Introduction

The solutions of the two-dimensional (2D) Euler Equations are important for understanding the dynamics of vorticity and for many different applications within fluid dynamics. Right now there is plentiful research on both the stationary [5] and rotating smooth solutions [2] to the 2D Euler Equations. However, they take a more traditional complex approach towards analyzing the evolution of 2-D Euler flows and their evolutions on the 2-D torus \mathbb{T}^{2}. In this presentation we investigate simpler examples of stationary 2-D Euler flows and their evolutions on the 2-D torus \mathbb{T}^{2}. These examples follow previous research on vortex patches [4] and evidence of a singularities [3] within these equations. Our goal for this research is that it is used as a barebones estimate for vorticity in future analysis on this problem.

The Problem

We investigate how certain shapes evolve under some stationary 2-D Euler flows on the two dimensional torus \mathbb{T}^{2}. The the 2-D stationary Euler equation is given by [1]
$(u \cdot \nabla) \omega=0$
(1.1)

By Biot-Savart law, we obtain

$$
\begin{equation*}
u=\nabla^{\perp}(-\Delta)^{-1} \omega, \tag{1.2}
\end{equation*}
$$

where $\nabla^{\perp}=\left(\partial_{2},-\partial_{1}\right)$. We denote the stream function ψ by

$$
\begin{equation*}
\psi=(-\Delta)^{-1} \omega \tag{1.3}
\end{equation*}
$$

and thus we have

$$
\nabla^{\perp} \psi \cdot \nabla(-\Delta \psi)=0 .
$$

If $-\Delta \psi=f(\psi)$ for some real-valued smooth function f, then (1.4) holds for ψ. Stream function of the form below is an eigenfunction of $f(\psi)=\lambda \psi$

$$
\begin{equation*}
\psi=e^{i\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)} \quad\left(\lambda_{1}, \lambda_{2} \in \mathbb{R}\right) \tag{1.5}
\end{equation*}
$$

For each shape we investigate how it evolves with six stream functions ψ (for $\lambda_{1}, \lambda_{2}>0$) as follows:

$$
\psi_{1}=\cos \left(\lambda_{2} x_{2}\right), \psi_{2}=\sin \left(\lambda_{2} x_{2}\right), \psi_{3}=\cos \left(\lambda_{1} x_{1}\right)
$$

$$
\psi_{4}=\sin \left(\lambda_{1} x_{1}\right), \psi_{5}=\cos \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right), \psi_{6}=\cos \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right) .
$$

In each case we find velocity u and displacement X given by

$$
u=\nabla^{\perp} \psi, \quad X=\left(x_{1}, x_{2}\right)+u \cdot t,
$$

and accordingly generate the graph of evolution of the shape under the flow.
Vertical Line Segment
For $\gamma_{0}=\left\{\left(0, x_{2}\right),-\frac{\pi}{\lambda_{2}} \leq x_{2} \leq \frac{\pi}{\lambda_{2}}\right\}$ and $\psi=\cos \left(\lambda_{2} \mathbf{x}_{2}\right)$, we have

$$
\begin{align*}
u\left(x_{1}, x_{2}\right) & =\left(-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right), 0\right) \tag{2.1}\\
X=\left(X_{1}, X_{2}\right) & =\left(x_{1}-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}\right) \\
& =\left(-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}\right)
\end{align*}
$$

With our displacement equation we graph the evolution of $\gamma_{0}\left(\right.$ taking $\left.\lambda_{2}=1\right)$ as
follows: follows:

Vertical Line Segment Cont.
For the same γ_{0} and taking $\psi=\cos \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)$, we can find our u and X to be $u\left(x_{1}, x_{2}\right)=\left(-\lambda_{2} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right), \lambda_{1} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)\right)$
$\begin{aligned} X=\left(X_{1}, X_{2}\right) & =\left(x_{1}-\lambda_{2} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t\right) \\ & =\left(-\lambda_{2} \sin \left(\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{2} x_{2}\right) t\right)\end{aligned}$ Using the displacement equation we can graph the evolution of γ_{0} (taking $\lambda_{2}=1$ and $\lambda_{1}=1$)

Note that ψ_{2} is a shifted of $\psi_{1} ; \psi_{4}$ is a ship of ψ_{3}, both of which not deformed in this case. Finally ψ_{6} takes on the same evolution as ψ_{2}, which is due to $x_{1}=0$ for this shape.

Define f on $\left[-k \frac{\pi}{\lambda_{i}}, k \frac{\pi}{\lambda_{i}}\right]$ as

$$
f(x)=\left\{\begin{array}{ll}
-\sqrt{3} x, & x \in\left[-k \frac{\pi}{\lambda_{i}}, 0\right] \tag{3.1}\\
\sqrt{3} x, & x \in\left(0, k \frac{\pi}{\lambda_{i}}\right]
\end{array} \quad\left(k \in \mathbb{R}^{+}, i=1,2\right)\right.
$$

Let $\gamma_{0}=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=f\left(x_{1}\right), x_{1} \in\left[-k \frac{\pi}{\lambda_{i}}, k \frac{\pi}{\lambda_{i}}\right]\right\}$. Let us consider how this V -shape curve γ_{0} evolves with some of the stationary Euler flows. We start with $\psi=\cos \left(\lambda_{1} \mathrm{x}_{1}+\lambda_{2} \mathrm{x}_{2}\right)$. By equation (2.4) we find our displacement equation to be
$X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}-\lambda_{2} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t\right)$, and accordingly we can graph the evolution of γ_{0} (by taking $k=8, i=2, \lambda_{1}=$ $1, \lambda_{2}=1$) as follows:

Next if we analyze $\psi=\cos \left(\lambda_{1} \mathbf{x}_{1}\right) \sin \left(\lambda_{2} \mathbf{x}_{2}\right)$ then we can find our u and X to be $u\left(x_{1}, x_{2}\right)=\left(\lambda_{2} \cos \left(\lambda_{1} x_{1}\right) \cos \left(\lambda_{2} x_{2}\right), \lambda_{1} \sin \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right)\right)$ $X=\left(X_{1}, X_{2}\right)=\left(x_{1}+t \lambda_{2} \cos \left(\lambda_{1} x_{1}\right) \cos \left(\lambda_{2} x_{2}\right), x_{2}+t \lambda_{1} \sin \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right)\right)$ and accordingly we can graph the evolution of γ_{0} (by taking $k=8, i=2, \lambda_{1}=$ $1, \lambda_{2}=1$) as follows

W shape

Define f_{1}, f_{2}, f_{3}, and f_{4} on $\left[-\frac{\sqrt{3} \pi}{4 \lambda_{2}}, 0\right]$ as follows:

$$
\begin{array}{cc}
f_{1}(x)=-\frac{1}{\sqrt{3}} x, & f_{2}(x)=\frac{1}{\sqrt{3}} x+\frac{\pi}{2 \lambda_{2}} \\
f_{3}(x)=-\frac{1}{\sqrt{3}} x+\frac{\pi}{2 \lambda_{2}}, & f_{4}(x)=\frac{1}{\sqrt{3}} x+\frac{\pi}{\lambda_{2}} .
\end{array}
$$

Let γ_{0} be the shape generated by these functions and let us see how it evolves with some stationary Euler flows.
We first consider how γ_{0} evolves with $\psi=\cos \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)$. We have the dis placement equation
$X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}-\lambda_{2} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) t\right)$,
and accordingly we graph the evolution of γ_{0} (by taking $\lambda_{1}=1, \lambda_{2}=1$) as follows:

We then consider the evolution of γ_{0} with $\psi=\cos \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right)$. we have the displacement equation
$X(t)=\left(X_{1}(t), X_{2}(t)\right)=\left(x_{1}+\lambda_{2} \cos \left(\lambda_{1} x_{1}\right) \cos \left(\lambda_{2} x_{2}\right) t, x_{2}+\lambda_{1} \sin \left(\lambda_{1} x_{1}\right) \sin \left(\lambda_{2} x_{2}\right) t\right)$, and accordingly we can graph the evolution of γ_{0} (by taking $\lambda_{1}=1, \lambda_{2}=1$) as follows:

Acknowledgments

We would like to thank Dr. Betul Orcan for her help on this project. Not only did she introduce and teach the topic to the two of us, she has also consistently checked in on our progress as well as help us with any problems we encountered. This project would not exist without her, and we are incredibly grateful for her advice and guidance.

References

1. A. Kiselev, J. Roquejoffre, L. Ryzhik, with notes on partial differential equations, Notes on Partial Differential Equations
2. A. stro, D. Córdoba, and J. Gómez-Serrano, Uniformly Rotating Smooth Solutions for the Incompressible 2D Euler Equations, Archive for Rational Mechanics and Analysis, February 2019, Volume 231, Issue 2, pp719 - 785. 3. D. Cordoba, M. Fo cenos, A. Mancho, and J. Rodro les for a family of contour dynamics equations, Proceedings of the National Academy of Sciences of the United States of America, April 2005, Volume 02, pp
3. T. Elgindi, I. Jeong, On Singular Vortex Patches, I: Well-posedness Issues, arXiv e-prints, March 2019, pp arXiv:1903.00833
4. A. Tur, V. Yanovsky, Point vortices with a rational necklace: New exact sta tionary solutions of the two-dimensional Euler equation, Physics of Fluids, 2004, Volume16, Issue8, pp2877 - 2885
