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Introduction

The solutions of the two-dimensional (2D) Euler Equations are important for un-
derstanding the dynamics of vorticity and for many different applications within
fluid dynamics. Right now there is plentiful research on both the stationary [5]
and rotating smooth solutions [2] to the 2D Euler Equations. However, they take
a more traditional complex approach towards analyzing the evolution of 2-D Euler
flows and their evolutions on the 2-D torus T2. In this presentation we investigate
simpler examples of stationary 2-D Euler flows and their evolutions on the 2-D
torus T2. These examples follow previous research on vortex patches [4] and
evidence of a singularities [3] within these equations. Our goal for this research
is that it is used as a barebones estimate for vorticity in future analysis on this
problem.

The Problem

We investigate how certain shapes evolve under some stationary 2-D Euler flows
on the two dimensional torus T2. The the 2-D stationary Euler equation is given
by [1]

(u · ∇)ω = 0. (1.1)

By Biot-Savart law, we obtain

u = ∇⊥(−∆)−1ω, (1.2)

where ∇⊥ = (∂2,−∂1). We denote the stream function ψ by

ψ = (−∆)−1ω, (1.3)

and thus we have
∇⊥ψ · ∇(−∆ψ) = 0. (1.4)

If −∆ψ = f (ψ) for some real-valued smooth function f , then (1.4) holds for ψ.
Stream function of the form below is an eigenfunction of f (ψ) = λψ

ψ = ei(λ1x1+λ2x2) (λ1, λ2 ∈ R) (1.5)

For each shape we investigate how it evolves with six stream functions ψ (for
λ1, λ2 > 0) as follows:

ψ1 = cos(λ2x2), ψ2 = sin(λ2x2), ψ3 = cos(λ1x1),

ψ4 = sin(λ1x1), ψ5 = cos(λ1x1 + λ2x2), ψ6 = cos(λ1x1) sin(λ2x2).

In each case we find velocity u and displacement X given by

u = ∇⊥ψ, X = (x1, x2) + u · t,

and accordingly generate the graph of evolution of the shape under the flow.

Vertical Line Segment

For γ0 =
{

(0, x2), − π
λ2
≤ x2 ≤ π

λ2

}
and ψ = cos(λ2x2), we have

u(x1, x2) = (−λ2 sin(λ2x2), 0) (2.1)

X = (X1, X2) = (x1 − λ2 sin(λ2x2)t, x2)

= (−λ2 sin(λ2x2)t, x2)
(2.2)

With our displacement equation we graph the evolution of γ0 (taking λ2 = 1) as
follows:

Vertical Line Segment Cont.

For the same γ0 and taking ψ = cos(λ1x1 + λ2x2), we can find our u and X to be

u(x1, x2) = (−λ2 sin(λ1x1 + λ2x2), λ1 sin(λ1x1 + λ2x2)) (2.3)

X = (X1, X2) = (x1 − λ2 sin(λ1x1 + λ2x2)t, x2 + λ1 sin(λ1x1 + λ2x2)t)

= (−λ2 sin(λ2x2)t, x2 + λ1 sin(λ2x2)t)
(2.4)

Using the displacement equation we can graph the evolution of γ0 ( taking λ2 = 1
and λ1 = 1)

Note that ψ2 is a shifted of ψ1 ; ψ4 is a ship of ψ3, both of which not deformed in
this case. Finally ψ6 takes on the same evolution as ψ2, which is due to x1 = 0
for this shape.

V shape

Define f on [−k π
λi
, k
π

λi
] as

f (x) =


−
√

3x, x ∈ [−k π
λi
, 0]

√
3x, x ∈ (0, k

π

λi
]

(k ∈ R+, i = 1, 2) (3.1)

Let γ0 = {(x1, x2) | x2 = f (x1), x1 ∈ [−k π
λi
, k
π

λi
]}. Let us consider how this

V-shape curve γ0 evolves with some of the stationary Euler flows.
We start with ψ = cos(λ1x1 + λ2x2). By equation (2.4) we find our displacement
equation to be

X(t) = (X1(t), X2(t)) = (x1 − λ2 sin(λ1x1 + λ2x2)t, x2 + λ1 sin(λ1x1 + λ2x2)t),
(3.2)

and accordingly we can graph the evolution of γ0 (by taking k = 8, i = 2, λ1 =
1, λ2 = 1) as follows:

Next if we analyze ψ = cos(λ1x1) sin(λ2x2) then we can find our u and X to be

u(x1, x2) = (λ2 cos(λ1x1) cos(λ2x2), λ1 sin(λ1x1) sin(λ2x2)) (3.3)

X = (X1, X2) = (x1+tλ2 cos(λ1x1) cos(λ2x2), x2+tλ1 sin(λ1x1) sin(λ2x2)) (3.4)

and accordingly we can graph the evolution of γ0 (by taking k = 8, i = 2, λ1 =
1, λ2 = 1) as follows:

W shape

Define f1, f2, f3, and f4 on [−
√

3π

4λ2
, 0] as follows:

f1(x) = − 1√
3
x, f2(x) =

1√
3
x +

π

2λ2

f3(x) = − 1√
3
x +

π

2λ2
, f4(x) =

1√
3
x +

π

λ2
.

Let γ0 be the shape generated by these functions and let us see how it evolves
with some stationary Euler flows.
We first consider how γ0 evolves with ψ = cos(λ1x1 + λ2x2). We have the dis-
placement equation

X(t) = (X1(t), X2(t)) = (x1 − λ2 sin(λ1x1 + λ2x2)t, x2 + λ1 sin(λ1x1 + λ2x2)t),
(4.1)

and accordingly we graph the evolution of γ0 (by taking λ1 = 1, λ2 = 1) as follows:

We then consider the evolution of γ0 with ψ = cos(λ1x1) sin(λ2x2). we have the
displacement equation

X(t) = (X1(t), X2(t)) = (x1+λ2 cos(λ1x1) cos(λ2x2)t, x2+λ1 sin(λ1x1) sin(λ2x2)t),
(4.2)

and accordingly we can graph the evolution of γ0 (by taking λ1 = 1, λ2 = 1) as
follows:
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