{1}=0$, thus

$$
\begin{equation*}
X=\left(-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \tag{2.1.4}
\end{equation*}
$$

and using our displacement equation we can graph the evolution of γ_{0} while also taking $\lambda_{2}=1$

Figure 1: Evolution of vertical line segment under ψ_{1}

$2.2 \quad \psi=\sin \left(\lambda_{2} x_{2}\right)$

Next, if we analyze

$$
\begin{equation*}
\psi=\sin \left(\lambda_{2} x_{2}\right) \tag{2.2.1}
\end{equation*}
$$

then our u and X are

$$
\begin{gather*}
u\left(x_{1}, x_{2}\right)=\left(\lambda_{2} \cos \left(\lambda_{2} x_{2}\right), 0\right) \tag{2.2.2}\\
X=\left(X_{1}, X_{2}\right)=\left(x_{1}+\lambda_{2} \cos \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \tag{2.2.3}
\end{gather*}
$$

If we substitute $x_{1}=0$ into our equation then

$$
\begin{equation*}
X=\left(\lambda_{2} \cos \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \tag{2.2.4}
\end{equation*}
$$

and using our displacement equation we can graph the evolution of γ_{0} while also taking $\lambda_{2}=1$.

Figure 2: Evolution of vertical line segment under ψ_{2}
$2.3 \quad \psi=\cos \left(\lambda_{1} x_{1}\right)$
After analyzing both versions of ψ involving cosine and sine of λ_{2}, we now start with

$$
\begin{equation*}
\psi=\cos \left(\lambda_{1} x_{1}\right) \tag{2.3.1}
\end{equation*}
$$

This results in

$$
\begin{gather*}
u\left(x_{1}, x_{2}\right)=\left(0, \lambda_{1} \sin \left(\lambda_{1} x_{1}\right)\right) \tag{2.3.2}\\
X=\left(X_{1}, X_{2}\right)=\left(x_{1}, x_{2}+\lambda_{1} t \sin \left(\lambda_{1} x_{1}\right)\right) \tag{2.3.3}
\end{gather*}
$$

Since, we are on the vertical line segment $x_{1}=0$ and as a result

$$
\begin{equation*}
X=\left(0, x_{2}\right) \tag{2.3.4}
\end{equation*}
$$

Due to our $x_{1}=0$ the graph for $\psi=\cos \left(\lambda_{1} x_{1}\right)$ does not change from the vertical line

Figure 3: Evolution of vertical line segment under ψ_{3}

$2.4 \quad \psi=\sin \left(\lambda_{1} x_{1}\right)$

Furthermore, if we analyze

$$
\begin{equation*}
\psi=\sin \left(\lambda_{1} x_{1}\right) \tag{2.4.1}
\end{equation*}
$$

This results in

$$
\begin{align*}
u\left(x_{1}, x_{2}\right) & =\left(0,-\lambda_{1} \cos \left(\lambda_{1} x_{1}\right)\right) \tag{2.4.2}\\
X=\left(X_{1}, X_{2}\right) & =\left(x_{1}, x_{2}-\lambda_{1} t \cos \left(\lambda_{1} x_{1}\right)\right) \tag{2.4.3}
\end{align*}
$$

Since, we are on the vertical line segment $x_{1}=0$ and as a result

$$
\begin{equation*}
X=\left(0, x_{2}-\lambda_{1}\right) \tag{2.4.4}
\end{equation*}
$$

due to our $x_{1}=0$ the graph for $\psi=\sin \left(\lambda_{1} x_{1}\right)$ does not change from the vertical line $x_{2}-\lambda_{1}$ where $\lambda_{1}=1$

Figure 4: Evolution of vertical line segment under ψ_{4}

$2.5 \psi=\cos \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)$

Now, if we combine our λ_{1} and λ_{2} into one ψ equation, we can analyze the solution

$$
\begin{equation*}
\psi=\cos \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) \tag{2.5.1}
\end{equation*}
$$

Then we can find

$$
\begin{gather*}
u\left(x_{1}, x_{2}\right)=\left(-\lambda_{2} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right), \lambda_{1} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)\right) \tag{2.5.2}\\
X=\left(X_{1}, X_{2}\right)=\left(x_{1}-\lambda_{2} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t\right) . \tag{2.5.3}
\end{gather*}
$$

Since, $x_{1}=0$ on the vertical line segment, our displacement equation X becomes

$$
\begin{equation*}
X=\left(-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{2} x_{2}\right) t\right) \tag{2.5.4}
\end{equation*}
$$

and using our displacement equation we can graph the evolution of γ_{0} while also taking $\lambda_{2}=1$ and $\lambda_{1}=1$

Figure 5: Evolution of vertical line segment under ψ_{5}

$2.6 \psi=\cos \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right)$

Finally, if we analyze our last combination of λ_{1} and λ_{2}, we see a

$$
\begin{equation*}
\psi=\cos \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right) \tag{2.6.1}
\end{equation*}
$$

Then we can find our u and displacement equation to be

$$
\begin{align*}
u\left(x_{1}, x_{2}\right) & =\left(\lambda_{2} \cos \left(\lambda_{1} x_{1}\right) \cos \left(\lambda_{2} x_{2}\right), \lambda_{1} \sin \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right)\right) \tag{2.6.2}\\
X=\left(X_{1}, X_{2}\right) & =\left(x_{1}+t \lambda_{2} \cos \left(\lambda_{1} x_{1}\right) \cos \left(\lambda_{2} x_{2}\right), x_{2}+t \lambda_{1} \sin \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right)\right) \tag{2.6.3}
\end{align*}
$$

Consequently, by including that $x_{1}=0$ our displacement equation becomes

$$
\begin{equation*}
X=\left(t \lambda_{2} \cos \left(\lambda_{2} x_{2}\right), x_{2}\right) \tag{2.6.4}
\end{equation*}
$$

and using our displacement equation, we can graph the evolution of γ_{0} while also taking $\lambda_{2}=1$.

Figure 6: Evolution of vertical line segment under ψ_{6}

3 V shape

Define f on $\left[-k \frac{\pi}{\lambda_{i}}, k \frac{\pi}{\lambda_{i}}\right]$ as

$$
f(x)=\left\{\begin{array}{lc}
-\sqrt{3} x, & x \in\left[-k \frac{\pi}{\lambda_{i}}, 0\right] \tag{7}\\
\sqrt{3} x, & x \in\left(0, k \frac{\pi}{\lambda_{i}}\right]
\end{array} \quad\left(k \in \mathbb{R}^{+}, i=1,2\right)\right.
$$

Let $\gamma_{0}=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=f\left(x_{1}\right), x_{1} \in\left[-k \frac{\pi}{\lambda_{i}}, k \frac{\pi}{\lambda_{i}}\right]\right\}$. Let us consider how this V-shape curve γ_{0} evolves with the six stationary Euler flows.

$3.1 \psi=\cos \left(\lambda_{2} \mathbf{x}_{2}\right)$

We consider how γ_{0} evolves with stream function

$$
\begin{equation*}
\psi=\cos \left(\lambda_{2} x_{2}\right) \tag{3.1.1}
\end{equation*}
$$

By equation (2.1), we have the displacement equation

$$
\begin{equation*}
X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \tag{3.1.2}
\end{equation*}
$$

and accordingly we can graph the evolution of γ_{0} (by taking $k=8, i=2, \lambda_{2}=1$) as follows:

Figure 7: Evolution of V shape under ψ_{1}
We further investigate how the magnitude of angle evolve as the shape evolves. Let the angle be θ and we parametrize two legs of θ using x_{2} as

$$
\begin{align*}
\mathbf{r}_{1}\left(x_{2}\right) & =\left(-\frac{x_{2}}{\sqrt{3}}-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \tag{3.1.3}\\
\mathbf{r}_{\mathbf{2}}\left(x_{2}\right) & =\left(\frac{x_{2}}{\sqrt{3}}-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \tag{3.1.4}
\end{align*}
$$

Thereby we compute

$$
\begin{equation*}
\lim _{x_{2} \rightarrow 0} \mathbf{r}_{\mathbf{1}}^{\prime}\left(x_{2}\right)=\left(-\frac{1}{\sqrt{3}}-\lambda_{2}^{2} t, 1\right) \tag{3.1.5}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x_{2} \rightarrow 0} \mathbf{r}_{\mathbf{2}}{ }^{\prime}\left(x_{2}\right)=\left(\frac{1}{\sqrt{3}}-\lambda_{2}^{2} t, 1\right) \tag{3.1.6}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\cos (\theta)=\frac{\left(-\frac{1}{\sqrt{3}}-\lambda_{2}^{2} t, 1\right) \cdot\left(\frac{1}{\sqrt{3}}-\lambda_{2}^{2} t, 1\right)}{\sqrt{\left(\left(-\frac{1}{\sqrt{3}}-\lambda_{2}^{2} t\right)^{2}+1\right)\left(\left(\frac{1}{\sqrt{3}}-\lambda_{2}^{2} t\right)^{2}+1\right)}} \tag{3.1.7}
\end{equation*}
$$

and we graph $\theta(t)$ as follows:

Figure 8: θ change with time

$3.2 \psi=\sin \left(\lambda_{2} \mathbf{x}_{2}\right)$

We consider how γ_{0} evolves with stream function

$$
\begin{equation*}
\psi=\sin \left(\lambda_{2} x_{2}\right) \tag{3.2.1}
\end{equation*}
$$

By equation (2.2), we have the displacement equation

$$
\begin{equation*}
X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}+\lambda_{2} \cos \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \tag{3.2.2}
\end{equation*}
$$

and accordingly we can graph the evolution of γ_{0} as follows:

Figure 9: Evolution of V shape under ψ_{2}

$3.3 \quad \psi=\cos \left(\lambda_{1} \mathbf{x}_{1}\right)$

We consider how γ_{0} evolves with stream function

$$
\begin{equation*}
\psi=\cos \left(\lambda_{1} x_{1}\right) \tag{3.3.1}
\end{equation*}
$$

By equation (2.3), we have the displacement equation

$$
\begin{equation*}
X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}\right) t\right), \tag{3.3.2}
\end{equation*}
$$

and accordingly we can graph the evolution of γ_{0} (by taking $k=8, i=1, \lambda_{1}=1$) as follows:

Figure 10: Evolution of V shape under ψ_{3}

$3.4 \quad \psi=\sin \left(\lambda_{1} \mathrm{x}_{1}\right)$

We consider how γ_{0} evolves with stream function

$$
\begin{equation*}
\psi=\sin \left(\lambda_{1} x_{1}\right) \tag{3.4.1}
\end{equation*}
$$

By equation (2.4), we have the displacement equation

$$
\begin{equation*}
X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}, x_{2}-\lambda_{1} \cos \left(\lambda_{1} x_{1}\right) t\right), \tag{3.4.2}
\end{equation*}
$$

and accordingly we can graph the evolution of γ_{0} (by taking $k=8, i=1, \lambda_{1}=1$) as follows:

Figure 11: Evolution of V shape under ψ_{4}

$3.5 \quad \psi=\cos \left(\lambda_{1} \mathbf{x}_{1}+\lambda_{\mathbf{2}} \mathbf{x}_{\mathbf{2}}\right)$

We consider how γ_{0} evolves with stream function

$$
\begin{equation*}
\psi=\cos \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) . \tag{3.5.1}
\end{equation*}
$$

By equation (2.5), we have the displacement equation
$X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}-\lambda_{2} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t\right)$,
and accordingly we can graph the evolution of γ_{0} (by taking $k=8, i=2, \lambda_{1}=$ $1, \lambda_{2}=1$) as follows:

Figure 12: Evolution of V shape under ψ_{5}

3.6 $\psi=\cos \left(\lambda_{1} \mathbf{x}_{1}\right) \sin \left(\lambda_{\mathbf{2}} \mathbf{x}_{\mathbf{2}}\right)$

We consider how γ_{0} evolves with stream function

$$
\begin{equation*}
\psi=\cos \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right) . \tag{3.6.1}
\end{equation*}
$$

By equation (2.6), we have the displacement equation
$X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}+\lambda_{2} \cos \left(\lambda_{1} x_{1}\right) \cos \left(\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right) t\right)$,
and accordingly we can graph the evolution of γ_{0} (by taking $k=8, i=2, \lambda_{1}=$ $1, \lambda_{2}=1$) as follows:

Figure 13: Evolution of V shape under ψ_{6}
In this graph we see an unexpected touching of trajectories after time t. For $A, B \in \gamma_{0}$ with $A \neq B$, we have

$$
\begin{aligned}
& X(A)=X_{0}(A)+\left(\nabla^{\perp} \psi\right)(A) t \\
& X(B)=X_{0}(B)+\left(\nabla^{\perp} \psi\right)(B) t
\end{aligned}
$$

We set $X(A)=X(B)$, which gives us

$$
\begin{equation*}
\psi(A) \neq \psi(B) \tag{3.6.3}
\end{equation*}
$$

Since $\omega=-\Delta \psi=\lambda \psi,(3.6 .3)$ gives us

$$
\begin{equation*}
\omega(A) \neq \omega(B) \tag{3.6.4}
\end{equation*}
$$

which implies an unexpected singularity.

4 W shape

Define f_{1}, f_{2}, f_{3}, and f_{4} on $\left[-\frac{\sqrt{3} \pi}{4 \lambda_{2}}, 0\right]$ as follows:

$$
\begin{gather*}
f_{1}(x)=-\frac{1}{\sqrt{3}} x \tag{4.0.1}\\
f_{2}(x)=\frac{1}{\sqrt{3}} x+\frac{\pi}{2 \lambda_{2}} \tag{4.0.2}\\
f_{3}(x)=-\frac{1}{\sqrt{3}} x+\frac{\pi}{2 \lambda_{2}} \tag{4.0.3}\\
f_{4}(x)=\frac{1}{\sqrt{3}} x+\frac{\pi}{\lambda_{2}} \tag{4.0.4}
\end{gather*}
$$

Let γ_{0} be the shape generated by these four functions and let us consider how it evolves with some stationary Euler flows.

4.1 $\psi=\cos \left(\lambda_{1} \mathbf{x}_{\mathbf{1}}+\lambda_{\mathbf{2}} \mathbf{x}_{\mathbf{2}}\right)$

We consider how γ_{0} evolves with stream function

$$
\begin{equation*}
\psi=\cos \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) \tag{4.1.1}
\end{equation*}
$$

By equation (2.5), we have the displacement equation
$X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}-\lambda_{2} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t\right)$,
and accordingly we can graph the evolution of γ_{0} (by taking $\lambda_{1}=1, \lambda_{2}=1$) as follows:

Figure 14: Evolution of W shape under ψ_{5}

$4.2 \quad \psi=\cos \left(\lambda_{1} \mathbf{x}_{\mathbf{1}}\right) \sin \left(\lambda_{\mathbf{2}} \mathbf{x}_{\mathbf{2}}\right)$

We consider how γ_{0} evolves with stream function

$$
\begin{equation*}
\psi=\cos \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right) \tag{4.2.1}
\end{equation*}
$$

By equation (2.6), we have the displacement equation
$X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}+\lambda_{2} \cos \left(\lambda_{1} x_{1}\right) \cos \left(\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right) t\right)$,
and accordingly we can graph the evolution of γ_{0} (by taking $\lambda_{1}=1, \lambda_{2}=1$) as follows:

Figure 15: Evolution of W shape under ψ_{6}

Acknowledgments

We would like to thank Dr. Betul Orcan for her help on this project. Not only did she introduce and teach the topic to the two of us, she has also consistently checked in on our progress as well as help us with any problems we encountered. This project would not exist without her, and we are incredibly grateful for her advice and guidance.

References

[1] L. Alexander Kiselev, Jean-Michel Roquejoffre. Notes on Partial Differential Equations.
[2] A. Castro, D. Córdoba, and J. Gómez-Serrano. Uniformly rotating smooth solutions for the incompressible 2d euler equations. Archive for Rational Mechanics and Analysis, 231(2):719-785, Feb 2019.
[3] A. Cordoba, Diego and Fontelos, Marco A and Mancho. Evidence of singularities for a family of contour dynamics equations. Proceedings of the National Academy of Sciences of the United States of America, 102(17):5949-5952, 042005.
[4] T. M. Elgindi and I.-J. Jeong. On Singular Vortex Patches, I: Well-posedness Issues. arXiv e-prints, page arXiv:1903.00833, Mar 2019.
[5] A. Tur and V. Yanovsky. Point vortices with a rational necklace: New exact stationary solutions of the two-dimensional euler equation. Physics of Fluids, 16(8):2877-2885, 2004.

