
Evolution of Shapes Under Some Stationary 2-D

Euler Flows

Chumeng Di, Ethan Roy

June & July 2019

Abstract

In this report, we investigate how a vertical line segment, a V shape,
and a W shape evolve under some basic stationary 2-D Euler flows.

1 Introduction

The solutions of the two-dimensional (2D) Euler Equations are important for un-
derstanding the dynamics of vorticity and for many different applications within
fluid dynamics. Right now there is plentiful research on both the stationary [5]
and rotating smooth solutions [2] to the 2D Euler Equations. However, they
take a more traditional complex approach towards analyzing the evolution of 2-
D Euler flows and their evolutions on the 2-D torus T2. In this presentation we
investigate simpler examples of stationary 2-D Euler flows and their evolutions
on the 2-D torus T2. These examples follow previous research on vortex patches
[4] and evidence of a singularities [3] within these equations. Our goal for this
research is that it is used as a barebones estimate for vorticity in future analysis
on this problem. In this report, we investigate some examples of stationary 2-D
Euler flows constructed on the two dimensional torus T2 and how some shapes
evolve under them. General Euler equation has the form

ωt + (u · ∇)ω = (ω · ∇)u, (1.1)

where (ω · ∇)u = 0 and ω is scalar in 2-D, and ωt = 0 when it is stationary.
Thus the 2-D stationary Euler equation is given by

(u · ∇)ω = 0. (1.2)

By Biot-Savart law, we have

u = ∇⊥(−∆)−1ω, (1.3)

where ∇⊥ = (∂2,−∂1). Combining (1.2) and (1.3) we have

(∇⊥(−∆)−1ω) · ∇ω = 0. (1.4)
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We denote the stream function ψ by

ψ = (−∆)−1ω, (1.5)

and thus we have
∇⊥ψ · ∇(−∆ψ) = 0. (1.6)

If −∆ψ = f(ψ) [1] for some real-valued smooth function f , then (1.6) holds for
those ψ. The eigenfunctions of f , i.e., f(ψ) = λψ, are some simplest examples
of stationary 2-D Euler flows.

Stream function of the form

ψ = ei(λ1x1+λ2x2) (λ1, λ2 ∈ R) (1.7)

is an eigenfunction of f(ψ) = λψ with eigenvalue λ = λ21 + λ22. In this report
we look at six basic forms of stream functions ψ (for λ1, λ2 > 0) as follows:

ψ1 = cos(λ2x2), (1)

ψ2 = sin(λ2x2), (2)

ψ3 = cos(λ1x1), (3)

ψ4 = sin(λ1x1), (4)

ψ5 = cos(λ1x1 + λ2x2), (5)

ψ6 = cos(λ1x1) sin(λ2x2). (6)

We investigate how three shapes evolve under these stream functions. For each
shape and each stream function ψ, we want to find velocity u given by

u = ∇⊥ψ, (1.8)

displacement X given by
X = (x1, x2) + u · t, (1.9)

and accordingly the graph of evolution of the shape under stream flow ψ.

2 Vertical Line Segment

We start by defining a vertical interval γ0 =
{

(0, x2)| − π

λ2
≤ x2 ≤

π

λ2

}
. On

this vertical interval, we analyze the six 2D stationary solutions and how they
evolve.

2.1 ψ = cos(λ2x2)

If we start with the solution

ψ1 = cos(λ2x2) (2.1.1)
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then our velocity vector filed u becomes

u(x1, x2) = (−λ2 sin(λ2x2), 0) (2.1.2)

consequently

X = (X1, X2) = (x1 − λ2 sin(λ2x2)t, x2) (2.1.3)

And as a result of being on the vertical line segment x1 = 0, thus

X = (−λ2 sin(λ2x2)t, x2) (2.1.4)

and using our displacement equation we can graph the evolution of γ0 while also
taking λ2 = 1

Figure 1: Evolution of vertical line segment under ψ1

2.2 ψ = sin(λ2x2)

Next, if we analyze
ψ = sin(λ2x2) (2.2.1)

then our u and X are

u(x1, x2) = (λ2 cos(λ2x2), 0) (2.2.2)

X = (X1, X2) = (x1 + λ2 cos(λ2x2)t, x2) (2.2.3)

If we substitute x1 = 0 into our equation then

X = (λ2 cos(λ2x2)t, x2) (2.2.4)

and using our displacement equation we can graph the evolution of γ0 while also
taking λ2 = 1.
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Figure 2: Evolution of vertical line segment under ψ2

2.3 ψ = cos(λ1x1)

After analyzing both versions of ψ involving cosine and sine of λ2, we now start
with

ψ = cos(λ1x1). (2.3.1)

This results in
u(x1, x2) = (0, λ1 sin(λ1x1)), (2.3.2)

X = (X1, X2) = (x1, x2 + λ1t sin(λ1x1)). (2.3.3)

Since, we are on the vertical line segment x1 = 0 and as a result

X = (0, x2). (2.3.4)

Due to our x1 = 0 the graph for ψ = cos(λ1x1) does not change from the vertical
line

Figure 3: Evolution of vertical line segment under ψ3
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2.4 ψ = sin(λ1x1)

Furthermore, if we analyze
ψ = sin(λ1x1) (2.4.1)

This results in
u(x1, x2) = (0,−λ1 cos(λ1x1)) (2.4.2)

X = (X1, X2) = (x1, x2 − λ1t cos(λ1x1)) (2.4.3)

Since, we are on the vertical line segment x1 = 0 and as a result

X = (0, x2 − λ1) (2.4.4)

due to our x1 = 0 the graph for ψ = sin(λ1x1) does not change from the vertical
line x2 − λ1 where λ1 = 1

Figure 4: Evolution of vertical line segment under ψ4

2.5 ψ = cos(λ1x1 + λ2x2)

Now, if we combine our λ1 and λ2 into one ψ equation, we can analyze the
solution

ψ = cos(λ1x1 + λ2x2). (2.5.1)

Then we can find

u(x1, x2) = (−λ2 sin(λ1x1 + λ2x2), λ1 sin(λ1x1 + λ2x2)) (2.5.2)

X = (X1, X2) = (x1−λ2 sin(λ1x1 + λ2x2)t, x2 +λ1 sin(λ1x1 + λ2x2)t). (2.5.3)

Since, x1 = 0 on the vertical line segment, our displacement equation X becomes

X = (−λ2 sin(λ2x2)t, x2 + λ1 sin(λ2x2)t) (2.5.4)

and using our displacement equation we can graph the evolution of γ0 while also
taking λ2 = 1 and λ1 = 1
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Figure 5: Evolution of vertical line segment under ψ5

2.6 ψ = cos(λ1x1) sin(λ2x2)

Finally, if we analyze our last combination of λ1 and λ2, we see a

ψ = cos(λ1x1) sin(λ2x2). (2.6.1)

Then we can find our u and displacement equation to be

u(x1, x2) = (λ2 cos(λ1x1) cos(λ2x2), λ1sin(λ1x1) sin(λ2x2)) (2.6.2)

X = (X1, X2) = (x1 + tλ2 cos(λ1x1) cos(λ2x2), x2 + tλ1 sin(λ1x1) sin(λ2x2))
(2.6.3)

Consequently, by including that x1 = 0 our displacement equation becomes

X = (tλ2 cos(λ2x2), x2) (2.6.4)

and using our displacement equation, we can graph the evolution of γ0 while
also taking λ2 = 1.

Figure 6: Evolution of vertical line segment under ψ6
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3 V shape

Define f on [−k π
λi
, k
π

λi
] as

f(x) =

−
√

3x, x ∈ [−k π
λi
, 0]

√
3x, x ∈ (0, k

π

λi
]

(k ∈ R+, i = 1, 2) (7)

Let γ0 = {(x1, x2) | x2 = f(x1), x1 ∈ [−k π
λi
, k
π

λi
]}. Let us consider how this

V-shape curve γ0 evolves with the six stationary Euler flows.

3.1 ψ = cos(λ2x2)

We consider how γ0 evolves with stream function

ψ = cos(λ2x2). (3.1.1)

By equation (2.1), we have the displacement equation

X(t) = (X1(t), X2(t)) = (x1 − λ2 sin(λ2x2)t, x2), (3.1.2)

and accordingly we can graph the evolution of γ0 (by taking k = 8, i = 2, λ2 = 1)
as follows:

Figure 7: Evolution of V shape under ψ1

We further investigate how the magnitude of angle evolve as the shape
evolves. Let the angle be θ and we parametrize two legs of θ using x2 as

r1(x2) = (− x2√
3
− λ2 sin(λ2x2)t, x2) (3.1.3)

r2(x2) = (
x2√

3
− λ2 sin(λ2x2)t, x2) (3.1.4)

Thereby we compute

lim
x2→0

r1
′(x2) = (− 1√

3
− λ22t, 1) (3.1.5)

7



lim
x2→0

r2
′(x2) = (

1√
3
− λ22t, 1) (3.1.6)

Thus we have

cos(θ) =
(− 1√

3
− λ22t, 1) · ( 1√

3
− λ22t, 1)√

((− 1√
3
− λ22t)2 + 1)(( 1√

3
− λ22t)2 + 1)

, (3.1.7)

and we graph θ(t) as follows:

Figure 8: θ change with time

3.2 ψ = sin(λ2x2)

We consider how γ0 evolves with stream function

ψ = sin(λ2x2). (3.2.1)

By equation (2.2), we have the displacement equation

X(t) = (X1(t), X2(t)) = (x1 + λ2 cos(λ2x2)t, x2), (3.2.2)

and accordingly we can graph the evolution of γ0 as follows:

Figure 9: Evolution of V shape under ψ2

3.3 ψ = cos(λ1x1)

We consider how γ0 evolves with stream function

ψ = cos(λ1x1). (3.3.1)
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By equation (2.3), we have the displacement equation

X(t) = (X1(t), X2(t)) = (x1, x2 + λ1 sin(λ1x1)t), (3.3.2)

and accordingly we can graph the evolution of γ0 (by taking k = 8, i = 1, λ1 = 1)
as follows:

Figure 10: Evolution of V shape under ψ3

3.4 ψ = sin(λ1x1)

We consider how γ0 evolves with stream function

ψ = sin(λ1x1). (3.4.1)

By equation (2.4), we have the displacement equation

X(t) = (X1(t), X2(t)) = (x1, x2 − λ1 cos(λ1x1)t), (3.4.2)

and accordingly we can graph the evolution of γ0 (by taking k = 8, i = 1, λ1 = 1)
as follows:

Figure 11: Evolution of V shape under ψ4
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3.5 ψ = cos(λ1x1 + λ2x2)

We consider how γ0 evolves with stream function

ψ = cos(λ1x1 + λ2x2). (3.5.1)

By equation (2.5), we have the displacement equation

X(t) = (X1(t), X2(t)) = (x1 − λ2 sin(λ1x1 + λ2x2)t, x2 + λ1 sin(λ1x1 + λ2x2)t),
(3.5.2)

and accordingly we can graph the evolution of γ0 (by taking k = 8, i = 2, λ1 =
1, λ2 = 1) as follows:

Figure 12: Evolution of V shape under ψ5

3.6 ψ = cos(λ1x1) sin(λ2x2)

We consider how γ0 evolves with stream function

ψ = cos(λ1x1) sin(λ2x2). (3.6.1)

By equation (2.6), we have the displacement equation

X(t) = (X1(t), X2(t)) = (x1+λ2 cos(λ1x1) cos(λ2x2)t, x2+λ1 sin(λ1x1) sin(λ2x2)t),
(3.6.2)

and accordingly we can graph the evolution of γ0 (by taking k = 8, i = 2, λ1 =
1, λ2 = 1) as follows:
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Figure 13: Evolution of V shape under ψ6

In this graph we see an unexpected touching of trajectories after time t. For
A,B ∈ γ0 with A 6= B, we have

X(A) = X0(A) + (∇⊥ψ)(A)t

X(B) = X0(B) + (∇⊥ψ)(B)t.

We set X(A) = X(B), which gives us

ψ(A) 6= ψ(B) (3.6.3)

Since ω = −∆ψ = λψ, (3.6.3) gives us

ω(A) 6= ω(B), (3.6.4)

which implies an unexpected singularity.

4 W shape

Define f1, f2, f3, and f4 on [−
√

3π

4λ2
, 0] as follows:

f1(x) = − 1√
3
x (4.0.1)

f2(x) =
1√
3
x+

π

2λ2
(4.0.2)

f3(x) = − 1√
3
x+

π

2λ2
(4.0.3)

f4(x) =
1√
3
x+

π

λ2
. (4.0.4)

Let γ0 be the shape generated by these four functions and let us consider how
it evolves with some stationary Euler flows.
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4.1 ψ = cos(λ1x1 + λ2x2)

We consider how γ0 evolves with stream function

ψ = cos(λ1x1 + λ2x2). (4.1.1)

By equation (2.5), we have the displacement equation

X(t) = (X1(t), X2(t)) = (x1 − λ2 sin(λ1x1 + λ2x2)t, x2 + λ1 sin(λ1x1 + λ2x2)t),
(4.1.2)

and accordingly we can graph the evolution of γ0 (by taking λ1 = 1, λ2 = 1) as
follows:

Figure 14: Evolution of W shape under ψ5

4.2 ψ = cos(λ1x1) sin(λ2x2)

We consider how γ0 evolves with stream function

ψ = cos(λ1x1) sin(λ2x2). (4.2.1)

By equation (2.6), we have the displacement equation

X(t) = (X1(t), X2(t)) = (x1+λ2 cos(λ1x1) cos(λ2x2)t, x2+λ1 sin(λ1x1) sin(λ2x2)t),
(4.2.2)

and accordingly we can graph the evolution of γ0 (by taking λ1 = 1, λ2 = 1) as
follows:
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Figure 15: Evolution of W shape under ψ6
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