Jan 16 definition of $f'(z)$
the Cauchy–Riemann equation

Jan 18 complex logarithm
holomorphic functions

Jan 23 conformal transformations
complex power series

Jan 25 radius of convergence

Jan 28 infinitely many zeros
complex analytic functions
Differntiation

Today we began a thrilling introduction to complex analysis. It all starts with a seemingly innocent and reasonable definition of derivative, using complex numbers instead of real numbers. But we shall learn very soon what an enormous step this really is!

Definition: Let \(f \) be a complex valued function defined on some neighborhood of a point \(z \in \mathbb{C} \). We say that \(f \) is complex differentiable at \(z \) if

\[
\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
\]

exists in \(\mathbb{C} \) — crucial!

In case this limit exists, it's called the complex derivative of \(f \) at \(z \), and it denoted either \(f'(z) \) or \(\frac{df}{dz} \).

This truly seems naive, as it's completely similar to the beginning definition in calculus. But we shall see that the properties of \(f \) which follow from this definition are astonishing!

What makes this all so powerful is that in the difference quotient, the denominator \(h \in \mathbb{C} \) must be allowed simply to tend to 0, no restrictions on "how" or particular directions; merely \(|h| \to 0 \).
BASIC PROPERTIES

- \(f'(z) \) exists \(\iff \) \(f \) is continuous at \(z \).

 For if \(\frac{f(z+h) - f(z)}{h} \) has a limit, then since \(h \to 0 \),
 the numerator must also have limit 0, so that
 \[
 \lim_{{h \to 0}} \frac{f(z+h) - f(z)}{h} = f'(z).
 \]

- \(f + g \) differentiable \(\iff \) \(f + g \) is too, and \((f + g)' = f' + g' \).

- PRODUCT RULE: also \(fg \) is differentiable, and
 \[
 (fg)' = f'g + fg'.
 \]

 Proof:
 \[
 \frac{f(z+h)g(z+h) - f(z)g(z)}{h} = \frac{f(z+h)g(z+h) - g(z)g(z) + g(z)g(z) - f(z)g(z)}{h} \\
 \quad = \frac{g(z)}{h} \cdot \frac{f(z+h) - f(z)}{h} + \frac{f(z) - f(z)}{h} \cdot g(z) \\
 \quad \downarrow \quad \downarrow \quad \downarrow \\
 \quad g'(z) \quad f'(z) \quad g(z)
 \]
 by continuity

- \(\frac{dz}{dz} = 1 \) and then we prove by induction that for \(n=1,2,3,\ldots \)
 \[
 \frac{d}{dz} z^n = nz^{n-1}
 \]

- QUOTIENT RULE \(\left(\frac{f}{g} \right)' = \frac{gf' - fg'}{g^2} \) provided that \(g \neq 0 \).

- CHAIN RULE: if \(g \) is differentiable at \(z \) and \(f \) is
 differentiable at \(g(z) \), then \(f \circ g \) is
 differentiable at \(z \), and
 \[
 (f \circ g)'(z) = f'(g(z))g'(z).
 \]

All these properties are proved just as in "real" calculus, so I've not
bothered to write out detailed proofs of them all.
EXAMPLES

- Möbius transformations — directly from the quotient rule

\[
\left(\frac{a\xi + b}{c\xi + d} \right)' = \frac{ad - bc}{(c\xi + d)^2}
\]

- Exponential function

First for \(h \to 0 \) we have

\[
\frac{e^{h} - 1}{h} = \lim_{n \to \infty} \frac{h^{n-1}}{n!} = 1 + \frac{h}{2} + \frac{h^2}{6} + \cdots
\]

has limit 1 as \(h \to 0 \). Thus

\[
\frac{e^{z+h} - e^z}{h} = e^z \frac{e^{h} - 1}{h} \to e^z.
\]

Conclusion:

\[
\frac{de^z}{dz} = e^z.
\]

- Trigonometric \& hyperbolic functions (follow immediately from \(\exp \))

\[
\frac{d\sinh z}{dz} = \cosh z, \quad \frac{d\cosh z}{dz} = \sinh z
\]

\[
\frac{d\sin z}{dz} = \cos z, \quad \frac{d\cos z}{dz} = -\sin z
\]

- \(\frac{d}{dz} \) and \(\frac{\partial}{\partial x} \) and \(\frac{\partial}{\partial y} \)

By an audacious — but useful — abuse of notation we write

\[
f(z) = f(x + iy) \overset{!}{=} f(x, y).
\]

This sets up a correspondence between a function defined on \(\mathbb{C} \) and a function defined on \(\mathbb{R}^2 \), but we use the same name for these functions!
Now suppose $f'(z)$ exists. In the definition we then restrict h to be real so the limit still exists, of course, and we compute

$$f'(z) = \lim_{h \to 0} \frac{f(z + hi) - f(z)}{hi} = \lim_{h \to 0} \frac{f(x+ih, y) - f(x, y)}{h}$$

$$= \frac{\partial f}{\partial x}(x, y).$$

Likewise, let $h = it$:

$$f'(z) = \lim_{t \to 0} \frac{f(z + it) - f(z)}{it} = \lim_{t \to 0} \frac{f(x, y + it) - f(x, y)}{it}$$

$$= \frac{1}{i} \frac{\partial f}{\partial y}(x, y).$$

We then conclude that

$$f'(z) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

This second equality is a famous relationship, called

THE CAUCHY-RIEMANN EQUATION:

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

WARNING — everyone else calls this the Cauchy–Riemann equations. After expressing f in terms of its real and imaginary parts as $f = u + iv$, then we indeed get 2 equations:

\[
\begin{align*}
\frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} \\
\frac{\partial v}{\partial x} &= -\frac{\partial u}{\partial y}
\end{align*}
\]

In a very precise sense, the converse is also valid, as we now discuss.
We suppose that f is differentiable at (x, y) in the multivariable calculus sense. This means that not only do the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (x, y), but also they provide the coefficients for a good linear approximation to $f(z+h) - f(z)$ for small $|h|$:

$$\lim_{h \to 0, \ h \in \mathbb{C}} \frac{f(z+h) - f(z) - \frac{\partial f}{\partial x}(z)h_1 - \frac{\partial f}{\partial y}(z)h_2}{|h|} = 0.$$

(Remember: $z = x + iy$ is fixed.) We've denoted $h = h_1 + i h_2$.

That definition actually extends to \mathbb{R}^n just as well as \mathbb{R}^2. But in \mathbb{R}^2 we have an advantage in that we can replace the denominator $|h|$ by the complex number h without disturbing the fact that the limit is 0:

$$\lim_{h \to 0, \ h \in \mathbb{C}} \frac{f(z+h) - f(z) - \frac{\partial f}{\partial x}(z)h_1 - \frac{\partial f}{\partial y}(z)h_2}{h} = 0.$$

Now assume that the Cauchy-Riemann equation is satisfied. Then we may replace $\frac{\partial f}{\partial y}$ by $i \frac{\partial f}{\partial x}$ and thus conclude that

$$\lim_{h \to 0, \ h \in \mathbb{C}} \frac{f(z+h) - f(z) - \frac{\partial f}{\partial x}(z)(h_1 + i h_2)}{h} = 0.$$

i.e.,

$$\lim_{h \to 0, \ h \in \mathbb{C}} \frac{f(z+h)-f(z)}{h} = \frac{\partial f}{\partial x}(z).$$

Therefore, we conclude that $f'(z)$ exists, so f is differentiable in the complex sense!
Cauchy–Riemann equation in polar coordinates

We employ the usual polar coordinates

\[\begin{align*} x &= r \cos \theta \\ y &= r \sin \theta \end{align*} \quad (z = re^{i\theta}) \quad (r > 0 \text{ of course}) \]

and then abuse notation by writing \(f = f(x, y) \) as

\[f = f(r \cos \theta, r \sin \theta) \]

and then computing the \(r \) and \(\theta \) partial derivatives of this composite function and designating them as \(\frac{\partial f}{\partial r} \) and \(\frac{\partial f}{\partial \theta} \) (terrible!). Then the chain rule gives

\[\begin{align*} \frac{\partial f}{\partial r} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta, \\
\frac{\partial f}{\partial \theta} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial x} (-r \sin \theta) + \frac{\partial f}{\partial y} (r \cos \theta). \end{align*} \]

Now suppose \(f \) satisfies the Cauchy–Riemann equation and substitute

\[\frac{\partial f}{\partial y} = i \frac{\partial f}{\partial x}; \]

\[\begin{align*} \frac{\partial f}{\partial r} &= \frac{\partial f}{\partial x} (\cos \theta + i \sin \theta), \\
\frac{\partial f}{\partial \theta} &= \frac{\partial f}{\partial x} (-r \sin \theta + i r \cos \theta). \end{align*} \]

Thus

\[\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x} e^{i \theta}, \]

\[\frac{1}{ir} \frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} e^{i \theta}. \]

We conclude that

\[\frac{\partial f}{\partial r} = \frac{1}{ir} \frac{\partial f}{\partial \theta}. \]
Our calculations show that since \(\frac{\partial f}{\partial z} = f' \),
\[
 f'(z) = e^{-i\theta} \frac{\partial f}{\partial \theta} = \frac{1}{i} e^{-i\theta} \frac{\partial f}{\partial \theta}.
\]

EXERCISE Prove that \(\frac{\partial f}{\partial r} = \frac{1}{i r} \frac{\partial f}{\partial \theta} \) implies the original Cauchy–Riemann equation.

Complex logarithm.

We've derived the defining equation
\[
 \log z = \log |z| + i \arg z.
\]

In terms of polar coordinates,
\[
 \log z = \log r + i \theta.
\]

We pause to discuss an easy but crucial idea. When we are faced with the necessity of using \(\log r \) or \(\arg z \), we almost-always work in a certain region of \(\mathbb{C} \sim \{0\} \) in which it is possible to define \(\arg z \) in a continuous manner. A typical situation might be the following: exclude the nonnegative real axis and define \(\arg z \) so that
\[
 0 < \arg z < 2\pi.
\]

Then we would have e.g.
\[
 \log(-1) = \pi i, \quad \log(e^{\pi i}) = 1 + i\pi,
\]

In such a situation \(\log z \) is also a well defined function of \(z \), and the polar form of the Cauchy–Riemann equation applies immediately:
\[
 \frac{\partial}{\partial r} \log z = \frac{\partial}{\partial r} (\log r + i\theta) = \frac{1}{r},
\]
\[
 \frac{\partial}{\partial \theta} \log z = \frac{\partial}{\partial \theta} (\log r + i\theta) = \frac{1}{r} \frac{\partial}{\partial r} \log r - \frac{1}{r^2}.
\]

Thus,
\[
 \frac{\partial}{\partial r} \log z = \frac{1}{r} \frac{\partial}{\partial \theta} \log z.
\]
Thus $\log z$ has a complex derivative, which equals $e^{i\theta} \frac{1}{z} = \frac{1}{r}e^{i\theta} = \frac{1}{z}$. We've thus obtained the expected formula

$$\frac{d}{dz} \log z = \frac{1}{z}.$$

(\text{Be sure to notice that although } \log z \text{ is ambiguous, the ambiguity is of the form of an additive constant } 2\pi i n, \text{ so } \frac{d}{dz} \log z \text{ annihilates that constant.})

\underline{Now an extremely important definition will be given and discussed:}

DEFINITION Let $D \subseteq \mathbb{C}$ be an open set, and assume that $D \overset{f}{\rightarrow} \mathbb{C}$ is a function which is of class C^1. That is, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are defined at each point of D and are themselves continuous functions on D.

Suppose also that $f'(z)$ exists at every point $z \in D$.

Then we say that f is a **holomorphic function** on D.

So of course we have at our disposal quite an array of holomorphic functions:

- \exp
- and such, \cosh, \sinh, \cosh,
- all Möbius transformations
- \log
- all polynomials in z: $f(z) = a_0 + a_1 z + \ldots + a_n z^n$
- all rational functions in z: $\frac{\text{polynomial}}{\text{polynomial}}$
We had quite a long and interesting discussion about this concept, and here are the major points.

1. We don't actually need to say that \(D \) is an open set! The very existence of \(f'(z) \) is that
 \[
 f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
 \]
 and this requires \(f(z+h) \) to be defined for all sufficiently small \(|h| \), and thus that \(f \) is defined in some neighborhood of \(z \).

2. The assumption that \(f \in C^1 \) can be dispensed with, as a fairly profound theorem implies that it follows from just the assumption that \(f'(z) \) exists for every \(z \in D \).

3. "Holomorphic" is not a word you'll see in most basic books on complex analysis. Usually those books use the word "analytic."
 However, I want us to use "analytic" function to refer to a function which in a neighborhood of each \(z_0 \) in its domain can be represented as a power series
 \[
 \sum_{n=0}^{\infty} a_n (z-z_0)^n
 \]
 with a positive radius of convergence.

 - It's pretty easy to prove (and we shall do so) that every analytic function is holomorphic.
 - A much more profound theorem will also be proved — that every holomorphic function is analytic.
1. Start with the product decomposition of $z^n - 1$. Replace z by $\frac{e^z}{W}$, assuming $W \neq 0$:

$$\frac{z^n}{W^n} - 1 = \prod_{k=0}^{n-1} \left(\frac{z}{W} - e^{\frac{2\pi ik}{n}} \right);$$

multiply both sides by W^n:

$$z^n - W^n = \prod_{k=0}^{n-1} (z - W e^{\frac{2\pi ik}{n}}).$$

Finally, if $W = 0$, then the equation is trivial.

2. Express the n^{th} roots of unity in clockwise order to get the result. Or conjugate the equation from 1 to get:

$$\frac{z^n}{W^n} - 1 = \prod_{k=0}^{n-1} \left(\frac{z}{W} - e^{\frac{2\pi ik}{n}} \right);$$

and then replace z with $\frac{1}{W}$ by their conjugates.

3. We have from 2:

$$\frac{z^n}{W^n} = \prod_{k=0}^{n-1} e^{\frac{-2\pi ik}{n}} \left(e^{\frac{2\pi ik}{n}} - e^{\frac{-2\pi ik}{n}} \right);$$

$$= \prod_{k=0}^{n-1} e^{\frac{-2\pi ik}{n}} \cdot \prod_{k=0}^{n-1} \left(e^{\frac{2\pi ik}{n}} - e^{\frac{-2\pi ik}{n}} \right).$$

This product equals $e^{-\frac{n-1}{2} \cdot \frac{2\pi in}{n}} \cdot n \cdot \frac{n-1}{2}$

$$= e^{-\frac{n-1}{2} (n-1)} = \left(e^{-\frac{\pi i}{n}}\right)^{n-1} = (-1)^{n-1}.$$

4. Replace z by e^{iz} and W by e^{-iz}:

$$e^{inz} - e^{-inz} = (-i)^{n-1} \prod_{k=0}^{n-1} \left(e^{i\left(\frac{2\pi ik}{n}\right)} - e^{-i\left(\frac{2\pi ik}{n}\right)} \right).$$
That is,

\[2i \sin nz = (-i)^{n-1} \sum_{k=0}^{n-1} \frac{2^k}{k!} \sin \left(\frac{\pi k}{n} \right). \]

\[\sin nz = (-i)^{n-1} \sum_{k=0}^{n-1} \frac{2^k}{k!} \sin \left(\frac{\pi k}{n} \right). \]

\[(-i)^{n-1} = 2^{n-1}. \]

\[\frac{\sin nz}{\sin z} = 2^{n-1} \sum_{k=1}^{n} \frac{1}{k!} \sin \left(\frac{\pi k}{n} \right). \]

Now the right side is continuous even at \(z = 0 \). So we conclude that

\[\lim_{z \to 0} \frac{\sin nz}{\sin z} = 2^{n-1} \sum_{k=1}^{n} \frac{1}{k!}. \]

There are several ways to evaluate this limit directly... including L'Hôpital's rule if you are careful. (More about this later.) Another is to use the power series for \(\sin z \) to show that

\[\lim_{z \to 0} \frac{\sin z}{z} = 1. \]

Therefore

\[\frac{\sin nz}{\sin z} = \frac{\sin nz}{nz} \cdot \frac{nz}{\sin z} \cdot n \to 1 \cdot 1 \cdot n = n. \]

6. \(\cos z = \cos w \)

\[\frac{e^{iz} + e^{-iz}}{2} = \frac{e^{iw} + e^{-iw}}{2}. \]

\[\frac{e^{iz} - e^{-iz}}{2} = \frac{e^{iw} - e^{-iw}}{2}. \]

\[e^{iz} - e^{iw} = e^{i(w+z)} - e^{i w}. \]

\[e^{iw} - e^{i(z-w)} = 0. \]

\[i(z-w) - 1 = 0 \quad \text{or} \quad e^{-i(w+z)} = 1. \]

\[z-w = 2k\pi \quad \text{or} \quad w+z = 2k\pi. \]

7. \(\sin z = \cos \left(\frac{\pi}{2} - z \right) \), so \(\sin z = \sin w \)

\[\frac{\pi}{2} - z \to \frac{\pi}{2} - w = 2k\pi \]

\[\frac{\pi}{2} - z + w = 2k\pi. \]

\[\frac{\pi}{2} - z \to \frac{\pi}{2} - w = 2k\pi. \]

\[\frac{\pi}{2} - z + w = 2k\pi. \]
HW 5M due January 28, 2013

Let D be the open half plane

$$D = \{ z \in \mathbb{C} \mid \text{Re}(z) > 0 \}.$$

Let f be the function defined on D by $f(z) = z^2$. Of course, f is holomorphic.

1. Prove that f is a bijection of D onto a set $D' \subset \mathbb{C}$.

2. What is D'?

3. The inverse function f^{-1} maps D' onto D. We’ll actually prove a general theorem asserting that inverses of holomorphic functions are always holomorphic. But in this problem I want you to prove directly that f^{-1} is holomorphic.

4. For every real number $0 < a < \infty$ let L_a be the straight line

$$L_a = \{ z \in \mathbb{C} \mid \text{Re}(z) = a \}.$$

Prove that the images $f(L_a)$ are parabolas.

5. Prove that the focus of each parabola $f(L_a)$ is the origin.

6. For each real number b let M_b be the ray

$$M_b = \{ z \in \mathbb{C} \mid \text{Im}(z) = b \}.$$

Since f is conformal, the sets $f(M_b)$ and the parabolas $f(L_a)$ are orthogonal to one another.

Describe the sets $f(M_b)$.

CONFORMAL TRANSFORMATIONS

Roughly speaking, the adjective conformal refers to the preservation of angles. More specifically, consider a situation in which a function F from one type of region to another is differentiable in the vector calculus sense. And consider a point p and its image $F(p)$. Calculus then enables us to move tangent vectors at p to tangent vectors at $F(p)$... some sort of notation like this is frequently used:

$$h \text{ (tangent vector at } p) \rightarrow DF(p)h.$$

Here $DF(p)$ is often the Jacobian matrix of F at p and the symbol $DF(p)h$ refers to multiplication of a matrix and a vector.

Then if h_1 and h_2 are tangent vectors at p, they have a certain angle θ between them:

We are interested in the angle between the images under F of these tangent vectors:

$$\Delta \theta \rightarrow DF(p)h_1 \rightarrow DF(p)h_2$$

If this angle is also θ and this happens at every p and for all tangent vectors, we say that F is a conformal transformation.

Tersely,

conformal means angle-preserving.

Examples: Mercator projections of the earth; stereographic projections.
Now we specify this for holomorphic functions. So assume that f is holomorphic and that at a fixed point $z = 0$ we know that $f'(z) \neq 0$. Let the polar form of this number be

$$f'(z) = Ae^{i\alpha} \quad \text{(where } A > 0, \alpha \in \mathbb{R}).$$

By definition

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.$$

Rewrite this relationship as

$$f(z+h) = f(z) + f'(z)h \quad \text{approximately}.$$

This means that f transforms a tangent vector h at z to the vector at $f(z)$ given by

$$f'(z)h.$$

In other words, directions h at z are transformed to directions $f'(z)h$ at $f(z)$:

This action does two things to $h = (1)$ multiplies its modulus by A and (2) rotates it by the angle α.

We conclude immediately that f preserves angles:

The moduli of all the infinitesimal vectors at z are multiplied by

the same positive number A.
SUMMARY: Every holomorphic function f is conformal at every z with $f'(z)\neq 0$. Infinitesimal vectors at z are magnified by the positive number $|f'(z)|$.

EXAMPLE: $f(z) = z^3$.

$z = i \rightarrow f'(i) = -3$

$\text{Arg} f(i) = -i$

But notice that $f'(0) = 0$ and f does not preserve angles at 0—instead, it multiplies them by 3.
(COMPLEX) POWER SERIES

1. Infinite series of complex numbers.

We shall need to discuss \(\sum_{n=0}^{\infty} a_n \), where \(a_n \in \mathbb{C} \).

Convergence of such a series is no mystery at all. We form the sequence of partial sums

\[S_n = a_0 + \ldots + a_n, \]

and just demand that

\[\lim_{n \to \infty} S_n = L \quad \text{exists.} \]

Then we say

\[\sum_{n=0}^{\infty} a_n = L \quad \text{is convergent.} \]

Equivalently, we could reduce everything to two real series, require that they converge, and then

\[\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \text{Re}(a_n) + i \sum_{n=0}^{\infty} \text{Im}(a_n). \]

Necessarily, if a series converges, then \(\lim_{n \to \infty} a_n = 0. \) (For \(a_n = S_n - S_{n-1} \to L - L = 0. \))

Converge is of course false: the "harmonic series" \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \) diverges.

Absolute convergence is what we'll usually see. We say that \(\sum_{n=0}^{\infty} |a_n| \) converges absolutely if \(\sum_{n=0}^{\infty} |a_n| \) converges. Then there's an important

Theorem If a series converges absolutely, then it converges.

(The proof relies on the completeness of \(\mathbb{R} \).)
2. Most important example of a power series - the Geometric Series

\[\sum_{n=0}^{\infty} z^n, \text{ where } z \in S. \]

By our necessity condition, if this series converges, then \(z^n \to 0 \). That is, \(|z|^n = (|z|^n) \to 0 \). That is, \(|z| < 1 \).

Conversely, suppose \(|z| < 1 \). Then

\[S_N = 1 + z + \ldots + z^N = \frac{1 - z^{N+1}}{1 - z} \]

\[= \frac{1}{1 - z} - \frac{z^{N+1}}{1 - z}. \]

Now simply note that

\[\left| \frac{z^{N+1}}{1 - z} \right| = \frac{|z|^{N+1}}{|1 - z|} \to 0 \] because \(|z| < 1 \).

SUMMARY:

\(\sum_{n=0}^{\infty} z^n \) converges if and only if \(|z| < 1 \).

And then it converges absolutely, and

\[\sum_{n=0}^{\infty} z^n = \frac{1}{1 - z}. \]

3. **Definition.** A power series centered at \(z_0 \) is an infinite series of the form

\[\sum_{n=0}^{\infty} a_n (z - z_0)^n, \]

where the coefficients \(a_n \) are complex numbers.

A. Usually in developing the properties of such series we'll work with the center \(z_0 = 0 \).
Simple warning: the first term in this series is not really
\[a_0 (z - z_0)^0, \]
it is actually a lazy way of writing the constant \(a_0 \). A more legitimate expression would be
\[a_0 + \sum_{n=1}^{\infty} a_n (z - z_0)^n \] ... none ever bottoms.

THEOREM (easy but crucial!) If a power series
\[\sum_{n=0}^{\infty} a_n z^n \]
converges when \(z = z_1 \), and if \(|z_2| < |z_1| \), then it converges absolutely when \(z = z_2 \).

(easy) PROOF \(\sum_{n=0}^{\infty} a_n z_1^n \) converges \(\Rightarrow \lim_{n \to \infty} a_n z_1^n = 0 \)
\[\Rightarrow |a_n z_1^n| \leq \text{a constant } C \text{ for all } n \geq 0. \]

Therefore,
\[|a_n z_2^n| \leq C |z_1|^{-n} |z_2|^n = C \left(\frac{|z_2|}{|z_1|} \right)^n. \]

Since \(\frac{|z_2|}{|z_1|} < 1 \), the geometric series \(\sum_{n=0}^{\infty} \left(\frac{|z_2|}{|z_1|} \right)^n \). Therefore,
\[\sum_{n=0}^{\infty} |a_n z_2^n| \] converges.

That is,
\[\sum_{n=0}^{\infty} a_n z_2^n \] converges absolutely.

\(\Box \)
RADIUS OF CONVERGENCE

It's an easy but extremely important fact that every power series has associated with it a unique \(0 \leq R \leq \infty \) such that

\[
\begin{cases}
|z| < R & \Rightarrow \text{the power series converges absolutely at } z,
|z| > R & \Rightarrow \text{the power series diverges at } z.
\end{cases}
\]

This is a quick result from what we have just proved.

There is actually a formula for \(R \) in general, but it won't be needed by us. Just to be complete, here's that formula:

\[
R = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}.
\]

Useful observation: suppose \(|z| < R \), where \(R \) is the radius of convergence of \(\sum_{n=0}^{\infty} a_n z^n \). Choose any \(\eta \) such that \(|z| < |\eta| < R \).

Then from the preceding lecture we have an estimate

\[
|a_n| \leq C |\eta|^n.
\]

Now consider the quantity \(n a_n z^n \);

notice \[
|n a_n z^n| \leq C n \left(\frac{|\eta|}{|z|}\right)^n.
\]

Since \(\frac{|\eta|}{|z|} < 1 \), the real series

\[
\sum_{n=1}^{\infty} n \left(\frac{|\eta|}{|z|}\right)^n
\]

converges. We can actually appeal to the basic calculus ratio test to check this. Therefore,

\[
\sum_{n=0}^{\infty} |n a_n z^n| < \infty.
\]
Thus, not only does \(\sum_0^\infty a_n z^n \) converge absolutely, but the series with larger coefficients \(\sum_1^\infty a_n \) also converges absolutely...remembar, \(|z| < R \).

CONCLUSION: multiplying the coefficients \(a_n \) of a power series by \(n \) does not change the radius of convergence.

RATIO TEST We just mentioned this result of basic calculus, namely, suppose that a series of positive numbers \(\sum_0^\infty a_n \) has the property that

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l \quad \text{exists}.
\]

Then,

\[
\begin{cases}
 l < 1 & \Rightarrow \text{the series converges}, \\
 l > 1 & \Rightarrow \text{the series diverges}.
\end{cases}
\]

\(l = 1 \) : no conclusion, in general.

And now we apply this to power series \(\sum_0^\infty a_n z^n \) with the property that

\[
\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = l \quad \text{exists}.
\]

Then we can apply the ratio test to the series \(\sum_0^\infty |a_n z^n| \), since

\[
\lim_{n \to \infty} \frac{|a_{n+1} z^{n+1}|}{|a_n z^n|} = l |z|^1.
\]

Thus,

\[
\begin{cases}
 |z| < 1 & \Rightarrow \text{convergence}, \\
 |z| > 1 & \Rightarrow \text{divergence}.
\end{cases}
\]

That is, the radius of convergence of the power series equals

\[
R = \frac{1}{l}.
\]
EXAMPLES

- \(\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad R = \infty \)

- \(\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \quad R = 1 \)

- \(\sum_{n=0}^{\infty} \frac{z^n}{n!^2} \quad R = 0 \)

Also, convergence for \(|z| = R \) can happen variously:

- \(\sum_{n=0}^{N} \frac{z^n}{n!^2} \) diverges for all \(|z| = 1 \)

- \(\sum_{n=0}^{\infty} \frac{z^n}{n!^2} \) converges for all \(|z| = 1 \)

- \(\sum_{n=0}^{\infty} \frac{z^n}{n!} \) diverges for \(z = 1 \), converges for all other \((z| = 1 \).

we don't actually know this at the present time in this course.

SIMPLE PROPERTIES OF POWER SERIES

Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) have radius of convergence \(R_1 \),

\(g(z) = \sum_{n=0}^{\infty} b_n z^n \) have radius of convergence \(R_2 \).

SUM

\[f(z) + g(z) = \sum_{n=0}^{\infty} (a_n + b_n) z^n \] has radius of convergence \(\geq \min(R_1, R_2) \).

PRODUCT

\[f(z)g(z) = \sum_{n=0}^{\infty} c_n z^n \] has radius of convergence \(\geq \min(R_1, R_2) \),

where

\[c_n = \sum_{k=0}^{n} a_k b_{n-k} \].
DERIVATIVE
For $1 < |z| < R_1$, the function f has a complex derivative, and

$$f'(z) = \sum_{n=1}^{\infty} a_n z^{n-1}$$

... notice some radius of convergence.

We'll soon be able to prove the fact about products and the fact about $f'(z)$ with very little effort, almost no calculation involved. But I want to show you a direct proof for $f'(z)$. So let $1 < |z| < R_1$ be fixed, and $h \in \mathbb{C}$ with small modulus, so that in particular $|z| + |h| < R_1$.

Then we compute

$$f(z+h) - f(z) - h \sum_{n=1}^{\infty} a_n z^{n-1} = \sum_{n=1}^{\infty} \left[a_n (z+h)^n - a_n z^n - n a_n z^{n-1} h \right]$$

$$= \sum_{n=2}^{\infty} a_n \left[(z+h)^n - z^n - n z^{n-1} h \right]$$

by binomial formula

$$= \sum_{n=2}^{\infty} a_n \left[\sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^k - z^n - n z^{n-1} h \right]$$

$$= \sum_{n=2}^{\infty} a_n \left[\sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^k \right]$$

$$= h^2 \sum_{n=2}^{\infty} a_n \left[\sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^k \right]$$

Divide by h:

$$\frac{f(z+h) - f(z)}{h} - \sum_{n=1}^{\infty} a_n z^{n-1} = h \sum_{n=2}^{\infty} a_n \left[\sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^{k-2} \right]$$

It follows easily that $f'(z)$ exists and equals $\sum_{n=1}^{\infty} a_n z^{n-1}$.

Therefore, every power series is holomorphic on its open disc of convergence.
Let D be the open half plane

$$D = \{ z \in \mathbb{C} \mid \text{Re}(z) > 0 \}.$$

Let f be the function defined on D by $f(z) = z^2$. Of course, f is holomorphic.

1. Prove that f is a bijection of D onto a set $D' \subset \mathbb{C}$.

2. What is D'?

I'll use polar coordinates for D: $z = re^{i\theta}$, $0 < r < \infty$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

Then

$$z^2 = r^2 e^{2i\theta}, \quad -\pi < 2\theta < \pi.$$

Thus we read off that

$$D' = \mathbb{C} \sim \text{nonpositive real axis}$$

and each $w \in D'$ can be written

$$w = re^{i\phi}, \quad \phi \in (-\pi, \pi) \text{ and } r > 0.$$

The corresponding z is then

$$z = \sqrt{r} \, e^{i\phi/2}.$$

BIJECTION

3. The inverse function f^{-1} maps D' onto D. We'll actually prove a general theorem asserting that inverses of holomorphic functions are always holomorphic. But in this problem I want you to prove directly that f^{-1} is holomorphic.

We've just seen that

$$f^{-1}(re^{i\phi}) = \sqrt{r} \, e^{i\phi/2}.$$

Thus

$$\frac{\partial f^{-1}}{\partial r} = \frac{1}{2\sqrt{r}} \, e^{i\phi/2}, \quad \text{and} \quad \frac{\partial f^{-1}}{\partial \phi} = \frac{i}{2\sqrt{r}} \, e^{i\phi/2}.$$

So we find

$$\frac{\partial f^{-1}}{\partial \phi} = \frac{1}{i\sqrt{r}} \frac{\partial f^{-1}}{\partial r}.$$

(As a bonus,

$$f^{-1}(w) = e^{i\phi} \frac{\partial f^{-1}}{\partial \phi} = \frac{1}{2\sqrt{r}} \, e^{i\phi/2}.$$

i.e.

$$\left. \frac{d\sqrt{w}}{dw} \right|_{w=r} = \frac{1}{2\sqrt{r}}.$$

)
4. For every real number \(0 < a < \infty\) let \(L_a\) be the straight line
\[L_a = \{z \in \mathbb{C} \mid \text{Re}(z) = a\}. \]
Prove that the images \(f(L_a)\) are parabolas.

Now I'll use cartesian coordinates:
\[z = x + iy, \quad w = z^2 = u + iv. \]

1. e. ,
\[\begin{cases} u = x^2 - y^2 \\ v = 2xy. \end{cases} \]

\((L_a): x = a \Rightarrow u = a^2 - y^2 \text{ and } v = 2ay. \) Thus \(y = \frac{v}{2a} \) and we have
\[u = a^2 - \frac{v^2}{4a^2}, \]
the cartesian eqn. of a parabola.

5. Prove that the focus of each parabola \(f(L_a)\) is the origin.

\[f(L_a) \]
\[w = (u, v) \]
\[f(2a^2) \]
directrix
\[1u + \sqrt{1} = 1w = 1z = 1z = x + iy = x^2 + y^2 = a^2 + y^2 = 2a^2 - u, \]
so that
distance from \(w\) to \(O\) = distance from \(w\) to directrix.
This shows that \(O\) is the focus.

6. For each real number \(b\) let \(M_b\) be the ray
\[M_b = \{z \in \mathbb{C} \mid \text{Im}(z) = b\}. \]
Since \(f\) is conformal, the sets \(f(M_b)\) and the parabolas \(f(L_a)\) are orthogonal to one another.

Describe the sets \(f(M_b)\).

\((M_b): y = b, \) so \(u = x^2 - b^2 \) and \(v = 2bx. \)
\(b = 0: \) \(w = x^2 \) gives the positive real axis.
\(b \neq 0: \) \(u = \frac{v^2}{4b^2} - b^2 \text{ and } \text{sign}(v) = \text{sign}(b); \)
half a parabola.
A power series centered at 0 is often called a **Maclaurin series**.

In the following exercises, simplify your answers as much as possible.

1. Find the Maclaurin series for \(\frac{1}{(1-x)^3} \).

2. Find the Maclaurin series for \(\left(\frac{x}{3-x} \right)^2 \).

3. Find the Maclaurin series for \(e^x \sin x \).

4. Let \(\omega = e^{2\pi i/3} \). (1 + \omega + \omega^2 = 0)

 Find the Maclaurin series for \(\frac{e^x + e^{\omega x} + e^{\omega^2 x}}{3} \).

5. Find explicitly \(\sum_{n=0}^{\infty} \frac{(-1)^n (x-\pi i)^n}{n!} \).

6. Find explicitly \(\sum_{n=0}^{\infty} \frac{5^n}{n!} \).
More basic results about power series

THEOREM: Suppose that \(f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \) is a power series with a positive radius of convergence. And suppose that \(f(z) = 0 \) for an infinite sequence of points \(z \) converging to \(z_0 \).

Then \(f = 0 \). In other words, \(a_n = 0 \) for all \(n \).

PROOF: We assume \(z_0 = 0 \) with no loss of generality. Our proof is by contradiction, so we suppose that not all \(a_n = 0 \).

Then we have \(a_N \neq 0 \) for a smallest \(N \), so that

\[
 f(z) = \sum_{n=0}^{\infty} a_n z^n
 = z^N \sum_{n=0}^{\infty} a_n z^{n-N}
 = z^N g(z),
\]

where \(g(z) \) is the power series

\[
 g(z) = \sum_{k=0}^{\infty} a_{N+k} z^k
 = a_N + a_{N+1} z + \cdots.
\]

Then \(f(z) = 0 \) and \(z \neq 0 \) \(\Rightarrow \) \(g(z) = 0 \). Therefore our hypothesis implies that \(g(z) = 0 \) for an infinite sequence of points \(z \) converging to \(0 \).

But \(\lim_{z \to 0} g(z) = g(0) = a_N \). Thus \(a_N = 0 \). Contradiction. QED
Taylor series

Again we suppose that \(f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n \) is a power series with positive radius of convergence. Then we observe

\[
\begin{align*}
 f(z_0) &= a_0, \\
 f'(z) &= \sum_{n=1}^{\infty} na_n (z-z_0)^{n-1}, \text{ so } f'(z_0) &= a_1, \\
 f''(z) &= \sum_{n=2}^{\infty} n(n-1)a_n (z-z_0)^{n-2}, \text{ so } f''(z_0) &= 2a_2.
\end{align*}
\]

In this manner we find

\[
f^{(k)}(z_0) = k! a_k.
\]

Therefore,

\[
f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n.
\]

The right side of this equation is called the Taylor series of \(f \) centered at \(z_0 \).

(If \(z_0 = 0 \), it's called the Maclaurin series of \(f \).)

Changing center of power series

First, a couple of examples:

Example 1 \(f(z) = \sum_{n=0}^{\infty} z^n \) for \(|z| < R = 1 \), the geometric series.

Let's see about an expansion of \(f(z) \) centered instead at \(\frac{1}{2} \).

There we write

\[
f(z) = \frac{1}{1-z} \quad \text{(sum of geometric series)}
\]

\[
= \frac{1}{\frac{1}{2} - (z+\frac{1}{2})} \\
= \frac{1}{\frac{1}{2} - \frac{z+\frac{1}{2}}{\frac{1}{2}}} \\
= \frac{2}{3} \cdot \frac{1}{1 - \frac{z+\frac{1}{2}}{\frac{1}{2}}} \\
= \frac{2}{3} \cdot \sum_{n=0}^{\infty} \left(\frac{z+\frac{1}{2}}{\frac{1}{2}} \right)^n \quad \text{(a different geometric series)}
\]
and this series converges in the disk $|z + \frac{1}{2}| < \frac{3}{2}$.

$$f(z) = \sum_{n=0}^{\infty} \frac{(z + \frac{1}{2})^n}{(\frac{3}{2})^n}.$$

Example 2. $f(z) = \frac{1}{z}$, and we want to express this in a power series centered at $z_0 = 0$. Then as in the preceding example, we write:

$$f(z) = \frac{1}{z_0} + (z-z_0).$$

$$= \frac{1}{z_0} \frac{1}{1+\frac{z-z_0}{z_0}}.$$

$$= \frac{1}{z_0} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z-z_0}{z_0}\right)^n \quad \text{(geometric series)}.$$

$$= \sum_{n=0}^{\infty} \left(\frac{-1}{z_0}\right)^n \left(\frac{z-z_0}{z_0}\right)^n.$$

A Taylor series with radius of convergence $|z_0|$:

A very general theorem:

Let $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series with radius of convergence R, and assume $|z-z_0| < R$. Then $f(z) = \sum_{n=0}^{\infty} b_n (z-z_1)^n$, and the radius of convergence of this new series is

$$R - |z_1-z_0|.$$

Although it is easy enough to prove this theorem with basic manipulations, we already know, such a proof is tedious and boring. Well soon be able to prove this theorem and many others with almost no effort at all!
These ideas lead us to an important definition:

Suppose \(f \) is a \(\mathbb{C} \)-valued function defined on an open subset \(D \subseteq \mathbb{C} \), and suppose that for every \(z_0 \in D \) we are able to write

\[
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad \text{for all } |z - z_0| < R(z_0)
\]

where \(R(z_0) \) is some positive number. Then we say that \(f \) is (complex) analytic on \(D \).

It's then quite clear that every analytic function is holomorphic.

After we obtain Cauchy's integral formula, we'll see that the exact converse is valid:

\[\star\] every holomorphic function is analytic!
HW 6W SOLUTIONS

1. \[\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \; \text{ differentiation } \Rightarrow \frac{1}{(1-z)^2} = \sum_{n=1}^{\infty} n z^{n-1}. \]

 Once again, \[\frac{2}{(1-z)^3} = \sum_{n=2}^{\infty} n (n-1) z^{n-2}. \] Thus
 \[\frac{1}{(1-z)^3} = \sum_{n=2}^{\infty} \frac{n(n-1)}{2} z^{n-2}. \]

2. \[\frac{1}{3} \frac{1}{1-\frac{z}{3}} = \sum_{n=0}^{\infty} \frac{z^n}{3^{n+1}} \; \text{ (geometric series).} \]

 Differentiation \Rightarrow \[\frac{1}{(3-z)^2} = \sum_{n=1}^{\infty} \frac{n z^{n-1}}{3^{n-1}}. \]

 Multiply by \(z^2 \):
 \[\left(\frac{z^2}{3-z} \right)^2 = \sum_{n=1}^{\infty} \frac{n z^{n+1}}{3^{n-1}}. \]

3. \[e^{z \sin z} = e^{z} \frac{e^{iz} - e^{-iz}}{2i} \]

 \[= \frac{1}{2i} \left((z+i)^n - (1-i)^n \right) \]

 \[= \frac{1}{2i} \sum_{n=0}^{\infty} \frac{(z+i)^n - (1-i)^n}{n!} \]

 \[= \frac{1}{2i} \sum_{n=0}^{\infty} \frac{(\sqrt{2} e^{i \pi/4})^n - (\sqrt{2} e^{-i \pi/4})^n}{n!} \]

 \[= \frac{1}{2i} \sum_{n=0}^{\infty} \frac{2^{n/2} e^{i n \pi/4} - e^{-i n \pi/4}}{n!} \]

 \[= \sum_{n=0}^{\infty} \frac{2^{n/2} \sin \frac{n \pi}{4}}{n!} \frac{z^n}{n!}. \]
4. $\frac{e^z + \omega^2z + \omega^4z}{1 + \omega^n + \omega^{2n}}$ has z^n coefficient equal to
 \[\frac{1}{n!} \]
 If $n \equiv 0 \pmod{3}$, then $\omega = \omega^2 = \omega^4 = 1$ since $\omega^3 = 1$.
 If $n \equiv 1 \pmod{3}$, it is $\frac{1 + \omega + \omega^2}{n!} = 0$.
 If $n \equiv 2 \pmod{3}$, it is $\frac{1 + \omega^2 + \omega^4}{n!} = 0$.

 Thus,
 \[\frac{e^z + \omega^2z + \omega^4z}{3} = \sum_{n \equiv 0 (\pmod{3})} \frac{z^n}{n!} \]
 \[= \sum_{k=0}^{\infty} \frac{z^{3k}}{(3k)!} \]

5. \[\sum_{n=0}^{\infty} \frac{(-1)^n (z - \pi i)^n}{n!} = e^{-(z - \pi i)} = e^z e^{-\pi i} = -e^{-\pi i} \]
 for all $z \in \mathbb{C}$

6. Geometric:
 \[\sum_{n=0}^{\infty} \frac{(z/5)^n}{n!} = \sum_{n=0}^{\infty} \left(\frac{z}{5} \right)^n \]
 \[= \frac{1}{1 - \frac{z}{5}} \text{ for } |z| < 5/5. \]
Although we didn't discuss this Monday, it fits in that subject matter.

The principle involved here is based on simple single-variable calculus:

Lemma Suppose \(f = f(z) \) has partial derivatives of first order which satisfy

\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0 \quad \text{on a rectangle} \quad (x_0, x_1) \times (y_0, y_1).
\]

Then \(f \) is constant on that rectangle.

Theorem Suppose \(D \subseteq \mathbb{C} \) is an open connected set and \(D \not\supseteq \mathbb{C} \) has partial derivatives of first order which satisfy

\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0 \quad \text{on} \quad D.
\]

Then \(f \) is constant on \(D \).

Proof By the lemma, \(f \) is constant on rectangular contained in \(D \).
Since \(D \) is connected, \(f \) is constant on \(D \).

QED

Corollary Suppose \(D \subseteq \mathbb{C} \) is an open connected set and \(D \not\supseteq \mathbb{C} \) is holomorphic on \(D \) with \(f'(z) = 0 \) for all \(z \in D \).

Then \(f \) is constant.

Illustration: For \(|z| < 1 \) the number \(1 - z \) can be chosen to have

\[-\pi < \arg (1 - z) < \pi. \]

Then

\[
\frac{d}{dz} \log (1 - z) = \frac{1}{1 - z} = -\sum_{n=0}^{\infty} z^n = -\frac{\sum_{n=0}^{\infty} z^n}{1 - z}.
\]

Thus \(\log (1 - z) + \sum_{n=1}^{\infty} \frac{z^n}{n} \) satisfies the hypothesis of the corollary for \(|z| < 1 \), and is thus constant.

At \(z = 0 \) it equals 0. Therefore,

\[
\log (1 - z) = -\sum_{n=1}^{\infty} \frac{z^n}{n} \quad \text{for} \quad |z| < 1.
\]
EXAM 1 Due February 1, 2013

1. Find the unique Möbius transformation f which satisfies

\[
\begin{align*}
 f(1) & = 1, \\
 f(-1) & = -1, \\
 f(3) & = 2.
\end{align*}
\]

2. Let f and g be two power series centered at 0, with radii of convergence R_1 and R_2, respectively.

 a. Prove that if $R_1 < R_2$, then the power series $f + g$ has radius of convergence equal to R_1.

 b. Give an example of f and g with $R_1 = R_2 = 1$, for which $f + g$ has radius of convergence 3.

3. Define the Joukowski function J by the equation

\[
 J(z) = \frac{z + \frac{1}{z}}{2}.
\]

 a. Prove that J is a bijection of the region \(\{ z \in \mathbb{C} \mid |z| > 1 \} \) onto a region of the complex plane, and state exactly what that region is.

 b. Let C_r be the circle with center 0 and radius $r > 1$. Show that J transforms this circle onto an ellipse whose foci are 1 and -1.

4. Find explicitly the sum of the power series

\[
 \sum_{n=1}^{\infty} n^2 z^n.
\]

HONOR PLEDGE