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Preface

Think about the difference quotient definition of the derivative of a function
from the real number field to itself. Now change the word “real” to “complex.”
Use the very same difference quotient definition for derivative. This turns out
to be an amazing definition indeed. The functions which are differentiable in
this complex sense are dramatically called holomorphic functions.

This book initiates a basic study of such functions. That is all I can do in
a book at this level, for the study of holomorphic functions has been a serious
field of research for centuries. In fact, there’s a famous unsolved problem, The
Riemann Hypothesis, which is still being studied to this day; it’s one of the
Millennium Problems of the Clay Mathematics Institute. Solve it and win a
million dollars! The date of the Riemann Hypothesis is 1859. The Clay Prize
was announced in 2000.

I’ve entitled this book Computational Complex Analysis. The adjective
Computational does not refer to doing difficult numerical computations in the
field of complex analysis; instead, it refers to the fact that (essentially pencil-
and-paper) computations are discussed in great detail.

A beautiful thing happens in this regard: we’ll be able to give proofs of
almost all the techniques we use, and these proofs are interesting in them-
selves. It’s quite impressive that the only background required for this study
is a good understanding of basic real calculus on two-dimensional space! Our
use of these techniques will produce all the basic theorems of beginning com-
plex analysis, and at the same time I think will solidify our understanding of
two-dimensional real calculus.

This brings up the fact that two-dimensional real space is equivalent in a
very definite sense to one-dimensional complex space!

Many students at the beginning of their study of this material are a little
scared of complex numbers and imaginary numbers. Part of this fear is the un-
fortunate historical choice of the adjectives complex and immaginary. A bonus
of studying this subject is that students become quite at home with the complex
number field. It’s hard to be afraid of our friends, the complex numbers.

Here’s another observation about adjectives. There are two related subjects:

v
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real analysis and complex analysis. Normal language would seem to indicate
that the latter subject would be more difficult than the former. Exactly the
reverse is what is true! The main reason is that our holomorphic functions are
such beautifully behaved objects!



Chapter 1

Introduction

Section A: Complex Numbers
C, the field of complex numbers, is the set of all expressions of the form x+ iy,
where

• x, y ∈ R

• i is a special number

• addition and multiplication: the usual rules, except

• i2 = −1

The complex number 0 is simply 0 + i0. C is a field, since every complex
number other than 0 has a multiplicative inverse:

1
x+ iy

= x− iy
x2 + y2 .

CARTESIAN REPRESENTATION:

x

y
z = x+ iy

y

x

is located at
(x, y) ∈ R2

1
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POLAR REPRESENTATION:

x

y

θ

z

|z|

|z| =
√
x2 + y2 = the modulus of z.

The usual polar angle θ is called “the” argument of z: arg z
All the usual care must be taken with arg z, as there is not a unique determi-
antion of it. For instance:

arg(1 + i) = π

4 or
9π
4 or

−7π
4 or

201π
4 · · · .

THE EXPONENTIAL FUNCTION is the function from C to C given by
the power series

exp(z) =
∞∑
n=0

zn

n!

= 1 + z + z2

2 + z3

6 + . . . .

We shall soon discuss power series in detail and will see immediately that the
above series converges absolutely. We will use the notation

ez for exp(z).

PROPERTIES:

• ez+w = ezew (known as the functional equation for exp)

• If z ∈ R, then ez is the usual calculus function.

• If t ∈ R, then we have Euler’s formula

eit = cos t+ i sin t
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We can easily give a sort of proof of the functional equation. If we ignore the
convergence issues, the proof goes like this:

ezew =
 ∞∑
n=0

zn

n!

 ∞∑
n=0

wn

n!


=
 ∞∑
m=0

zm

m!

 ∞∑
n=0

wn

n!

 change dummy

=
∞∑

m,n=0

zm

m!
wn

n! multiply the series

=
∞∑
`=0

∑
m+n=`

zmwn

m!n! diagonal summation

=
∞∑
`=0

1
`!

∑̀
m=0

`!
m!(`−m)!z

mw`−m n = `−m

=
∞∑
`=0

1
`!

∑̀
m=0

 `
m

zmw`−m binomial coefficient

=
∞∑
`=0

(z + w)`
`! binomial formula

= ez+w. definition

What a lovely proof! The crucial functional equation for exp essentially follows
from the binomial formula! (We will eventually see that the manipulations we
did are legitimate.)

The polar representation of any nonzero complex number can now be written
as

z = |z|ei arg z.

Geometric description of complex multiplication: The polar form helps us here.
Suppose z and w are two nonzero complex numbers, and write

z = |z|eiθ (θ = arg z);
w = |w|eiϕ (ϕ = argw).

Then we have immediately that

zw = |z||w|ei(θ+ϕ).

We may thus conclude that the product zw has the polar coordinate data

|zw| = |z||w|,
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arg(zw) = arg(z) + arg(w).
Thus, for a fixed w 6= 0, the operation of mapping z to zw

• multiplies the modulus by |w|,

• adds the quantity argw to arg z.

In other words, zw results from z by

• stretching by the factor |w|, and

• rotating by the angle argw.

PROBLEM 1-1. Let a, b, c be three distinct complex numbers. Prove that
these numbers are the vertices of an equilateral triangle⇔

a2 + b2 + c2 = ab+ bc+ ca

(Suggestion: first show that the translation of a, b, c does not change the
equilateral triangle’s nature (clear), and also does not change the algebraic
relation. Then show the same for multiplication by a fixed non-zero com-
plex number.)

More C notation:

x

y
z = x+ iy

z̄ = x− iy

The complex conjugate of
z = x+ iy is z̄ = x− iy.

The real part of z, denoted Re(z), is equal to x; the imaginary part of z, de-
noted Im(z), is equal to y. Notice that both Re(z) and Im(z) are real numbers.
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The choice of the adjective imaginary is perhaps unfortunate, but it is what ev-
eryone uses. In fact, if Re(z) = 0, we say that z is a pure number. It has the
form z = iy for y ∈ R. We also have:

• z + z = 2 Re(z).

• z − z = 2i Im(z).

• zw = zw.

• |z|2 = zz.

We can therefore observe that the important formula for |zw| follows purely
algebraically:

|zw|2 = (zw)(zw) = zw zw = zzww = |z|2|w|2.

PROBLEM 1-2. Now let a, b, c be three distinct complex numbers each
with modulus 1. Prove that these numbers are the vertices of an equilateral
triangle⇔

a+ b+ c = 0

(Suggestion: 0 = (a+ b+ c)2 = · · · ; use Problem 1-1.)

Remark: The centroid of a triangle with vertices a, b, c is the complex number

a+ b+ c

3 .

The situation of Problem 1-2 concerns a triangle with centroid 0 and the same
triangle inscribed in the unit circle. The latter statement means that the circum-
center of the triangle is 0.

PROBLEM 1-3. Let a, b, c, d be four distinct complex numbers each with
modulus 1. Prove that these numbers are vertices of a rectangle⇔

a+ b+ c+ d = 0
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PROBLEM 1-4. Suppose the centroid and circumcenter of a triangle are
equal. Prove that the triangle is equilateral.

PROBLEM 1-5. Suppose the centroid and the incenter of a triangle are
equal. Prove that the triangle is equilateral.

PROBLEM 1-6. Suppose the incenter and the circumcenter of a triangle
are equal. Prove that the triangle is equilateral.

More about the exponential function: In the power series for exp(z), split the
terms into even and odd terms:

ez =
∞∑
n=0

zn

n! =
∞∑

n=0,2,...

zn

n! +
∞∑

n=1,3,...

zn

n!
=: coshz + sinhz.

In other words,

coshz = ez + e−z

2 , sinhz = ez − e−z

2 .

Hyperbolic Cosine Hyperbolic Sine

It is simple algebra to derive the corresponding addition properties, just using
ez+w = ezew. For instance,

2 sinh(z + w) = ez+w − e−z−w

= ezew − e−ze−w

= (coshz + sinhz)(coshw + sinhw)
− (coshz − sinhz)(coshw − sinhw)

algebra= coshz coshw + coshz sinhw + sinhz coshw + sinhz sinhw
− coshz coshw + coshz sinhw + sinhz coshw − sinhz sinhw

= 2 sinhz coshw + 2 coshz sinhw.

Thus,

• sinh(z + w) = sinhz coshw + coshz sinhw,

and likewise
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• cosh(z + w) = coshz coshw + sinhz sinhw.

Trigonometric Functions: By definition, for all z ∈ C we have

cosz :=
∞∑
n=0

(−1)n z2n

(2n)! ,

and

sinz :=
∞∑
n=0

(−1)n z2n+1

(2n+ 1)! .

(The known Maclaurin series for real z lead to this definition for complex z.)

There is a simple relation between the hyperbolic functions and the trigonomet-
ric ones:

cosh(iz) = cosz
sinh(iz) = i sinz

Conversely,

cos(iz) = coshz
sin(iz) = i sinhz

The definitions of cos and sin can also be expressed this way:

cosz = eiz + e−iz

2

sinz = eiz − e−iz

2i

We also immediately derive

• sin(z + w) = sinz cosw + cosz sinw,

• cos(z + w) = cosz cosw − sinz sinw.

Notice that
eiz = cos z + i sin z.

PROBLEM 1-7. Show that

| sinhz|2 = sinh2x+ sin2y.
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Likewise, show that
| coshz|2 = (?)2 + (?)2.

More geometrical aspects of C: We shall frequently need to deal with the mod-
ulus of a sum, and here is some easy algebra

|z + w|2 = (z + w)(z + w)
= (z + w)(z + w)
= zz + zw + zw + ww

= |z|2 + 2 Re(zw) + |w|2.

I will call this the

LAW OF COSINES: |z + w|2 = |z|2 + 2 Re(zw) + |w|2

As an illustration let us write down the equation of a circle in C. Suppose the
circle has a center a ∈ C and radius r > 0. Then z is on the circle⇔ |z−a| = r.
That is, according to the above formula:

|z|2 − 2 Re(za) + |a|2 = r2.

a

r

Dot product formula
relating R2 and C :

z · w = Re(zw)

R2 dot product

ROOTS OF UNITY This is about the solutions of the equation zn = 1,
where n is a fixed positive integer. We find n distinct roots, essentially by
inspection:

z = e2πik/n for k = 0, 1, . . . , n− 1.

These are, of course, equally spaced points on the unit circle.
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1

e2πi/n

e4πi/n

e2πi(n−1)/n

Simple considerations of basic polynomial algebra show that the polynomial
zn − 1 is exactly divisble by each factor z − e2πik/n. Therefore,

zn − 1 =
n−1∏
k=0

(
z − e2πik/n)

is an identity for the polynomial zn − 1.

COMPLEX LOGARITHM This is about an inverse “function” for exp. In
other words, we want to solve the equation ew = z for w. Of course, z = 0 is
not allowed.

Quite easy: represent w = u+ iv in Cartesian form and z = reiθ in polar form.
Then we need

eu+iv = reiθ;
eueiv = reiθ;

this equation is true⇔ eu = r and eiv = eiθ.
As r > 0, we have u = ln r. Then v = θ + 2π · integer.
As θ = arg z, we thus have the formula w = ln r + i(θ + 2πn), and we write

log z = ln |z|+ i arg z

Here, of course, ln is the usual natural logarithm for positive real numbers.
Thus, log z and arg z share the same sort of ambiguity.
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Properties:

• elog z = z (no ambiguity)
• log ez = z (ambiguity of 2πni)
• log(zw) = log z + logw (with ambiguity)
• log(zn) = n log z (with ambiguity).

E.g.

log(1 + i
√

3) = ln 2 + i
π

3 ,

log(−6) = ln 6 + iπ,

log(reiθ) = ln r + iθ.

MÖBIUS TRANSFORMATIONS This will be only a provisional definition,
so that we will become accustomed to the basic manipulations.

We want to deal with functions of the form

f(z) = az + b

cz + d
,

where a, b, c, d are complex constants. We do not want to include cases where
f is constant, meaning that az + b is proporitional to cz + d. I.e. meaning that
the vectors (a, b) and (c, d) in R2 are linearly dependent. A convenient way to

state this restriction is to require that det
a b
c d

 = ad− bc 6= 0. This we shall

always require.

Easy calculation: if g(z) = a′z + b′

c′z + d′
, then the composition f◦g [i.e. (f◦g)(z) =

f(g(z))] corresponds to the matrix product
a b
c d

a′ b′
c′ d′

 .

If
a b
c d

 =
λa λb
λc λd

 (with λ 6= 0), then these two matrices give the same

transformation.
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Ĉ = C ∪ {∞} is called the extended complex plane, and we then also
define

f(−d/c) =∞,
f(∞) = a/c.

(we will have much more to say about these formulas later.)

The functions we have defined in this way are called Möbius transformations.
Each of them gives a bijection of Ĉ onto Ĉ. And each of them has a unique
inverse:

f(z) = az + b

cz + d
=⇒ f−1 = dz − b

−cz + a
.

PROBLEM 1-8. Let C be the circle in C with center a ∈ C and radius
r > 0. (From page 8 we know that z ∈ C ⇔ |z|2 − 2 Re(za) + |a|2 = r2.)

We want to investigate the outcome of forming
1
z

for all z ∈ C.

1. If 0 /∈ C, define

D =
{1
z

∣∣∣∣z ∈ C
}
.

Prove that D is also a circle, and calculate its center and radius:

center =?
radius =?

2. If 0 ∈ C, then instead define

D =
{1
z

∣∣∣∣z ∈ C, z 6= 0
}
.

What geometric set is D? Prove it.

More about the extended complex plane Ĉ = C ∪ {∞}:
This enjoys a beautiful geometric depiction as the unit sphere in R3, by means
of stereographic projection, which we now describe. There are several useful
ways of defining this projection, but I choose the following:
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(z, 0) 0

(0, 0, 1)

p

C

unit
sphere

SIDE VIEW

Let R3 be given Cartesian coordinates (x, y, t), where z = x+ iy.

Project the unit sphere onto C from the north pole (0, 0, 1).

Straight lines through the north pole which are not horizontal intersect the plane
t = 0 and the unit sphere and set up a bijection between C and the unit sphere
minus (0, 0, 1), as shown in the figure.

When z → ∞, the projection p → (0, 0, 1). Thus, by decreeing that the north
pole corresponds to some point, we are led to adjoining∞ to C.

Thus Ĉ is “equivalent” to the unit sphere in R3. So Ĉ is often called the
Riemann Sphere.

More about Möbius transformations:

• Baby case: given 3 distinct complex numbers u, v, w, it is easy to find a
Möbius f such that 

f(u) = 0
f(v) =∞
f(w) = 1

In fact, f is uniquely determined, and we must have

f(z) = z − u
z − v

w − v
w − u

. (?)
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• Embellishment: we can even allow u or v or w to be∞, and again there
is a unique Möbius f . Here are the results:

f(∞) = 0 f(u) = 0 f(u) = 0
f(v) =∞ : f(z) = w − v

z − v
f(∞) =∞ : f(z) = z − u

w − u
f(v) =∞ : f(z) = z − u

z − v
f(w) = 1 f(w) = 1 f(∞) = 1

(Remark: each case results from (?) by replacing u, v, w by∞ formally.)

• General case: given 3 distinct points u, v, w ∈ C and also 3 distinct point
u′, v′, w′ ∈ C, then there is a unique Möbius f such that


f(u) = u′

f(v) = v′

f(w) = w′.

Proof: Use the previous case twice:


u
v
w



u′

v′

w′




0
∞
1




0
∞
1



f

g h

Then f = h−1 ◦ g.
QED

Möbius transformations and circles:

According to Problem 1-8 the image of a circle under the action of z 7→ 1
z

is

another circle (or straight line). The same is true if instead of
1
z

, we use any
Möbius transformation. Let

f(z) = az + b

cz + d
.

Case 1 (c = 0): Then we may as well write f(z) = az+ b. This transformation
involves multiplication by |a|, rotation by arg a, and translation by b. Thus,
circles are preserved by f .
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Case 2 (c 6= 0): Then we may as well write f(z) = az + b

1z + d
, where ad− b 6= 0.

But then
f(z) = a(z + d)

z + d
+ b− ad

z + d
= a+ b− ad

z + d
,

so f is given by translation, then reciprocation, then multiplication, then trans-
lation. All operations preserve “circles” if we include straight lines.

PROBLEM 1-9. Start from the result we obtained on page 8: if n ≥ 2 is
an integer, then

zn − 1 =
n−1∏
k=0

(
z − e2πik/n) .

1. Prove that for any z, w ∈ C

zn − wn =
n−1∏
k=0

(
z − we2πik/n) .

2. Prove that

zn − wn =
n−1∏
k=0

(
z − we−2πik/n) .

3. Prove that

zn − wn = (−i)n−1
n−1∏
k=0

(
eπik/nz − e−πik/nw

)
.

4. Replace z by eiz and w by e−iz and show that

sinnz = 2n−1
n−1∏
k=0

sin
(
z + πk

n

)

5. Show that
n−1∏
k=1

sin πk
n

= n

2n−1

6. Prove that cos z = cosw ⇔


z − w = 2kπ

or
z + w = 2kπ

 for some k ∈ Z.
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7. Prove that sin z = sinw ⇔


z − w = 2kπ

or
z + w =?

 for some k ∈ Z.

Section B: Linear Functions on R2

An extermely important part of the subject of linear algebra is the discussion
of linear functions. By definition, a linear function from one vector space to
another is a function f which satisfies the two conditions

f(p+ q) = f(p) + f(q)
f(ap) = af(p).

These equations have to hold for all p and q and for all scalars a.

For example, the linear functions from R to R are these:

f(t) = mt,

where m ∈ R. Notice that mt + b is not a linear function of t unless b = 0.
Such a function is said to be an affine function of t.

Out focus in this section is linear functions from R2 to R2. From multivari-
able calculus, we know that linear functions from Rn to Rm can be described
economically in terms of matrix operations, the key ingredient being m × n
matrices. Where m = n = 2 (our case), these operations produce a unique
representation of any linear function f : R2 → R2 in the form

f(x, y) = (ax+ by, cx+ dy)

Moreover, this linear function has an inverse⇔

det
a b
c d

 6= 0.

I.e. ⇔
ad− bc 6= 0.

This determinant is also called the determinant of the linear function f , and
written det fdet fdet f .
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It’s a useful and easy exercise to phrase all this in complex notation. This is
easily done, because

x = z + z

2 and y = z − z
2i .

The simple result is
f(z) = Az +Bz. (?)

where A and B are complex numbers.

We need to see the condition for f to have an inverse:

PROBLEM 1-10. f as defined by (?) has an inverse⇔

|A| 6= |B|.

In fact, prove that det f = |A|2 − |B|2.

In fact, complex algebra enables us to calculate the inverse of f easily: just
imagine solving the equation

w = f(z)

for z as a function of w. Here’s how:

Az +Bz = w;
Bz + Az = w; conjugate

A(Az +Bz)−B(Bz + Az) = Aw −Bw. eliminate z

This becomes (
|A|2 − |B|2

)
z = Aw −Bw.

Thus,

z = A

|A|2 − |B|2
w − B

|A|2 − |B|2
w,

and this expresses f−1 as a linear function in complex notation.

CRUCIAL REMARK: It’s elementary but exteremely important to distinguish
these two concepts:

• linear functions from R2 to R2.

• linear functions from C to C.
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For in terms of our complex notation, f is a linear function from R2 to R2 since

f(tz) = tf(z) for all real t.

In contrast, f is a linear function from C to C⇔

f(tz) = tf(z) for all complex t.

(R2 is a real vector space of dimension 2, but C is a complex vector space of
dimension 1. . . in other words, C is a field.) This agrees with the definition of
linear function, which contains the condition f(ap) = af(p). Here a is any
scalar: for R2, a is real, but for C, a is complex.

Thus, the linear function f(z) = Az + Bz is a linear function from C to C ⇔
B = 0.

REMARK: f preserves the orientation of R2 ⇔ det f > 0 ⇔ |A| > |B|.
Loosely speaking, this condition requires f to have more of z than z.

Section C: Complex Description of Ellipses

This material wil not be used further in this text, but I’ve included it to provide
an example of using complex numbers in an interesting situation.

You are familiar with the basic definition and properties of an ellipse contained
in R2:
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Focus

Focus

Center

b a

Semiminor Axis

Semimajor Axis

We’re assuming 0 < b < a. Recall the distance from the center of the ellipse to
each focus is

√
a2 − b2.

A standard model for such an ellipse is given by the defining equation

x2

a2 + y2

b2 = 1.

Parametrically, this ellipse can also be described as x = a cos θ,
y = b sin θ.

Let’s convert this parametric description to complex notation:

x+ iy = a cos θ + ib sin θ

= a
eiθ + e−iθ

2 + b
eiθ − e−iθ

2 Euler’s equation

= a+ b

2 eiθ + a− b
2 e−iθ.

This formula represents the ellipse as the image of the unit circle under the
action of the linear function:

f(z) = a+ b

2 z + a− b
2 z.
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That ellipse is of course oriented along the coordinate axes. It’s quite interesting
to generalize this. So, we let f be any invertible linear function from R2 to R2,
and use complex notation to write

f(z) = Az +Bz,

where A and B are complex numbers with |A| 6= |B| (see Section B). Then we
obtain an ellipse (or a circle) as the set{

Aeiθ +Be−iθ | θ ∈ R
}
.

This ellipse is centered at the origin.

Now we give a geometric description of this ellipse. First, write the polar rep-
resentation of A and B:

A = |A|eiα,
B = |B|eiβ.

Then,
f(eiθ) = |A|ei(α+θ) + |B|ei(β−θ).

The modulus of f(eiθ) is largest when the unit complex numbers satisfy

ei(α+θ) = ei(β−θ).

That is, when
α + θ = β − θ mod 2π;

or, rewritten, when

θ = β − α
2 mod π.

For such θ, we have

f(eiθ) = ± (|A|+ |B|) ei
α+β

2 .

In the same way, the modulus of f(eiθ) is smallest when

ei(α+θ) = −ei(β−θ)

= ei(β+π−θ).

This occurs precisely when

θ = β + π − α
2 mod π

= β − α
2 + π

2 mod π.
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For such θ we have

f(eiθ) = ±(|A| − |B|)ei(
α+β

2 +π
2 )

= ±i(|A| − |B|)ei
α+β

2 .

Here’s a representative sketch:

0

−i(|A| − |B|)ei
α+β

2

i(|A| − |B|)ei
α+β

2

(|A| − |B|)ei
α+β

2

−(|A| − |B|)ei
α+β

2

Of course, |A| − |B| 6= 0. And we have a circle precisely when A = 0 or
B = 0.

Now assume it’s really an ellipse: AB 6= 0. Then we have this data:

semimajor axis has length |A|+ |B|;
semiminor axis has length

∣∣∣|A| − |B|∣∣∣;
center = 0.

Therefore, the distance from the origin to each focus equals√
(|A|+ |B|)2 − (|A| − |B|)2 = 2

√
|A||B|.

And the foci are the two points

±2
√
|A||B|ei

α+β
2 = ±2

√
|A|eiα|B|eiβ

= ±2
√
AB.

Another way of giving this result is that the two foci are the two square roots of
the complex number 4AB:

2
√
AB.



Chapter 2

Differentiation

Section A: The Complex Derivative
Now we begin a thrilling introduction to complex analysis. It all starts with
a seemingly innocent and reasonable definition of derivative, using complex
numbers instead of real numbers. But we shall learn very soon what an enor-
mous step this really is!

DEFINITION: Let f be a complex valued function defined on some neigh-
borhood of a point z ∈ C. We say that f is complex-differentiable at z if

CRUCIAL!

lim
h∈C
h→0

f(z + h)− f(z)
h

exists.

In case this limit exists, it is called the complex derivative of f at z, and is
denoted either

f ′(z) or
df

dz
.

This truly seems naive, as it’s completely similar to the beginning definition
in Calculus. But we shall see that the properties of f which follow from this
definition are astonishing!

What makes this all so powerful is that in the difference quotient the denomi-
nator h ∈ C must be allowed simply to tend to 0, no restrictions on “how” or
particular directions: merely |h| → 0.

21
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BASIC PROPERTIES:

• f ′(z) exists⇒ f is continuous at z.

For if
f(z + h)− f(z)

h
has a limit, then since h→ 0, the numerator must

also have limit 0, so that

lim
h→0

f(z + h) = f(z).

• f and g differentiable⇒ f + g is too, and (f + g)′ = f ′ + g′.

• PRODUCT RULE: also fg is differentiable, and

(fg)′ = fg′ + f ′g.

Proof:
f(z + h)g(z + h)− f(z)g(z)

h

= f(z + h)g(z + h)− g(z)
h

+ g(z)f(z + h)− f(z)
h

f(z) g′(z) f ′(z)
(by continuity of f )

• dz

dz
= 1 and then we prove by induction that for n = 1, 2, 3, . . .

dzn

dz
= nzn−1.

• QUOTIENT RULE:
(
f

g

)′
= gf ′ − fg′

g2 provided that g 6= 0.

• CHAIN RULE: If g is differentiable at z and f is differentiable at g(z),
then the composite function f ◦ g is differentiable at z, and

(f ◦ g)′(z) = f ′(g(z))g′(z).

All these properties are proved just as in “real” Calculus, so I have chosen to
not write out detailed proofs for them all.

EXAMPLES:
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• Möbius transformations – directly from the quotient rule(
az + b

cz + d

)′
= ad− bc

(cz + d)2 (notice the determinant!)

• Exponential Function
First for h→ 0 we have

eh − 1
h

=
∞∑
n=1

hn−1

n! = 1 + h

2 + h2

6 + . . .

has limit 1 as h→ 0. Thus,

ez+h − ez

h
= ez

eh − 1
h
→ ez.

Conclusion:
dez

dz
= ez.

• Trigonometric and hyperbolic functions – follow immediately from exp:

d sinz
dz

= cosz, d cosz
dz

= − sinz,
d sinhz
dz

= coshz, d coshz
dz

= sinhz.

Section B: The Cauchy-Riemann Equation
d

dz
and

∂

∂x
and

∂

∂y

By an audacious – but useful – abuse of notation we write

f(z) = f(x+ iy) != f(x, y).

This sets up a correspondence between a function defined on C and a function
defined on R2, but we use the same name for these functions!

Now suppose that f ′(z) exists. In the definition, we then restrict h to be real
. . . the limit still exists, of course, and we compute

f ′(z) = lim
h→0
h∈R

f(z + h)− f(z)
h

= lim
h→0
h∈R

f(x+ h, y)− f(x, y)
h

= ∂f

∂x
(x, y).
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Likewise, let h = it be pure imaginary:

f ′(z) = lim
t→0
t∈R

f(z + it)− f(z)
it

= lim
t→0
t∈R

f(x, y + t)− f(x, y)
it

= 1
i

∂f

∂y
(x, y).

We thus conclude that

f ′(z) = ∂f

∂x
= 1
i

∂f

∂y
.

This second equality is a famous relationship, called

THE CAUCHY-RIEMANN EQUATION:
∂f

∂x
=

1
i

∂f

∂y

WARNING – everyone else calls this the Cauchy-Riemann equations, after ex-
pressing f in terms of its real and imaginary parts as f = u + iv. Then we
indeed get 2 real equations:

∂u

∂x
= ∂v

∂y

∂v

∂x
= −∂u

∂y

(I prefer “equation,” as that form shows a natural switch from x to iy.)

In a very precise sense, the converse is also valid, as we now discuss.

We suppose f is differentiable at (x, y) in a multivariable calculus sense. This

means that not only do the partial derivatives
∂f

∂x
and

∂f

∂y
exist at (x, y), but also

they provide the coefficients for a good linear approximation to f(z+h)−f(z)
for small |h|:

lim
h→0
h∈R2

f(z + h)− f(z)− ∂f

∂x
(z)h1 −

∂f

∂y
(z)h2

|h|
= 0.
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Now assume that the Cauchy-Riemann equation is satisfied. Then we may re-

place
∂f

∂y
by i

∂f

∂x
and conclude that

lim
h→0
h∈C

f(z + h)− f(z)− ∂f

∂x
(z)(h1 + ih2)

h
= 0.

I.e.,

lim
h→0
h∈C

f(z + h)− f(z)
h

= ∂f

∂x
(z).

Therefore, we conclude that f ′(z) exists, so f is differentiable in the complex

sense! Moreover, f ′(z) = ∂f

∂x
(z).

Connection to directional derivatives of Calculus III:

z ∈ C

θ

Suppose that we wish to find the directional deriva-
tive of a function f at a point z in the direction of the
vector eiθ. This is described by the expression

d

dt
f(z + teiθ)

∣∣∣∣
t=0
,

where t ∈ R. If f is differentiable at z, then the
chain rule holds, and we easily calculate

d

dt
f(z + teiθ)

∣∣∣∣
t=0

= f ′(z + teiθ)eiθ
∣∣∣∣
t=0

= f ′(z)eiθ.

Thus if a function is differentiable at a point and we wish to calculate a direc-
tional derivative there, then we simply multiply the derivative of the function
by the unit vector in the desired direction!

Cauchy-Riemann equation in polar coordinates:

We employ the usual polar coordinates x = r cos θ
y = r sin θ

(
z = reiθ

)
(r > 0, of course)

and then again abuse notation by writing f = f(x, y) as

f = f(r cos θ, r sin θ),
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and then computing the r and θ partial derivatives of this composite function

and designating them as
∂f

∂r
and

∂f

∂θ
(terrible!). Then the chain rule gives



∂f

∂r
= ∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r
= ∂f

∂x
cos θ + ∂f

∂y
sin θ,

∂f

∂θ
= ∂f

∂x

∂x

∂θ
+ ∂f

∂y

∂y

∂θ
= ∂f

∂x
(−r sin θ) + ∂f

∂y
(r cos θ).

Now suppose f satisfies the Cauchy-Riemann equation and substitute
∂f

∂y
= i

∂f

∂x
: 

∂f

∂r
= ∂f

∂x
(cos θ + i sin θ),

∂f

∂θ
= ∂f

∂x
(−r sin θ + ir cos θ).

Thus, 
∂f

∂r
= ∂f

∂x
eiθ,

1
ir

∂f

∂θ
= ∂f

∂x
eiθ.

We conclude that

∂f

∂r
= 1
ir

∂f

∂θ

polar coordinate form of the
Cauchy-Riemann equation

Our calculations show that since
∂f

∂x
= f ′,

f ′(z) = e−iθ
∂f

∂r
= 1
ir
e−iθ

∂f

∂θ
.

EXERCISE: Prove that
∂f

∂r
= 1
ir

∂f

∂θ
implies the original Cauchy-Riemann

equation.

Complex Logarithm:

We have derived the defining equation

log z = ln |z|+ i arg z.
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In terms of polar coordinates,

log z = ln r + iθ.

We pause to discuss an easy but crucial idea. When we are faced with the
necessity of using log or arg, we almost always work in a certain region of
C\{0} in which it is possible to define arg z in a continuous manner. A typical
situation might be the following: exclude the nonnegative real axis and define
arg z so that 0 < arg z < 2π:

Then we would have e.g.

log(−1) = πi, log(ei) = 1 + i
π

2 , log(−i) = 3πi
2 , etc.

In such a situation log z is also a well-defined function of z, and the polar form
of the Cauchy-Riemann equation applies immediately:

∂

∂r
log z = ∂

∂r
(ln r + iθ) = 1

r
,

∂

∂θ
log z = ∂

∂θ
(ln r + iθ) = i;

thus
∂

∂r
log z = 1

ir

∂

∂θ
log z.

Thus, log z has a complex derivative, which equals e−iθ
1
r

= 1
reiθ

= 1
z

.

We have thus obtained the expected formula

d log z
dz

= 1
z
.

(Be sure to notice that although log z is ambiguous, the ambiguity is the form

of an additive constant 2πin, so
d

dz
annihilates that constant.)
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Section C: Holomorphic Functions
Now an extremely important definition will be given and discussed:

Definition: Let D ⊂ C be an open set, and assume that D f−→ C is a

function which is of class C1. That is,
∂f

∂x
and

∂f

∂y
are defined at each point

in D and are themselves continuous functions on D.

Suppose also that the complex derivative f ′(z) exists at every point z ∈ D.

Then we say that f is a holomorphic function on D.

So of course, we have at our disposal quite an array of holomorphic func-
tions:

• exp, as well as sinh, cosh, sin and cos;

• all Möbius transformations;

• log;

• all polynomials in z: f(z) = a0 + a1z + . . .+ anz
n;

• all rational functions in z:
polynomial
polynomial

.

REMARKS:

1. We do not acutally need to say that D is an open set! The very existence
of f ′(z) is that

f ′(z) = lim
h→0
h∈C

f(z + h)− f(z)
h

and this requires f(z + h) to be defined for all sufficiently small |h|, and
thus that f be defined in some neighborhood of z.

2. The assumption that f ∈ C1 can be dispensed with, as a fairly profound
theorem implies that it follows from just the assumption that f ′(z) exists
for every z ∈ D. (We won’t need this refinement in this book.) It’s called
Goursat’s theorem.

3. “Holomorphic” is not a word you will see in most basic books on com-
plex analysis. Usually those books use the word “analytic.”
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However, I want us to use “analytic” function to refer to a function which in a
neighborhood of each z0 in its domain can be represented as a power series

∞∑
n=0

an(z − z0)n

with a positive radius of convergence.

• It is pretty easy to prove (and we shall do so) that every analytic function
is holomorphic.

• A much more profound theorem will also be proved – that every holomor-
hic function is analytic.

DEFINITION (from Wikipedia):
https://en.wikipedia.org/wiki/Holomorphic_function

In mathematics, a holomorphic function is a complex-valued function of
one or more complex variables that is complex differentiable in a neighbor-
hood of every point in its domain. The existence of a complex derivative in
a neighborhood is a very strong condition, for it implies that any holomor-
phic function is actually infinitely differentiable and equal to its own Taylor
series (analytic). Holomorphic functions are the central objects of study in
complex analysis.

Though the term analytic function is often used interchangeably with “holo-
morphic function,” the word “analytic” is defined in a broader sense to
denote any function (real, complex, or of more general type) that can be
written as a convergenet power series in a neighborhood of each point in
its domain. The fact that all holomorphic functions are complex analytic
functions, and vice versa, is a major theorem in complex analysis.

PROBLEM 2-1. Let D be the open half plane

D = {z ∈ C|Re(z) > 0}.

Let f be the function defined on D by f(z) = z2. Of course, f is holomor-
phic.

1. Prove that f is a bijection of D onto a set D′ ⊂ C.

2. What is D′?

https://en.wikipedia.org/wiki/Holomorphic_function
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3. The inverse function f−1 maps D′ onto D. We’ll actually prove a
general theorem asserting that inverses of holomorphic functions are
always holomorphic. But in this problem, I want you to prove di-
rectly that f−1 is holomorphic.

4. For every real numer 0 < a <∞ let La be the straight line

La = {z ∈ C|Re(z) = a}.

Prove that the images f(La) are parabolas.

5. Prove that the focus of each parabola f(La) is the origin.

6. For each real number b let Mb be the ray

Mb = {z ∈ D| Im(z) = b}.

Since f is conformal, the sets f(Mb) and the parabolas f(La) are
orthogonal to one another.

Describe the sets f(Mb).

Section D: Conformal Transformations

Roughly speaking, the adjective conformal refers to the preservation of angles.
More specifically, consider a situation in which a function F from one type of
region to another is differentiable in the vector calculus sense. And consider a
point p and its image F (p). Calculus then enables us to move tangent vectors at
p to tangent vectors at F (p). . . some sort of notation like this is frequently used:

h = (a tangent vector at p) −→ DF (p)h.

Here DF (p) is often called the Jacobian matrix of F at p, and the symbol
DF (p)h refers to multiplication of a matrix and a vector.

Then if h1 and h2 are nonzero tangent vectors at p, they have a certain angle θ
between them:
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θ

p

h1

h2

We are interested in the angle between the images under F of these tangent
vectors:

angle

F (p)

DF (p)h2

DF (p)h1

If this angle is also θ and this happens at every p and for all tangent vectors, we
say that F is a conformal transformation. Tersely:

conformal means angle preserving

Examples from multivariable calculus:

Mercator projections of the earth;
stereographic projections.

Now we particularize this for holomorphic functions. So assume that f is holo-
morphic and that for a fixed point z we know that f ′(z) 6= 0. Let the polar form
of this number be

f ′(z) = Aeiα (where A > 0, α ∈ R).
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By definition

f ′(z) = lim
h→0
h∈C

f(z + h)− f(z)
h

.

Rewrite this relationship as

f(z + h) = f(z) + f ′(z)h approximately.

This means that f transforms a tangent vector h at z to the vector at f(z) given
by

f ′(z)h.
In other words, directions h at z are transformed to directions f ′(z)h at f(z):

z

h

f (z)

f ′(z)h

This action does two things to h: (1) multiplies its modulus byA, and (2) rotates
it by the angle α.

We conclude immediately that f preserves angles:

z

h1

f (z)

f ′(z)h1

θ
θ

h2

f ′(z)h2

The moduli of all the infinitesimal vectors at z are multiplied by the same pos-
itive number A.
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SUMMARY: Every holomorphic function f is conformal at every z with
f ′(z) 6= 0. Infinitesimal vectors at z are magnified by the positive number
|f ′(z)|.

Example:

f(z) = z3;
z = i→ f ′(i) = −3;
f(i) = −i.

f

i

−i

But notice that f ′(0) = 0 and f does not preserve angles at 0 — instead, it
multiplies them by 3.

0 0
f
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Section E: (Complex) Power Series
(1) Infinite series of complex numbers

We shall need to discuss
∞∑
n=0

an, where an ∈ C. Convergence of such series is

no mystery at all. We form the sequence {sN}∞N=1 of partial sums

sN = a0 + . . .+ aN ,

and just demand that
lim
N→∞

sN = L exists.

Then we say
∞∑
n=0

an = L is convergent.

Equivalently, we could reduce everything to two real series, require that they
converge, and then

∞∑
n=0

an =
∞∑
n=0

Re(an) + i
∞∑
n=0

Im(an).

Necessarily, if a series converges, then lim
n→∞ an = 0 (for aN = sN − sN−1 →

L− L = 0).

The converse is, of course, false: the “harmonic series” 1 + 1
2 + 1

3 + 1
4 + . . .

diverges.

Absolute convergence is what we will usually see. We say that
∞∑
n=0

an converges

absolutely if
∞∑
n=0
|an| converges. Then there is an important

THEOREM: If a series converges absolutely, then it converges.

(Note: The basic calculus proof relies on the completeness of R.)

(2) Most important example of a power series — the GEOMETRIC SERIES
∞∑
n=0

zn, where z ∈ C.

By our necessity condition, if this series converges, then zn → 0. That is,
|z|n = |zn| → 0. That is, |z| < 1.
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Conversely, suppose |z| < 1. Then

sn = 1 + z + . . .+ zN = 1− zN+1

1− z (z 6= 1 of course)

= 1
1− z −

zN+1

1− z .

Now simply note that
∣∣∣∣∣∣− z

N+1

1− z

∣∣∣∣∣∣ = |z|
N+1

|1− z| → 0, because |z| < 1.

SUMMARY:
∞∑
n=0

zn converges ⇔ |z| < 1. And then it converges absolutely,

and
∞∑
n=0

zn = 1
1− z .

(3) DEFINITION: A power series centered at z0 is an infinite series of the form
∞∑
n=0

an(z − z0)n,

where the coefficients an are complex numbers.

(F) Usually in developing the properties of such series, we will work with the center
z0 = 0.

Simple warning: the first term in this series is not really a0(z − z0)0, but it is
actually a lazy way of writing the constant a0. A more legitimate expression
would be

a0 +
∞∑
n=1

an(z − z0)n . . . no one ever bothers.

THEOREM: (easy but crucial!): If a power series

∞∑
n=0

anz
n

converges when z = z1, and if |z2| < |z1|, then it converges absolutely
when z = z2.

(easy) Proof:
∞∑
n=0

anz
n
1 converges⇒ lim

n→∞ anz
n
1 = 0⇒ |anzn1 | ≤ a constant C for all n ≥ 0.
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Therefore,

|anzn2 | ≤ C|z1|−n|z2|n = C

|z2|
|z1|

n .
Since

|z2|
|z1|

< 1, the geometric series
∞∑
n=0

|z2|
|z1|

n converges. Therefore,

∞∑
n=0
|anzn2 | converges.

That is,
∞∑
n=0

anz
n
2 converges absolutely.

QED

RADIUS OF CONVERGENCE

It is an easy but extremely important fact that every power series has associated
with it a unique 0 ≤ R ≤ ∞ such that |z| < R⇒ the power series converges absolutely at z,

|z| > R⇒ the power series diverges at z.

This is a quick result from what we have just proved.

There is actually a formula for R in general, but it will not be needed by us.
Just to be complete, here is that formula:

R = 1
lim supn→∞ |an|1/n

(Cauchy-Hadamard)

Useful observation: suppose |z| < R, where R is the radius of convergence of
∞∑
n=0

anz
n. Choose any z1 such that |z| < |z1| < R. Then from the preceding

proof we have the estimate
|an| ≤ C|z−n1 |.

Now consider the quantity nanzn:

|nanzn| ≤ Cn

 |z|
|z1|

n .
Since

|z|
|z1|

< 1, the real series

∞∑
n=0

n

 |z|
|z1|

n
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converges. (We can actually appeal to the basic calculus ratio test to check this.)
Therefore,

∞∑
n=0
|nanzn| <∞.

Thus, not only does
∞∑
n=0

anz
n converge absolutely, but the series with larger

coefficients nan also converges absolutely. . . remember, |z| < R.

CONCLUSION:
multiplying the coefficients an of a power series by n
does not change the radius of convergence.

RATIO TEST

We just mentioned this result of basic calculus, namely, suppose that a series of

positive numbers
∞∑
n=0

cn has the property that

lim
n→∞

cn+1

cn
= ` exists.

Then,  ` < 1⇒ the series converges,
` > 1⇒ the series diverges.

 ` = 1 : no conclusion
in general


And now we apply this to power series

∞∑
n=0

anz
n with the property that

lim
n→∞

|an+1|
|an|

= ` exists

Then we can apply the ratio test to the series
∞∑
n=0
|anzn| , since

lim
n→∞

|an+1z
n+1|

|anzn|
= `|z|.

Thus,  `|z| < 1⇒ convergence,
`|z| > 1⇒ divergence.

That is, the radius of convergence of the power series equals

R = 1
`

EXAMPLES:



38 CHAPTER 2. DIFFERENTIATION

• exp(z) =
∞∑
n=0

zn

n! R =∞;

• 1
1− z =

∞∑
n=0

zn R = 1;

•
∞∑
n=0

n!zn R = 0.

Also, convergence for |z| = R can happen variously:


∞∑
n=0

zn diverges for all |z| = 1;
∞∑
n=1

zn

n2 converges for all |z| = 1;
∞∑
n=1

zn

n
diverges for z = 1, converges for all other |z| = 1.

(Note: in this last example we do not know convergence at the present time in
this book, but we’ll see it soon enough.)

SIMPLE PROPERTIES OF POWER SERIES

Let f(z) =
∞∑
n=0

anz
n have radius of convergence R1, and let g(z) =

∞∑
n=0

bnz
n

have radius of convergence R2.

SUM f(z)+g(z) =
∞∑
n=0

(an+bn)zn has radius of convergence≥ min(R1, R2).

PRODUCT f(z)g(z) =
∞∑
n=0

cnz
n has radius of convergence≥ min(R1, R2),

where cn =
n∑
k=0

akbn−k. (Cauchy Product)

DERIVATIVE For |z| < R1, the function f has a complex derivative, and

f ′(z) =
∞∑
n=1

nanz
n−1 has the same radius of convergence.

(F) We will soon be able to prove the fact about products and this fact about f ′(z)
with very little effort, almost no calculation involved. But I want to show you a
direct proof for f ′(z). So let |z| < R1 be fixed and h ∈ C with small modulus,
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so that in particular |z|+ |h| < R1. Then we compute

f(z + h)− f(z)− h
∞∑
n=1

nanz
n−1 =

∞∑
n=1

[
an(z + h)n − anzn − nanzn−1h

]

=
∞∑
n=2

an
[
(z + h)n − zn − nzn−1h

]

binomial theorem =
∞∑
n=2

an

 n∑
k=0

n
k

zn−khk − zn − nzn−1h


=
∞∑
n=2

an

 n∑
k=2

n
k

zn−khk


= h2
∞∑
n=2

an

 n∑
k=2

n
k

zn−khk−2
 .

Divide by h:

f(z + h)− f(z)
h

−
∞∑
n=1

nanz
n−1 = h

∞∑
n=2

an

 n∑
k=2

n
k

zn−khk−2
 .

It follows easily that f ′(z) exists and equals
∞∑
n=1

nanz
n−1.

Therefore,

Every power series is holomorphic on its open disc of convergence.

PROBLEM 2-2. A power series centered at 0 is often called a Maclaurin
series.

In the following exercises simplify your answers as much as possible.

1. Find the Maclaurin series for
1

(1− z)3 .

2. Find the Maclaurin series for
(

z

3− z

)2
.

3. Find the Maclaurin series for ez sin z.

4. Let ω = e2πi/3. (1 + ω + ω2 = 0).

Find the Maclaurin series for
ez + eωz + eω

2z

3 .
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5. Find explicitly
∞∑
n=0

(−1)n (z − πi)n
n! .

6. Find explicitly
∞∑
n=0

z5n

5n .

MORE BASIC RESULTS ABOUT POWER SERIES:

First, a very simple theorem which will have profound consequences!

THEOREM: Suppose that f(z) =
∞∑
n=0

an(z − z0)n

z0

is a power series with a positive radius of

convergence. And suppose that f(z) = 0 for

an infinite sequence of points z converging to

z0.
Then f = 0. In other words, an = 0 for all n.

Proof: We assume z0 = 0 with no loss of generality. Out proof is by contradic-
tion, so we suppose that not all an = 0. Then we have aN 6= 0 for a smallest
N , so that

f(z) =
∞∑
n=N

anz
n

= zN
∞∑
n=N

anz
n−N

=: zNg(z),

where g(z) is the power series

g(z) =
∞∑
k=0

aN+kz
k

= aN + aN+1z + . . . .

Then f(z) = 0 and z 6= 0 ⇒ g(z) = 0. Therefore, our hypothesis implies that
g(z) = 0 for an infinite sequence of points z converging to 0. But lim

z→0
g(z) =

g(0) = aN . Thus, aN = 0. Contradiction.
QED
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TAYLOR SERIES:

Again, we suppose that f(z) =
∞∑
n=0

an(z − z0)n is a power series with positive

radius of convergence. Then we observe

f(z0) = a0;

f ′(z) =
∞∑
n=1

nan(z − z0)n−1, so f ′(z0) = a1;

f ′′(z) =
∞∑
n=2

n(n− 1)an(z − z0)n−2, so f ′′(z0) = 2a2.

In this manner, we find
f (k)(z0) = k!ak.

Therefore,

f(z) =
∞∑
n=0

f (n)(z0)
n! (z − z0)n

The right side of this equation is called the Taylor series of f centered at z0.

(If z0 = 0, it is called the Maclaurin series of f .)

Changing the center of power series:
First, a couple of examples:

Example 1: f(z) =
∞∑
n=0

zn for |z| < R = 1, the geometric series.

0 1−1/2

Let’s investigate an expansion of f(z) centered in-

stead at −1
2 . thus, we write

f(z) = 1
1− z (sum of geometric series)

= 1
3/2− (z + 1/2)

= 2
3

1
1− z+1/2

3/2

= 2
3
∞∑
n=0

z + 1/2
3/2

n (a different geometric series),
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and this series converges in the disk
∣∣∣∣∣z + 1

2

∣∣∣∣∣ < 3
2 · · · . Therefore,

f(z) =
∞∑
n=0

(z + 1/2)n

(3/2)n+1 .

Example 2: f(z) = 1
z

, and we want to express this in a power series centered
at z0 6= 0. Then as in the preceding example, we write

f(z) = 1
z0 + (z − z0)

= 1
z0

1
1 + z−z0

z0

= 1
z0

∞∑
n=0

(−1)n
(
z − z0

z0

)n
(geometric series)

=
∞∑
n=0

(−1)n
zn+1

0
(z − z0)n,

z0

0

a Taylor series with radius of convergence |z0|:

A very general theorem:

Let f(z) =
∞∑
n=0

an(z − z0)n be a power series with

radius of convergence R, and assume |z1− z0| < R.

Then f(z) =
∞∑
n=0

bn(z − z1)n and the radius of con-

vergence of this new series is ≥ R− |z1 − z0|.

Although it is easy enough to prove this theorem
with basic manipulations we already know, such a
proof is tedious and boring. We will soon be able to prove this theorem and
many others elegantly with almost no effort at all!

z0

z1

radius R

By the way, notice that in Example 1, R = 1. amd the new power series has

radius of convergence
3
2 .
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These ideas lead us to an important:

DEFINITION: Suppose f is a C-valued function defined on an open subset
D ⊂ C, and suppose that for every z0 ∈ D we are able to write

f(z) =
∞∑
n=0

an(z − z0)n for all |z − z0| < R(z0),

where R(z0) is some positive number. Then we say that f is (complex) analytic
on D.

z0
D

It is then quite clear that every analytic function is holomorphic.

After we obtain Cauchy’s integral formula, we will see that the exact converse
is valid:

F every holomorphic function is analytic!

We conclude this chapter with the important Taylor series for logarithm. We’ll
treat log(1− z). The principle involved here is based on simple single-variable
calculus.

LEMMA: Suppose f has partial derivatives of first

order which satisfy
∂f

∂x
= ∂f

∂y
= 0 on a rectangle

(x0, x1) × (y0, y1). Then f is constant on that rectangle.

Theorem: Suppose D ⊂ C is an open connected set and D f→ C has
partial derivatives of first order which satisfy

∂f

∂x
= ∂f

∂y
= 0 on D.
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Then f is constant on D.

Proof: By the lemma, f is constant on all closed rectangles contained in D.
Since D is connected, f is constant on D.

QED

COROLLARY: Suppose D ⊂ C is an open connected set and D f→ C is
holomorphic on D with f ′(z) = 0 for all z ∈ D. Then f is constant.

1-z in this disc

0 1

Illustration: For |z| < 1 the number 1 − z can be

chosen to have −π2 < arg(1− z) < π

2 . Then

d

dz
log(1− z) = −1

1− z = −
∞∑
n=0

zn = − d

dz

∞∑
n=1

zn

n
.

Thus log(1 − z) +
∞∑
n=1

zn

n
satisfies the hypothe-

sis of the corollary for |z| < 1, and is thus
constant. At z = 0 it equals 0. There-
fore

log (1− z) = −
∞∑∑∑
n=1

zn

n
for |z| < 1.



Chapter 3

Integration

In this chapter we begin with a review of multivariable calculus for R2, stressing
the concept of line integrals and especially as they arise in Green’s theorem.
We can easily derive what Green’s theorem looks like using complex notation.
A huge result will then be easily obtained: the Cauchy Integral Theorem.

Section A: Line Integrals
REVIEW OF VECTOR CALCULUS:

The particular thing we need is called line integration or path integration or
contour integration. It is based on curves in Rn, which we’ll typically de-
note by γ. These will need to be given a parametrization (at least in theory, if
not explicitly) so that γ can be thought of as a function defined on an interval
[a, b] ⊂ R with values in Rn:

[a, b] γ→ Rn.

We’ll need γ to be piecewise C1. Its shape in Rn may look something like this:

γ(a)

γ(b)

45
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Notice that as t varies from a to b, γ(t) moves in a definite direction. And

γ′(t) = dγ

dt
represents a vector in Rn which is tangent to the curve. Thinking

of t as time, this vector is called the velocity of the curve at time t.

γ(t)

γ′(t)

A

B C

For any 1 ≤ j ≤ n we then define the line integral of a function f along γ, in
the xj direction as ∫

γ
fdxj :=

∫ b
a
f(γ(t))γ′j(t)dt.

Here we are using the standard coordinate representation

γ(t) = (γ1(t), . . . , γn(t)).

The chain rule shows that this result is independent of “reasonable” changes of
parametrization. But if we replace t by −t, the curve is traced in the opposite
direction, so that ∫

REVERSED
γ

fdxj = −
∫
γ
fdxj.

A loop is a curve with γ(a) = γ(b):

γ(a) = γ(b)

Complex-valued f : No difficulty with this at all, as the integral of a complex-
valued function is given as

∫ b
a

(g(t) + ih(t))dt =
∫ b
a
g(t)dt+ i

∫ b
a
h(t)dt.
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Special notation for R2: Usually we use x and y instead of x1 and x2.

Example: ∫
CCW unit

circle

1
z
dx =

∫ 2π

0

1
eiθ
d(cos θ)

=
∫ 2π

0
e−iθ(− sin θ)dθ

=
∫ 2π

0
(cos θ − i sin θ)(− sin θ)dθ

= 0 + i
∫ 2π

0
sin2 θdθ = πi.

Example: Let the path γ be the clockwise circle with center 0 and radius r.
Then

∫
γ

1
z2dy = −

∫ 2π

0

1
(reiθ)2d(r sin θ)

= −1
r

∫ 2π

0
e−2iθ cos θdθ

= −1
r

∫ 2π

0
e−2iθ e

iθ + e−iθ

2 dθ

= − 1
2r

∫ 2π

0
(e−iθ + e−3iθ)dθ

= 0.

Example:

0 1

ia 1 + ia

dx = 0

rectangle

∫
γ
ezdx =

∫ 1

0
exdx+ 0 +

∫ 0

1
ex+iadx+ 0

= (1− eia)
∫ 1

0
exdx

= (1− eia)(e− 1).

Of special importance to us is Green’s Theorem:
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If D is a “reasonably nice” bounded region, then we can consider ∂D, the
boundary of D, as a curve or a union of curves, and we always give it the
orientation or direction which keeps D on the left.

D

x

y
Notice the orientation of the coordinate axes! :

Then for a C1 function f we have

∫∫
D

∂f

∂x
dxdy =

∫
∂D
fdy,

∫∫
D

∂f

∂y
dxdy = −

∫
∂D
fdx.

Usually these are presented as a single formula:

GREEN:
∫∫
D

(
∂g

∂x
− ∂f

∂y

)
dxdy =

∫
∂D

(fdx+ gdy)

Remember: f and g are allowed to be complex-valued functions.

Complex line integrals: Not only can the functions we are integrating be com-
plex valued, but also we can integrate with respect to dz: just think
dz = d(x+ iy) = dx+ idy. Then we write∫

γ
fdz =

∫
γ
fdx+ i

∫
γ
fdy.

Most important example:∫
γ

1
z
dz . . . parametrize with z = reiθ, 0 ≤ θ ≤ 2π :
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γ

0

CCW circle of radius r
centered at 0

∫
γ

1
z
dz =

∫ 2π

0

1
reiθ

d(reiθ)

=
∫ 2π

0

1
reiθ

(rieiθdθ)

=
∫ 2π

0
idθ = 2πi.

∫∫∫
γ

1
z
dz = 2πi

Another derivation of this formula: Using the facts that 0 ≤ arg z ≤ 2π and
log z = ln r + i arg z, we get∫

γ

dz

z
=
∫
γ
d(log z)

FTC= log z
∣∣∣∣z=re

2πi

z=re0i

= (ln r + 2πi)− (ln r + 0i)
= 2πi.

Special application of Green: use a function f and g = if :∫∫
D

(
i
∂f

∂x
− ∂f

∂y

)
dxdy =

∫
∂D
fdx+ ifdy.

Rewrite: ∫
∂D
fdz = i

∫∫
D

(
∂f

∂x
− 1
i

∂f

∂y

)
dxdy

Hmmm: notice the interesting combination in the integrand on the right side!
(Think about Cauchy-Riemann!)

PROBLEM 3-1. We know that there is a unique Möbius transformation f
of Ĉ which satisfies 

f(0) = −1,
f(∞) = 1,
f(i) = 0.

This Möbuis function is called the Cayley transformation.
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1. Write explicitly f(z) = az + b

cz + d
(i.e. find a, b, c, d).

2. Prove that f(R ∪ {∞}) = the unit circle.

3. Prove that f(open upper half plane) = open unit disc.

0

i
−1 10

z plane

w = f(z)
0→ −1
∞→ 1
i→ 0

w plane

4. For several values of y > 0 sketch the image of the horizontal
straight lines in the upper half plane.

{f(x+ iy)|x ∈ R ∪ {∞}} .

Next, we mention this simple concept:

The fundamental theorem of calculus and line integrals

There’s a simple theorem in Rn vector calculus concerning the line integral of
a conservative vector field. Its proof relies on the FTC and looks like this:

∫ b
a

d

dt
f(γ(t))dt = f(γ(b))− f(γ(a))

THE FUNDAMENTAL THEOREM OF CALCULUS AND LINE IN-
TEGRALS

Let γ be a curve in C and f a holomorphic function. Then

(FTC)
∫
γ
f ′(z)dz = f(final point of γ)− f(initial point of γ)
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Proof: Let γ = γ(t) for a ≤ t ≤ b. Then by definition

∫
γ
f ′(z)dz =

∫ b
a
f ′(γ(t))γ′(t)dt

chain rule=
∫ b
a

d

dt
(f(γ(t))) dt

FTC= f(γ(t))
∣∣∣b
a

= f(γ(b))− f(γ(a)).

QED

Section B: The Cauchy Integral Theorem
At the end of Section A we used Green’s theorem to prove that

D

∫
∂D
fdz = i

∫∫
D

(
∂f

∂x
− 1
i

∂f

∂y

)
dxdy.

Notice that if f is holomorphic, then the Cauchy-Riemann equation,
∂f

∂x
= 1

i

∂f

∂y
, gives a zero integrand on the right side of the Green equation,

so that
∫
∂D
fdz = 0. We now state this as a separate theorem:

THE CAUCHY INTEGRAL THEOREM

Suppose D ⊂ C is a “reasonably nice” bounded open set with boundary
∂D consisting of finitely many curves oriented with D on the left. Suppose
f is a holomorphic function defined on an open set containing D ∪ ∂D.
Then ∫

∂D
fdz = 0.

We are now going to use this theorem to prove a truly amazing theorem, Cauchy’s
integral formula, which will be the basis for much of our subsequent study.
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We assume the hypothesis exactly as above, but in addition we assume that a
point z0 ∈ D is fixed... remember that D is open, so z0 /∈ ∂D:

z0

D

We want to apply the Cauchy integral theorem to the function

f(z)
z − z0

,

but this function is not even defined at z0.

The way around this difficulty is extremely clever, and also a strategy that is
often used in similar situations not just in complex analysis, but also in partial
differential equations and other places. It is the following

ruse: extract a small disc centered at z0! Namely, let E the be the closed disc
of radius ε centered at z0:

D

E
E = {z ∈ C

∣∣∣|z − z0| ≤ ε}.

(E is called a safety disc.)

Then for sufficiently small ε we see that E ⊂ D, since D is open, and we may
apply the Cauchy integral theorem to the difference

D \ E.

We obtain

0 =
∫

∂(D\E)

f(z)
z − z0

dz.
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Now ∂(D\E) is the disjoint union of ∂D and ∂E, so we have, using the correct
orientation,

0 =
∫
∂D

f(z)
z − z0

dz +
∫
∂E

CW circle

f(z)
z − z0

dz.

Move the second integral to the left side and reverse the direction of the circle
∂E: ∫

∂E
CCW circle

f(z)
z − z0

dz =
∫
∂D

f(z)
z − z0

dz.

Fascinating equation! The right side is independent of ε, and thus so is the left
side!

Parametrize ∂E: z = z0 + εeiθ, 0 ≤ θ ≤ 2π, so the left side equals:

∫ 2π

0

f(z0 + εeiθ)
εeiθ

εieiθdθ = i
∫ 2π

0
f(z0 + εeiθ)dθ.

This can be rewritten as:

2πi times
1

2π
∫ 2π

0
f(z0 + εeiθ)dθ = 2πi times the average of f on ∂E.

This does not depend on ε! Yet, it has a clear limit as ε → 0, since f is
continuous at z0: namely, 2πif(z0). Therefore,

f(z0) = 1
2πi

∫
∂D

f(z)
z − z0

dz.

BEWARE: notation change coming up — z0 is replaced by z,
z is replaced by ZETA: ζ .

Final result

THE CAUCHY INTEGRAL FORMULA

Same hypothesis as the Cauchy integral theorem. Then for every z ∈ D

f(z) = 1
2πi

∫
∂D

f(ζ)
ζ − z

dζ
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PROBLEM 3-2. Give examples of two power series centered at 0 with the
following properties:

f(z) has radius of convergence 1,
g(z) has radius of convergence 2,
f(z)g(z) has radius of convergence 10.

Section C: Consequences of the Cauchy Integral
Formula

We now derive very quickly many astonishing consequences of the Cauchy
integral formula.

(1) Holomorphic functions are C∞

This is rather stunning given that the definition of holomorphic required f to be
of class C1 and satisfy the Cauchy-Riemann equation. The key to this observa-
tion is that the dependence of f(z) on z has now been relegated to the simple

function
1

ζ − z
:

f(z) = 1
2πi

∫
∂D

f(ζ)
ζ − z

dζ.

For z ∈ D (open set) and ζ ∈ ∂D, the function
1

ζ − z
is quite well behaved

and we have for fixed ζ:

d

dz

1
ζ − z

= 1
(ζ − z)2 .

Therefore, by performing
d

dz
through the integral sign we obtain

f ′(z) = 1
2πi

∫
∂D

f(ζ)
(ζ − z)2dζ.
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We already knew f ′(z) existed, but now our same observation shows that f ′(z)
has a complex derivative (we didn’t know that before!), and that

f ′′(z) = 2
2πi

∫
∂D

f(ζ)
(ζ − z)3dζ.

Continuing in this manner, we see that

f (n)(z) = n!
2πi

∫
∂D

f(ζ)
(ζ − z)n+1dζ.

QED
In particular,

(2) f holomorphic⇒ f ′ is holomorphic

Now we can also fulfill the promise made near the end of Chapter 2 (page 39):

(3) Every holomorphic function is analytic

Once again, the key to this is the nature of
1

ζ − z
. We establish a power se-

ries expansion in a disc centered at an arbitrary point z0 ∈ D. As D is open,
there exists a > 0 such that |ζ − z| ≥ a for all ζ ∈ ∂D. We then suppose that

ζ

z0

z

D

∂D

|z − z0| < a.

Looking for geometric series, we have

1
ζ − z

= 1
(ζ − z0)

BIG
− (z − z0)

SMALL

= 1
ζ − z0

1
1− z−z0

ζ−z0

= 1
ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n

=
∞∑
n=0

(z − z0)n
(ζ − z0)n+1 .
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Since
∣∣∣∣∣z − z0

ζ − z0

∣∣∣∣∣ ≤ |z − z0|
a

< 1 for all ζ ∈ ∂D, we have uniform convergence of

the geometric series (rate of convergence same for all ζ ∈ ∂D) and we conclude
that

f(z) = 1
2πi

∫
∂D

f(ζ)
∞∑
n=0

(z − z0)n
(ζ − z0)n+1dζ

=
∞∑
n=0

cn(z − z0)n, (interchanged order of
summation and integration)

where the coefficients are given by

cn = 1
2πi

∫
∂D

f(ζ)
(ζ − z0)n+1dζ.

(By the way, notice from part 1 above that cn = 1
n!f

(n)(z0). Therefore, we have
actually derived the Taylor series for f .)

Clearly, the radius of convergence of this power series is at least a. . . though of
course, it might be larger.

EXAMPLE:
1

1− sin z is holomorphic wherever sin z 6= 1. And sin π2 = 1,

so Problem 1-8 yields sin z = 1⇔ z =
(

2k + 1
2

)
π. We conclude that

5π
2−3π

2
π

2

1
1− sin z =

∞∑
n=0

cnz
n with radius of convergence

π

2 .

(Did not need to calculate any of the coefficients.)

Next, a converse to Cauchy’s integral theorem
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(4) MORERA’S THEOREM

Suppose f is a continuous function defined on an open set D ⊂ C, with
the property that for all loops γ contained in D,∫

γ
f(z)dz = 0.

Then f is holomorphic.

(This theorem and its proof are similar to the result in vector calculus relating
zero line integrals of a vector field to the vector field’s being conservative, i.e.,
being a gradient field.)

Proof: This theorem is local in nature, so it suffices to prove it for the case in
which D is a disc. Let z0 be the center of D, and defined the function g(z) on
D by

g(z) =
∫
γ

f(ζ)dζ, where γ = any path in D from z0 to z.

Our hypothesis guarantees that g(z) depends only on z, not on the choice of
γ. Now assume z ∈ D is fixed and h ∈ C is so small that z + h ∈ D: then
g(z + h) can be calculated using the straight line from z0 to z and then from z
to z + h:

z0

z
z + h

g(z + h) = g(z) +
∫ z+h
z

f(ζ)dζ.

Parametrize the line segment from z to z + h as z + th, 0 ≤ t ≤ 1. Then

g(z + h)− g(z) =
∫ 1

0
f(z + th)hdt

= h
∫ 1

0
f(z + th)dt.

Therefore,
g(z + h)− g(z)

h
=
∫ 1

0
f(z + th)dt.
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Since f is continuous at z, the right side of this equation has limit f(z) when
h→ 0. Thus, the left side has the same limit. We conclude that

g′(z) exists, and g′(z) = f(z).

Since f is continuous, so is g′. Thus g is holomorphic. By (2), f is holomorphic.
QED

F REMARK: the proof of Morera’s theorem shows that the only hypothesis actu-
ally needed is that f be continuous and that in small discs contained in D,∫

γ
fdz = 0

for all triangles γ contained in the disc!

PROBLEM 3-3.
sec z

(
:= 1

cos z

)

This function is holomorphic in some disc centered at 0. Therefore, it has
a Maclaurin representation near 0.

1. Prove that only even terms z2n are in this representation.

2. Find its radius of convergence.

3.F This expansion is customarily expressed in this form:

sec z =
∞∑
n=0

snz
2n

(2n)! .

Prove that all sn > 0. The sn’s are called secant numbers.

Here are given s0, s1, . . . , s16:

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 1939151214
2404879675441, 370371188237525, 69348874393137901
15514534163557086905, 4087072509293123892361,
1252259641403629865468285, 44154389324902310455368282
177519391579539289436664789665
(https://oeis.org/search?q=secant+numbers&language=english&go=Search)

ez+w = ezew bis

https://oeis.org/search?q=secant+numbers&language=english&go=Search
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We gave Proof #1 on page 3. Now two more proofs.

Proof #2:

For fixed w ∈ C consider the function

f(z) := ez+we−z.

This holomorphic function has f ′(z) = ez+we−z − ez+we−z = 0 by the product
rule, so f(z) = constant. This constant = f(0) = ew. Thus,

ez+we−z = ew for all w and all z.

When w = 0, we obtain eze−z = 1, so that ez+w = ewez.
QED

Proof #3:

• Let w ∈ R be fixed. Then the analytic function of z,

ez+w − ezew,

equals 0 for all real z from basic calculus. This occurrence of an infinity of
zeroes near 0⇒ the analytic function is 0: (see Section E of Chapter 2, pg.40)

ez+w − ezew = 0 for all z ∈ C, all w ∈ R.

• Now let z ∈ C be fixed. Then the analytic function of w,

ez+w = ezew

equals 0 for all real w, as we’ve just proved. Therefore, as above, it’s 0 for all
w ∈ C.

QED

Basic estimates for complex integrals:

a. Consider a complex-valued function f = f(t) for all a ≤ t ≤ b, and its
integral

I :=
∫ b
a
f(t)dt.

Write I in polar form

I = |I|eiθ for some θ ∈ R.
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Then

|I| = e−iθI

= e−iθ
∫ b
a
f(t)dt (def. of I)

=
∫ b
a
e−iθf(t)dt (e−iθ is a constant)

= Re
∫ b
a
e−iθf(t)dt (it’s already real)

=
∫ b
a

Re(e−iθf(t))dt (def. of complex integration)

≤
∫ b
a

∣∣∣e−iθf(t)
∣∣∣ dt

=
∫ b
a
|f(t)| dt.

Thus, we have ∣∣∣∣∣
∫ b
a
f(t)dt

∣∣∣∣∣ ≤
∫ b
a
|f(t)| dt.

b. Line integrals: let the curve γ be parametrized as γ = γ(t) for a ≤ t ≤ b.
Assume |f(t)| ≤ C for all z = γ(t). Then

∣∣∣∣∣
∫
γ
f(z)dz

∣∣∣∣∣ =
∣∣∣∣∣
∫ b
a
f(γ(t))γ′(t)dt

∣∣∣∣∣
≤
∫ b
a
|f(γ(t))| |γ′(t)| dt (by a)

= C
∫ b
a
|γ′(t)| dt

= CL, where L = length of γ.

Thus, we have ∣∣∣∣∣
∫
γ
fdz

∣∣∣∣∣ ≤ max
γ
|f | · length of γ.

P.S. More generally, we see that
∣∣∣∣∣
∫
γ
fdz

∣∣∣∣∣ ≤
∫
γ
|f ||dz|, where

|dz| = |dx+ idy| =
√

(dx)2 + (dy)2 = d(arclength).

Now we continue with consequences of the Cauchy integral formula. So far we
have listed 4 of them, so now we come to

5. Mean value property of holomorphic functions:
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Let f be holomorphic on an open set D ⊂ C and suppose a closed disc
|z − z0| ≤ r is contained in D. Then the Cauchy formula gives in particu-
lar

z0
f(z0) = 1

2πi
∫

|ζ−z0|=r
(CCW)

f(ζ)
ζ − z0

dζ.

The usual parametrization ζ = z0 + reiθ yields

f(z0) = 1
2πi

∫ 2π

0

f(z0 + reiθ)
reiθ

ireiθdθ

= 1
2π

∫ 2π

0
f(z0 + reiθ)dθ, the average of f on the circle.

Before the next result, here’s an important bit of terminology.

an entire function (or entire holomorphic function) is a
function which is defined and holomorphic on all of C.

6. LIOUVILLE’S THEOREM

An entire function which is bounded must be constant.

Proof: Let f = f(z) be entire and suppose |f(z)| ≤ C for all z ∈ C, where C
is constant.

Let z ∈ C be arbitrary, and apply Cauchy’s formula using the disc with center
z and radius R. Then from page 56 we have

zR
f ′(z0) = 1

2πi
∫

|ζ−z0|=R
CCW

f(ζ)
(ζ − z)2dζ.
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Therefore, we estimate

|f ′(z)| ≤ 1
2π

∫
|ζ−z|=R

C

|ζ − z|2
|dζ|

= 1
2π

∫
|ζ−z|=R

C

R2 |dζ|

= 1
2π

C

R2 · length of circle

= 1
2π

C

R2 · 2πR

= C

R
.

Simply let R→∞ to conclude that f ′(z) = 0. Thus f ′ = 0 on all of C, so f is
constant.

QED

Here is a natural place to talk about harmonic functions. These in general are
functions u defined on Rn which satisfy Laplace’s equation

∇2u = 0.

In a standard orthonormal coordinate system, this equation is

n∑
j=1

∂2u

∂x2
j

= 0.

Holomorphic functions are harmonic. For the Cauchy-Riemann equation

∂f

∂x
= 1
i

∂f

∂y
⇒ ∂2f

∂x2 = 1
i

∂2f

∂x∂y

= 1
i

∂2f

∂y∂x

= 1
i

∂

∂y

(1
i

∂f

∂y

)

= −∂
2f

∂y2 ,

so that
∂2f

∂x2 + ∂2f

∂y2 = 0.

Here we insert an elegant proof of the
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Fundamental Theorem of Algebra

Let P be a polynomial with complex coefficients and positive degree. Then
there exists z ∈ C such that P (z) = 0.

Proof: We suppose to the contrary that for all z ∈ C, P (z) 6= 0. Normalize P
to be “monic”—that is,

P (z) = zN + c1z
N−1 + · · ·+ cn,

where N ≥ 1. Then

lim
z→∞

P (z)
zN

= 1.

Therefore, the function
1
P

is a bounded entire function. Aha! Liouville’s
theorem implies that it is constant! Therefore, P (z) is constant. That’s a con-
tradiction.

QED

REMARK: Since P (z1) = 0 for some z1, it’s simple polynomial algebra which
shows that the polynomial P (z) is divisible by the polynomial z − z1: P (z) =
(z − z1)Q(z), where Q is a polynomial of one less degree than P . If Q has
positive degree, then again we conclude that for some z2, Q(z) = (z−z2)R(z),
where R is again a polynomial. Continuing in this way we have a factorization
of P into linear factors

P (z) = c
N∏
k=1

(z − zk).

(Some zk’s may be repeated, of course.)

Later we’ll give a much different proof of the FTA in which the complete fac-
torization will appear instantaneously!

Before we continue with consequences of the Cauchy integral formula, we

pause to rethink the holomorphic function
1

1− z . For |z| < 1 we can simply

write
1

1− z =
∞∑
n=0

zn, the geometric series.

This equation is valid⇔ |z| < 1.
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1

Now suppose |z| > 1. Then 1 is dominated by z, so we write

1

1
1− z = 1

−z
1

1− 1
z

= −1
z

∞∑
n=0

(1
z

)n

= −
∞∑
n=0

1
zn+1

= −
∞∑
n=1

1
zn
,

valid⇔ |z| > 1.

The procedure we have just employed is useful in the following more general
situation: Suppose f is holomorphic in an open set D which contains a closed
annulus r1 ≤ |z| ≤ r2. For r1 < |z| < r2 we then employ the Cauchy integral
formula to write f(z) in terms of line integrals along |z| = r2 counterclockwise
and along |z| = r1 clockwise:

z

r1

r2

f(z) = 1
2πi

∫
|ζ|=r2
CCW

f(ζ)
ζ − z

dζ + 1
2πi

∫
|ζ|=r1

CW

f(ζ)
ζ − z

dζ.

• For |ζ| = r2 we write

1
ζ − z

= 1
ζ

1
1− z

ζ

=
∞∑
n=0

zn

ζn+1 ,

so that the corresponding integral becomes

1
2πi

∞∑
n=0

zn
∫
|ζ|=r2
CCW

f(ζ)
ζn+1dζ.
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• For |ζ| = r1 we write

1
ζ − z

= −1
z

1
1− ζ

z

= −
∞∑
n=0

ζn

zn+1 ,

so that the corresponding integral becomes

− 1
2πi

∞∑
n=0

z−n−1
∫
|ζ|=r1

CW

f(ζ)ζndζ.

We can of course change the sign by performing the line integral the opposite
direction.

We also change the dummy index n in the latter series by −n− 1 = k, so that
k ranges from −∞ to −1, with the result being

1
2πi

−1∑
k=−∞

zk
∫
|ζ|=r1
CCW

f(ζ)
ζk+1dζ.

One more adjustment: the function
f(ζ)
ζn+1 is holomorphic in the complete annu-

lus r1 ≤ |ζ| ≤ r2, so its path integral over a circle of radius r is independent of
r, thanks to Cauchy’s integral theorem. We therefore obtain our final result,

F f(z) =
∞∑

n=−∞
cnz

n, for r1 < |z| < r2,

where
cn = 1

2πi
∫
|ζ|=r
CCW

f(ζ)
ζn+1dζ (r1 < r < r2).

TERMINOLOGY: a series of the form F, containing zn for both positive and
negative indices n, is called a Laurent series.

We now formulate what we have accomplished. As usual, we may immediately
generalize to an arbitrary center z0 instead of 0.

7. LAURENT EXPANSION THEOREM

Let 0 ≤ R1 < R2 ≤ ∞, and assume that f is a holomorphic function in
the open annulus centered at z0:
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z

z0
R1 < |z − z0| < R2.

Then for all z in this annulus

f(z) =
∞∑

n=−∞
cn(z − z0)n.

where cn is given by

cn = 1
2πi

∫
|ζ−z0|=r

f(ζ)
(ζ − z0)n+1dζ,

and r is any radius satisfying R1 < r < R2.

Here’s an important quick corollary:

8. RIEMANN’S REMOVABLE SINGULARITY THEOREM

Let f be a holomorphic function defined in a “punctured” disc
0 < |z − z0| < R, and assume f is bounded. Then there is a limit
f(z0) := lim

z→z0
f(z) and the resulting function is holomorphic in the full

disc |z − z0| < R.

Proof: Suppose |f(z)| ≤ C for 0 < |z−z0| < R. Apply the Laurent expansion
theorem with R1 = 0 and R2 = R. Then for any index n ≤ −1, we can
estimate cn this way: for any 0 < r < R,

|cn| =

∣∣∣∣∣∣∣∣
1

2πi
∫

|ζ−z0|=r

f(ζ)
(ζ − z0)n+1dζ

∣∣∣∣∣∣∣∣
≤ 1

2π
C

rn+1 · length of circle

= C

rn
.

But when r → 0,
C

rn
→ 0 since n < 0. Thus cn = 0 for all n < 0. Therefore,
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we have the result that

f(z) =
∞∑
n=0

cn(z − z0)n for 0 < |z − z0| < R.

Clearly then, lim
z→z0

f(z) = c0 and if we define f(z0) = c0,

f(z) =
∞∑
n=0

cn(z − z0)n for |z − z0| < R.

QED

PROBLEM 3-4.

The Bernoulli numbers

1. Show that the function of z given as
z

ez − 1 has a removable singu-

larity at the origin.

2. Therefore, this function has a Maclaurin expansion, which we write
in this form:

z

ez − 1 =
∞∑
n=0

Bn

n! z
n,

where the Bn’s are called the Bernoulli numbers. Find the radius
of convergence of this series.

3. Use the equation z = (ez−1)
∞∑
n=0

Bn

n! z
n to derive a recursion formula

for the Bn’s:

B0 = 1

B1 = −1
2

k−1∑
n=0

k
n

Bn = 0 for k ≥ 2.

4. Prove that Bn = 0 for all odd n ≥ 3.

HINT: examine
z

ez − 1 + z

2 .

Isolated singularities

Let z0 ∈ C be fixed, and suppose f is a function which is holomorphic for
0 < |z − z0| < R. Then f is said to have a singularity at z0, simply because
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f(z0) is undefined. We actually say that f has an isolated singularity at z0, since
f is holomorphic in the disc |z − z0| < R except at z0 (where it is undefined).

We then know that f has a Laurent expansion of the form

f(z) =
∞∑

n=−∞
cn(z − z0)n, valid for 0 < |z − z0| < R.

There is a convenient classification of isolated singular points according to the
appearance of cn with n < 0 in the Laurent expansion. They are divided into 3
distinct categories as follows:

R = removable singularities, meaning that for all n < 0, cn = 0.

P = poles, meaning that some cn 6= 0 with n < 0, but there are only finitely
many such cn . . . all the remaining cn with n < 0 are 0.

E = essential singularities, meaning that cn 6= 0 for infinitely many n < 0.

It is of utmost importance to have a complete understanding of these categories,
so we devote the next few considerations to this.

REMOVABLE SINGULARITIES

In this case, the Laurent expansion is

f(z) =
∞∑
n=0

cn(z − z0)n for |z − z0| < R.

The right side of this equation defines a function analytic for the entire disc
|z − z0| < R. Therefore, we remove the singularity of f defining f(z0) = c0.

Of course, we have the great removable singularity theorem of Riemann,
which asserts that if we assume only that f is bounded near z0, then its singu-
larity at z0 is removable. Thus, we have these equivalent situations:

• the singularity at z0 is removable

• f is bounded near z0

• lim
z→z0

f(z) exists
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Except in the trivial case that f = 0, not all cn 6= 0. Say that cN 6= 0 with
N ≥ 0 minimal. Then we may write

f(z) = cN(z − z0)N + higher order terms

= (z − z0)Ng(z),

where g is holomorphic and g(z0) 6= 0. We then say that f has a zero at z0 of
order N . (Of course, N = 0 is allowed.)

POLES

In this case there exists N < 0 such that cN 6= 0 but all cn before that are 0.
Therefore, we may write

f(z) =
∞∑
n=N

cn(z − z0)n

= (z − z0)N
∞∑
k=0

cN+k(z − z0)k

= (z − z0)Ng(z),

where g is holomorphic for |z− z0| < R and g(z0) 6= 0. We then say that f has
a pole at z0 of order −N . . . in this case −N ≥ 1.

We then have these equivalent situations:

• the singularity at z0 is a pole

• lim
z→z0

f(z) =∞

(The former of these implies that latter, but we’ll soon prove the reverse impli-
cation.)

EXAMPLES:

• csc z has a pole at 0 of order 1

• sec z has a pole at
π

2 of order 1

• 1
ez − 1 has a pole at 0 of order 1

• z

ez − 1 has a removable singularity at 0
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• 1
z(ez2 − 1) has a pole at 0 of order 3

ESSENTIAL SINGULARITIES

The Laurent expansion

f(z) =
∞∑

n=−∞
cn(z − z0)n

is neither of the first two kind: z0 is neither a removable singularity nor a pole.

In this situation, the behavior of f as z → z0 is quite interesting:

CASORATI-WEIERSTRASS THEOREM

Suppose f has an essential singularity at z0. Then for any w ∈ Ĉ there
exists a sequence z1, z2, . . . such that

lim
k→∞

zk = z0 and lim
k→∞

f(zk) = w.

Proof: We proceed by contradiction. Thus, we suppose there exists w ∈ Ĉ for
which no sequence {zk} exists with

zk → z0 and f(zk)→ w.

This means that for z near z0, f(z) cannot be arbitrarily close to w . . . in other
words, f(z) must stay a positive distance away from w.

• If w = ∞, this means that f(z) must be bounded for z near z0. The
removable singularity situation holds, so z0 is a removable singularity for
f . Contradiction.

• If w ∈ C, then there exists r > 0 such that for z sufficiently near z0,
|f(z)− w| > r.

z0 w
f
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Then consider the function
1

f(z)− w in this neighborhood of z0. It is bounded

(by
1
r

) and thus its singularity at z0 is removable. That is, it agrees with a
holomorphic function near z0 and it may be written as

(z − z0)Ng(z),

where g is holomorphic and nonzero. Therefore,

f(z)− w = (z − z0)−N
1

g(z) .

As
1

g(z) is holomorphic, this equation shows that the Laurent series f has no

terms (z − z0)n for n < −N . Contradiction.
QED

DISCUSSION: This classification into the 3 types of isolated singularities is
quite definitive and complete. However, as wonderful as the Casorati-Weierstrass
theorem is, it doesn’t come close to the much more profound result known as

PICARD’S GREAT THEOREM: if f has an isolated essential singular-
ity at z0, then for every w ∈ C with at most one exception, there exists a
sequence zk → z0 such that f(zk) = w for all k = 1, 2, 3, . . ..

(The example e
1
z has the exception w = 0.)

This theorem is “beyond the scope of this book.”

PROBLEM 3-5.

1. Show that sinhz = w has a solution z for every w. Do this by
deriving a “formula” for z in terms of w. This formula will involve a
choice of square root and choice of log but don’t worry about these
details at the present time.

2. Do the same for the equation tanhz = w, but notice that there’s one
exception (actually, two) for w.

3. The function sin 1
z

has an essential singularity at 0. Verify directly

for this function the truth of the great Picard theorem.
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Complex Powers:

The goal is to devise a reasonable definition of zα where α is allowed to be
complex. Though it makes no sense to “raise z to the power α,” we still use
that terminology.

WARNING: when dealing with this subject it’s very important not to use
the notation ez in the usual way, but instead to use the terminology from
the beginning of the book,

exp(z) =
∞∑
n=0

zn

n! .

A good way to figure out what our definition should be is the use of desired
properties of logarithm, namely

log(zα) = α log z.

Then we use the “inverse” of log to come to our definition:

zn := exp(α log z)

This makes sense as long as z 6= 0, so we’ll always make that assumption. Of
course, zα is usually not a unique complex number, due to the ambiguity in
log z. For other values could be

exp(α(log z + 2nπi)) = exp(α log z) exp(2nπiα).

This will be independent of the integer n⇔ α is an integer, and then zα has its
usual meaning.

Now we list some properties of this definition.

1. If α is an integer, zα has its usual meaning. For all other α ∈ C, zα is
ambiguous, no matter what z is. In particular,

z0 = 1

2. 1α = exp(α log 1) = exp(α(2nπi)), so

1α has all the values exp(2nπiα)
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3. ii = exp(i log i) = exp
(
i

(
0 + iπ

2 + 2nπi
))

= exp
(
−π2 − 2nπ

)
, so

ii has all the values exp
((

even integer − 1
2

)
π

)
. (and all are real num-

bers.)

4. zαzβ = zα+β provided the same log z is used in all 3 places it appears.

5. zαwα = (zw)α — sort of true: be careful!

6. In open sets of C which do not contain 0 and which do not “wind around
0,” log z can be defined in terms of a continuous value for arg z. Then
log z becomes a holomorphic function, as we know, so also the composite
function zα is holomorphic.

0

And we compute its derivative by the chain rule:

(zα)′ = exp(α log z)(α log z)′ = zα
α

z
,

and we write

dzα

dz
= αzα−1 (same log z on each side).

7. Taylor series

As in the above discussion, we take −π2 < arg z < π

2 in the disc

|z − 1| < 1. Then we have inductively for n = 0, 1, 2, . . .
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(
d

dz

)n
zα = α(α− 1) · · · (α− n+ 1)zα−n.

In particular, at z = 1 we find α(α− 1) · · · (α−n+ 1), since 1α = 1. So
we obtain the Taylor series

zα =
∞∑
n=0

α(α− 1) · · · (α− n+ 1)
n! (z − 1)n for |z − 1| < 1.

That coefficient is given this notationα
n

 = α(α− 1) · · · (α− n+ 1)
n! ,

and is still called a binomial coefficient:α
0

 = 1,
α

1

 = α,

α
2

 = α(α− 1)
2 , etc.

Replacing z by 1 + z yields a “binomial” formula,

(1 + z)α =
∞∑
n=0

α
n

zn for |z| < 1.

(If α = 0, 1, 2, . . . this series is finite, going only from 0 ≤ n ≤ α. It’s a
polynomial, and this result is the classical binomial formula. Otherwise,
the radius of convergence equals 1.)

PRINCIPLE DETERMINATION OF ARG & LOG: this is what we say when
we are in the open set C \ (−∞, 0]:

−π < arg z < π;
1α = 1, log x is real for 0 < x <∞.
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PROBLEM 3-6. Prove this polynomial identity:α + β

n

 =
n∑
n=0

α
k

 β

n− k

. HINT: very easy problem!

BRANCH POINTS

All the holomorphic functions which somehow involve log z have a definite
type of “singular” behavior near 0. But these are clearly not isolated singulari-
ties. For these functions are not actual functions (single-valued) in any region
which includes all z satisfying 0 < |z| < ε.

Instead, we say that these functions have a branch point at 0. That’s a well-
chosen descriptive word, for as we follow their behavior on a loop surrounding
0 they can exhibit a change because of the change in a continuous determination
of arg z.

For instance, z
1
2 has 2 values, z

1
3 has 3 values; z

m
n has n values, assuming the

integers m and n have no common prime factor. However, if α is irrational, zα

has infinitely many values.

We say that the above functions have branching of order 2, 3, n and∞, respec-
tively

You can imagine that things can become more and more complicated. For
instance, think about z

√
z near the origin.

Of course, we can also see branch points at other points, such as in the function
(z − 1) 1

2 + (z + 1)1
2 , which has branch points at 1 and −1. Or (z2 + 1)1

2 with
branch points at i and −i.





Chapter 4

Residues (Part I)

We are preparing to do some truly amazing things with our theory, but first
we need an important definition. This is all in the context of a holomorphic
function with an isolated singularity at z0. Let f be such a function. We are
then going to define a complex number based on this situation, but we do it in
3 separate ways, and we’ll observe that these 3 ways yield the same number.

Section A: Definition of Residues
Definition 1: Let γ be any small loop surrounding z0 one time in the CCW
sense: then our number equals

z0 γ

1
2πi

∫
γ
f(z)dz

This number does not depend on γ, thanks to Cauchy’s integral theorem. To see
this, surround z0 with a very small circle: in the region between γ and this circle
we have from Cauchy’s theorem

77
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z0 γ

∫
γ
f(z)dz +

∫
CW

circle

f(z)dz = 0.

Thus ∫
γ
f(z)dz =

∫
CCW
circle

f(z)dz,

so the left side does not depend on γ.

Definition 2: Consider the Laurent expansion of f near z0:

f(z) =
∞∑

n=−∞
cn(z − z0)n.

Then our number equals

c−1

That is, we focus our attention on the Laurent expansion

f(z) = · · ·+ c−2

(z − z0)2 + c−1

(z − z0)
+ c0 + c1(z − z0) + · · ·

and it’s c−1 we use.

This agrees with the first definition since∫
γ
f(z)dz =

∞∑
n=−∞

cn
∫
γ
(z − z0)ndz = c−1

∫
γ

dz

z − z0

= 2πic−1.

Definition 3: This definition relies on trying to integrate f(z) as an “indefinite

integral” near z0. The trouble is precisely with the term
c−1

z − z0
. For this creates

an undefined expression in
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∫
f(z)dz =

∑
n 6=−1

cn(z − z0)n+1

n+ 1 +
∫ c−1

z − z0
dz .

undefined

Thus, the number we want is the unique a ∈ C such that

f(z) − a

z − z0
= the derivative of a holomorphic function in the region

0 < |z − z0| < r, for some r > 0.

Definition: The residue of f at z0 is the number defined in all 3 of the above
definitions. We denote it as

Res(f, z0)

We now list a number of properties and examples.

1. If f is holomorphic at z0 (i.e., z0 is a removable singularity of f ), then

Res(f, z0) = 0.

2. Res
( 1
z − z0

, z0

)
= 1 (most basic case).

3. Res ((z − z0)n, z0) = 0 if n ∈ Z, n 6= −1.

4. Res
(
e

1
z , 0

)
= 1.

5. Res
(

sin 1
z
, 0
)

= 1.

6. Res
(

cos 1
z
, 0
)

= 0.

7. If f is an even function
Res(f, 0) = 0.

8. Suppose f has a simple pole (i.e., pole of order 1) at z0. Then we have

f(z) = c−1

z − z0
+
∞∑
n=0

cn(z − z0)n,
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so that
(z − z0)f(z) = c−1 + (z − z0)

∞∑
n=0

cn(z − z0)n,

and the left side has limit c−1 as z → z0:

SIMPLE
POLE

Res(f, z0) = lim
z→z0

(z − z0)f(z)

9. A corollary is now the following, which is the handiest special case! Sup-
pose we know that

f(z) = a(z)
b(z) ,

where both numerator and denominator are holomorphic at z0, and
b(z0) = 0, b′(z0) 6= 0. Then z0 is a simple pole for f , and our previ-
ous result yields

Res(f, z0) = lim
z→z0

(z − z0)a(z)
b(z)

= lim
z→z0

a(z)
b(z)−b(z0)
z−z0

= a(z0)
b′(z0)

.

For the record,

Res
a(z)
b(z) , z0

 = a(z0)
b′(z0)

if
b(z0) = 0,
b′(z0) 6= 0.

10. Res(cot z, 0) = 1 since cot z = cos z
sin z and

cos 0 = 1,
sin 0 = 0,
sin′(0) = 1.

Res(cot z, nπ) = 1
(cosnπ

cosnπ

)

11. Res(csc z, nπ) = (−1)n

12. Res
( 1
ez − 1 , 0

)
= 1.

13. Res
(

z

ez − 1 , 0
)

= 0.
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14. Let’s compute the residue at 0 of
1

a− z
e

1
z , where a 6= 0. None of our

easy examples apply, so we resort to series:

1
a− z

= 1
a

1
1− z

a

=
∞∑
n=0

zn

an+1 ,

e
1
z =

∞∑
n=0

1
n!zn .

Multiply these series and look for the
1
z

terms:

1
a

1
1! + 1

a2
1
2! + 1

a3
1
3! + · · · .

This equals −1 +
∞∑
k=0

1
akk! , so

Res
( 1
a− z

e
1
z , 0

)
= e

1
a − 1.

Incidentally,

Res
( 1
a− z

e
1
z , a

)
= −e 1

a .

Now we come to a major theorem. Before stating it, let’s be sure we completely
understand the context.

As in the Cauchy integral theorem, we deal with a “nice” bounded open set
D ⊂ C, whose boundary ∂D consists of finitely many curves. We also as-
sume that f is holomorphic on an open set containing D ∪ ∂D except for
finitely many isolated singularities z1, . . . , zn, all contained in the open set D.

Then we have the

RESIDUE THEOREM

1
2πi

∫
∂D
f(z)dz =

n∑
k=1

Res(f, zk)

The proof is an easy application of the Cauchy integral theorem if we first
remove from D small, closed discs Ek centered at the zk’s. Let the resulting
open set be denoted
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D′

D′ = D \
n⋃
k=1

Ek.

Since f is holomorphic on D′, Cauchy’s theorem yields

0 = 1
2πi

∫
∂D′

f(z)dz.

But ∂D′ = ∂D ∪
n⋃
k=1

∂Ek, so we obtain

0 = 1
2πi

∫
∂D
f(z)dz +

n∑
k=1

1
2πi

∫
∂Ek
CW

f(z)dz.

But
1

2πi
∫
∂Ek
CW

f(z)dz = − 1
2πi

∫
∂Ek
CCW

f(z)dz

= −Res(f, zk). (def. of residue)

This proves the theorem.
QED

PROBLEM 4-1.

1. For any positive integer n, find all the singularities of the function
1

zn + 1 and calculate all the corresponding residues. Also, compute

the sum of all the residues.

2. Suppose that f has a pole at z0 of order ≤ N . The function



.SECTION A: DEFINITION OF RESIDUES 83

(z − z0)Nf(z) has a removable singularity at z0. Prove that

Res(f, z0) =

(
d
dz

)N−1 [(z − z0)N f(z)
]

(N − 1)!

∣∣∣∣∣∣∣∣
z=z0

.

3. Using the principal determination of log, calculate the residues of
log z

(z2 + 1)2 at each of its singularities.

4. For any nonnegative integer n, calculate the residues of (z2 + 1)−n−1

at each of its poles. Present your answer with the binomial coeffi-

cient
2n
n

 displayed prominently.

5. Find the residues of cscn z at z = 0 for n = 1, 2, 3, 4, 5.

(That is,
( 1

sin z

)n
.)

REMARK ABOUT THE RESIDUE THEOREM: It contains the Cauchy integ-
ral formula. (Of course, we actually used the Cauchy integral theorem in its
proof.) For consider the usual scene for the Cauchy formula:

f holomorphic

z
D

We write the expected integral
1

2πi
∫
∂D

f(ζ)
ζ − z

dζ and notice that for fixed z ∈ D

the function
f(ζ)
ζ − z

is a holomorphic function of ζ with one isolated singularity,
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at z. And it’s the easy case!

Res
 f(ζ)
ζ − z

, z

 = f(z)
d
dζ (ζ − z)

= f(z)
1 = f(z).

So indeed, the residue theorem⇒
1

2πi
∫
∂D

f(ζ)
ζ − z

dζ = f(z).

WHAT’S AHEAD FOR US: The residue theorem is an amazing tool for ac-
complishing all sorts of things in complex analysis. It can produce wonderful
theoretical results and also astonishing computations. We could present these
in either order. However, I prefer the computational aspects first, because these
techniques will give us lots of practice in dealing with our new concept of
residues, and I think will also give us a nice change of pace in the middle of the
book.

So here we go!

Section B: Evaluation of Some Definite Integrals
1. An example for babies:

A quite elementary integral in basic calculus is
∫ ∞
−∞

1
x2 + 1dx = π. Now we

approach it in an entirely different way, much more complicated than actually
necessary for such a problem... but the technique will lead the way for more
interesting situations.

• Define the holomorphic function f(z) = 1
z2 + 1 . This function has iso-

lated singularities at i and −i.

• Devise a clever path. Here it is:

i

R−R 0

γ :

−i
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for large R we hope to approximate the desired integral, and we have a
pole of f inside.

The residue theorem gives immediately

1
2πi

∫
γ

1
z2 + 1dz = Res

( 1
z2 + 1 , i

)

= 1
2z

∣∣∣∣
z=i

= 1
2i.

Thus, ∫
γ

dz

z2 + 1 = π.

• Let R→∞. We have∫ R
−R

dx

x2 + 1 +
∫

semicircle

dz

z2 + 1 = π.

The real integral is just what we want. We do not want to evaluate the
semicircular integral, but instead to show that it has limit 0 as R → ∞.
So, we employ the basic estimate for line integrals:

(see Ch 3,
pg. 60)

∣∣∣∣∣∣
∫

semicircle

1
z2 + 1

∣∣∣∣∣∣ ≤ max
∣∣∣∣∣ 1
z2 + 1

∣∣∣∣∣ · length of curve.

The length of the curve is πR. And for |z| = R we have from the triangle
inequality

|z2 + 1| ≥ |z2| − 1 = |z|2 − 1 = R2 − 1.
Thus, we achieve the estimate

πR

R2 − 1 → 0 as R→∞.

• Final result:
lim
R→∞

∫ R
−R

dx

x2 + 1 = π.

2. A more challenging example:

Use the above template for
1

z4 + 1 .

The denominator has (simple) zeros at the fourth roots of −1 = eπi:
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R−R 0

γ :

e
πi
4 , e

3πi
4 , e

5πi
4 , e

7πi
4 ,

and the residues of f at each one equal

1
4z3 = z

4z4 = −z4 .

The residue theorem⇒

1
2πi

∫
γ

dz

z4 + 1 = sum of residues at e
πi
4 and e

3πi
4

= −e
πi
4

4 −
e

3πi
4

4

= −
1+i√

2 + −1+i√
2

4

= −i
√

2
4 .

Thus, ∫
γ

dz

z4 + 1 = 2πi
−i√2

4

 = π√
2
.

Again, the integral on the semicircle has modulus bounded by

πR

R4 − 1 → 0.

Conclusion: ∫ ∞
−∞

dx

x4 + 1 = π√
2

3. Another:

Use f(z) = 1
z6 + 1 .

Six poles this time:
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e
πi
6 , e

πi
2 , e

5πi
6 , e

7πi
6 , e

3πi
2 , e

11πi
6 .

Everything works the same way. The sum of the three residues inside of D is
∑ 1

6z5 =
∑ z

6z6 = −1
6
∑
z

= −1
6
[
e
πi
6 + i+ e

5πi
6

]

= −1
6

√3
2 + i

2 + i+ −
√

3
2 + i

2


= −1

6 · 2i = − i3 .

So the integral we obtain is 2πi
(
− i3

)
= 2π

3 :

∫ ∞
−∞

dx

x6 + 1 = 2π
3

4. Another:

Let’s try f(x) = 1
z3 − i

.

The three poles are roots of z3 = i = e
πi
2 = e

5πi
2 = e

9πi
2 . So we obtain

−i

0 γ

z = e
πi
6 , e

5πi
6 , e

3πi
2 .

This time we save a small amount of work by using the lower semicircle, so
that we deal with one residue only. The residue at −i equals

1
3z2 = 1

3(−i)2 = −1
3 .
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So the residue theorem gives
∫
γ

1
z3 − i

dz = −2πi
3 .

Again, the integral on the semicircle tends to 0 as R → ∞, so our limiting
equation is ∫ −∞

∞

dx

x3 − i
= −2πi

3 .

Reverse the direction: ∫ ∞
−∞

dx

x3 − i
= 2πi

3

(P.S. we could have solved it this way:

∫ ∞
−∞

dx

x3 − i
=
∫ ∞
−∞

x3 + i

x6 + 1dx = 0 + i
∫ ∞
−∞

dx

x6 + 1 = 2πi
3

from the preceding example.)

5. Long detailed discussion of another example:
∫ ∞

0

xα−1

x+ 1dx, α ∈ R.

a. Convergence issues:

Near∞ the integrand is approximately xα−2, so we require α < 1.
Near 0 the integrand is approximately xα−1, so we require α > 0.

Thus, 0 < α < 1.

b. Choose a holomorphic function:

Let f(z) = zα−1

z + 1 , but we realize we’ll have to cope with the ambiguity

in

zα = exp(α log z) = exp(α(ln |z|+ i arg z))
= |z|α exp(iα arg z).

c. Residues:
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z = 0 is a branch point, not an isolated singularity. There is an isolated
singularity at z = −1, and the residue is easy:

Res(f,−1) = (−1)α−1

1 = −(−1)α

= − exp(iα arg(−1)).

d. Path of integration:

Rather tricky! We need to have the positive real axis as part of the path,
we need it to surround -1, and we need 0 to be outside!

Here is what we do:

0

radius ε
radius R

−1 ε

γ is the boundary of the shaded region.

In this region we should use the choice of arg z so that 0 < arg z < 2π.
Then we have

Res(f,−1) = − exp(iαπ) = −eiαπ.

e. The residue theorem yields immediately that

∫
γ

zα−1

z + 1dz = −2πieiαπ.
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f. R→∞

The integral on the large circle is bounded by

max
|z|=R
|f(z)| · 2πR = max

|z|=R

Rα−1

|z + 1| · 2πR

≤ Rα−1

R− 1 · 2πR
approx= 2πRα−1.

Since α < 1, this tends to 0 as R→∞.

g. ε→ 0

The integral on the small circle is bounded by

max
|z|=ε

εα−1

|z + 1| · 2πε ≤
εα−1

1− ε · 2πε
approx= 2πεα.

Since α > 0, this tends to 0 as ε→ 0.

REMARK: our criteria for convergence of the desired integral match perfectly
with what is needed in the line integral as R→∞, ε→ 0.

h. We have remaining two integrals along the positive real axis. In the “up-
per” one we have z = x with argument 0, so it becomes

∫ ∞
0

zα−1

z + 1dz =
∫ ∞

0

xα−1

x+ 1dx =: I.

But in the “lower one” z = x with argument 2π, so it becomes

−
∫ ∞

0

zα−1

z + 1dz = −
∫ ∞

0

xα−1ei(α−1)2π

x+ 1 dx = −eiα2πI.

i. Summary: the equation in e. becomes in the limit

I − eiα2πI = −2πieiαπ.

Solve for I:

I = −2πieiαπ
1− eiα2π = 2πi

eiαπ − e−iαπ

= π

sinαπ.
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CONCLUSION:
∫ ∞

0

xα−1

x+ 1dx = π

sinαπ for 0 < α < 1

This is just about the easiest example of this type of analysis, but I have
included great detail to justify all the reasoning. After some practice this
should become almost routine for you.

REMARK: Problem 4-1, #5... to find the residues

Res(cscn z, 0) for n = 1, 2, . . . .
The easy cases are

n = 1 : simple pole, residue = 1.
n = 2, 4, 6, . . . even function, residue = 0.

n = 3: Here’s a beautiful and elegant technique, which I choose to call inte-
gration by parts. It’s based on the fact that if f is a holomorphic function on a
closed path γ, then ∫

γ
f ′(z)dz = 0.

This is a FTC fact, see Chapter 3 Section B, page 50. Now apply this to a
product fg of holomorphic functions:

0 =
∫
γ
(fg)′dz =

∫
γ
f ′gdz +

∫
γ
fg′dz,

or ∫
γ
f ′gdz = −

∫
γ
fg′dz. “INTEGRATION

BY PARTS”

In the case of functions with isolated singularities at z0, when we use a small
circle γ surrounding z0 we obtain

Res(f ′g, z0) = −Res(fg′, z0)

Now we try this on csc3 z near z0 = 0. Then

sin−3 z =
sin−2 z

−2

′ sec z,

so that

Res(sin−3 z, 0) = Res
sin−2 z

2 sec′ z, 0


= Res
sin−2 z

2 sec z tan z, 0


= Res
sin−1 z

2 sec2 z, 0
 .
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Look what just happened! We started with a pole of order 3, and now we have
a pole of order 1! So, we’re in the easy case, and

Res
 sec2 z

2 sin z , 0
 = 1

2 cos 0 = 1
2 .

REMARK: “Integration by parts” is somewhat a misnomer. For Definition 3
gives the result immediately that a derivative of a holomorphic function has
zero residue, since on page 78 we simply take a = 0. Nonetheless, I like the
IBP name for this principle, as the result is so reminiscent of such a procedure.

6. Integrals of a certain form:

∫ ∞
0

a(x)
b(x)dx where:

· a, b are polynomials
· degree b ≥ degree a+ 2
· b 6= 0 on [0,∞) ⊂ R

(Notice that the integration extends only over the positive real axis!)
Such situations can always be handled with residue theory, so we’ll derive a
general result and then apply it to a particular example.

The approach is quite clever! We define

f(z) = a(z)
b(z) log z

and use this type of path:

0

radius ε radius R

Just as in example 5 on page 88,
we use 0 < arg z < 2π.
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The integrals on the two circles tend to 0 in the limit as ε → 0 and R → ∞.
The extra factor of log z is of very little concern, since∣∣∣ log z

∣∣∣ =
∣∣∣ ln |z|+ i arg z

∣∣∣ ≤ ∣∣∣ ln |z|∣∣∣ + 2π.

So, when |z| = R we have

| log z| ≤ lnR + 2π ≤ 2 lnR,

and for |z| = ε

| log z| ≤ | ln ε|+ 2π ≤ 2 ln 1
ε

for R→∞ and ε→ 0. Thus, on the circle |z| = R we have
∣∣∣∣∣
∫
|z|=r

f(z)dz
∣∣∣∣∣ ≤ constant

R2 · lnR · 2πR ≤ constant · lnR
R

,

which tends to 0 as R → ∞... since lnR → ∞ much slower than R. And on
the circle |z| = ε we have a similar estimate∣∣∣∣∣

∫
|z|=ε

f(z)dz
∣∣∣∣∣ ≤ constant · ln 1

ε
· 2πε ≤ constant · ε ln 1

ε
.

Again, this tends to 0 as ε→ 0.

Thus, we apply the residue theorem and then let R→∞, ε→ 0, and obtain in
the limit

∫ ∞
0

a(x)
b(x) ln xdx−

∫ ∞
0

a(x)
b(x) [ln x+ 2πi] dx

= 2πi · sum of the residues of f(z).

Notice that on the path (0,∞) above the axis, log z = ln x (arg z = 0), but on
the path (∞, 0) below the axis, log z = ln |x|+ 2πi, because arg z = 2πi.

So when we subtract the integrals, ln x disappears, and we’re left with

−2πi
∫ ∞

0

a(x)
b(x)dx.

Divide by −2πi to achieve the formula

∫ ∞
−∞

a(x)
b(x)dx = − the sum of all residues of

a(z)
b(z) log z
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(Here 0 < arg z < 2π.)
(Though it doesn’t matter!)

EXAMPLE: Let a > 0 and consider

I =
∫ ∞
0

x

(x+ a)(x2 + 1)dx.

All our requirements are met. The poles are located at −a, i, and −i, and they
are all simple! When the residues are computed we obtain

Res
 z

(z + a)(z2 + 1) log z,−a
 = −a log(−a)

1 · (a2 + 1)

=
−a

(
ln a+ πi

)
a2 + 1 ;

at i we have the residue

i log i
(i+ a)2i =

i
iπ

2
(a+ i)2i = iπ

4(a+ i) = iπ(a− i)
4(a2 + 1) .

And at −i

−i log(−i)
(−i+ a)2(−i) =

−i 3iπ
2

(a− i)(−2i) = 3iπ
4(a− i) = 3iπ(a+ i)

4(a2 + 1) .

When we add these three residues, we obtain

1
a2 + 1

{
(−a ln a− aπi) + iπa+ π

4 + 3iπa− 3π
4

}

= 1
a2 + 1

{
−a ln a− π

2

}
.

Therefore, we obtain from the formula the result that for a > 0
∫ ∞

0

x

(x+ a)(x2 + 1)dx = a ln a+ π
2

a2 + 1

REMARK: Many examples we demonstrate can actually be done with single
variable calculus. this is a good example, as are 1,2,3,4. We could even find the
indefinite integral first. Regardless, these techniques are exceedingly beautiful
even in such cases!
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PROBLEM 4-2. For any integer n ≥ 2, compute the integral

∫ ∞
0

dx

xn + xn−1 + . . .+ x+ 1 .

DISCUSSION: This fits what we have just done, with a(z) = 1 and
b(z) = zn + zn−1 + . . . + z + 1. Here’s an approach using lots of cal-
culations:

• Poles:

b(z) = zn+1 − 1
z − 1 so poles occur when zn+1 = 1 (and z 6= 1). I

suggest defining
ω = e

2πi
n+1 ,

so that poles are ωk for 1 ≤ k ≤ n.

• Residues of
log z
b(z) are happily

logωk
b′(ωk) = k logω

b′(ωk) = 2πi
n+ 1

k

b′(ωk) .

For z = ωk we have

b′(z) = −z
n+1 − 1

(z − 1)2 + (n+ 1)zn
z − 1 = n+ 1

z2 − z
(WHY?)

• Formula of page 93⇒ our integral equals

−
n∑
k=1

2πik
n+ 1

ω2k − ωk

n+ 1 = 2πi
(n+ 1)2

 n∑
k=1

kωk −
n∑
k=1

kω2k
 .

• Algebra: SHOW THAT the term ‘( )’ on the preceding line equals

zb′(z)
∣∣∣∣ω
ω2

= (n+ 1)
 ω

ω2 − ω
− ω2

ω4 − ω2

 .
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• Finish: Greatly simplify to get the final answer in the form

π

(n+ 1) sin(??) .

7. Principal value integrals refer to reasonable attempts to define a sort of integral
even when the integrand is not actually integrable. There are two different
situations where this may occur. Here are illustrations of these types:

Type 1:
∫ e
−1

1
x
dx does not actually exist, since the two “sub-integrals” do not

exists: ∫ 0

−1

1
x
dx = −∞ and

∫ e
0

1
x
dx = +∞.

So what we may do is first delete a symmetric interval about 0 and then perform
a limit:

∫ −ε
−1

dx

x
+
∫ e
ε

dx

x
= ln |x|

∣∣∣∣−ε
−1

+ ln |x|
∣∣∣∣e
ε

= (ln ε− 0) + (1− ln ε)
= 1.

So, the limit as ε → 0 does exist, and is called the principal value integral.
Notation:

PV
∫ e
−1

dx

x
= 1.

Type 2:
∫ ∞
−∞

x

x2 + 1dx again does not exist, for

∫ 0

−∞

x

x2 + 1dx = −∞ and
∫ ∞

0

x

x2 + 1dx = +∞.

But we can define a principal value by integrating from −R to R and then
letting R→∞. Notation:

PV
∫ ∞
−∞

x

x2 + 1dx = 0.

The residue theorem can often be of use in calculating such integrals. I’ll give
as an example a typical situation, and we’ll see others.

So, assume f(z) is a rational funciton of z for which degree of denominator ≥ 2
+ degree of numerator, just as on page 92.
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Furthermore, if f has any real poles, assume they are simple.

We shall then apply the residue theorem when our line integral has this form:

−R R

γ

We are of course familiar with the large semicircle. The new twist is that we
have semicircles of small radius centered at the real (simple) poles of f .

The radius R is so large that all the real poles of f are between −R and R, and
all the poles with imaginary part greater than 0 satisfy |z| < R. The residue
theorem then gives immediately the equation∫

γ
f(z)dz = 2πiR,

where we have denoted

R =
∑

Im(z)>0
Res(f, z).

Because of the restriction on degrees of denominator and numerator of f , we
can let R→∞ and obtain ∫

γε
f(z)dz = 2πiR,

where γε represents the real axis with semicircular arcs of radius ε situated
about the real poles of f .

It is fascinating to see what happens when we let ε→ 0. We can deal with each
real pole individually. So, look at a pole at x0 ∈ R and the portion of γε from a
to b, when a < x0 < b:

a bx0
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Parametrize the semicircle as z = x0 + εeiθ, where θ travels from π to 0. We
obtain ∫ x0−ε

a
f(x)dx+

∫ 0

π
f(x0 + εeiθ)iεeiθdθ +

∫ b
x0+ε

f(x)dx.

The first plus third of these integrals will have the limit as ε→ 0:

PV
∫ b
a
f(x)dx . . . provided the limit exists!

The limit does indeed exist, as we see from analyzing the second integral:

from page 78 we have

Res(f, x0) = lim
z→x0

(z − x0)f(z),

since x0 is a simple pole. Thus

Res(f, x0) = lim
ε→0

εeiθf(x0 + εeiθ) (uniformly w.r.t. θ)

and we therefore obtain

lim
ε→0

∫ 0

π
f(x0 + εeiθ)iεeiθdθ =

∫ 0

π
iRes(f, x0)dθ

= −πiRes(f, x0).

Doing this for each pole thus yields the formula

lim
ε→0

∫
γε
f(z)dz = PV

∫ ∞
−∞

f(x)dx− πiR∗,

where
R∗ =

∑
x∈R

Res(f, x).

Thus, we have derived the result, that under the given restrictions on f ,

PV
∫ ∞
−∞

f(x)dx = 2πi
∑

Im(z)>0
Res(f, z) + πi

∑
x∈R

Res(f, x)

EXAMPLE: f(z) = 1
z3 + 1 . The real pole is at −1, and the residue there is

1
3z2 = 1

3 . The other pole to consider is e
iπ
3 , with residue

1
3z2 = 1

3e
−2iπ

3 =
1
3

−1
2 −

i
√

3
2

. Thus, we have to calculate 2πi
(
−1

6 −
i

2
√

3

)
+ πi

3 = π√
3

, so

we have

PV
∫ ∞
−∞

dx

x3 + 1 = π√
3
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PROBLEM 4-3. For 0 < α < 1 calculate

PV
∫ ∞

0

xα−1

1− xdx.

0 1 R

RECOMMENDATION:

f(z) = zα−1

1− z

with

0 < arg z < 2π

P2

8. Integrals involving exponentials (and trig functions):

This is an extremely important type of definite integral, and we’ll gain extra
proficiency in our techniques as well as in our use of exp. First, we’ll look at
two rather typical examples.

Example 1:
∫ ∞
−∞

eiax

x2 + 1dx.

First, recall the simple equation |ew| = eRew. Therefore,
∣∣∣eiax∣∣∣ = eRe(iax) = e− Im(ax) = e−x Im(a).

So, if Im(a) 6= 0, then the integrand blows up exponentially as x → ∞ or
as x → −∞, and we have no existing integral. Therefore, we definitely must
assume that a ∈ R.

We are led to define f(z) = eiaz

z2 + 1 , a holomorphic function with isolated

simple poles at ±i.
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Let’s try our familiar semicircle: knowing we’ll need to worry about the path
|z| = R, we examine

−R 0

i

R

|f(z)| =
∣∣∣eiaz∣∣∣
|z2 + 1| = e− Im(az)

|z2 + 1|

≤ e−a Im(z)

|z2| − 1 = e−a Im(z)

R2 − 1 .

We’ll be in bad trouble if a < 0! (Since Im(z) = R.) Therefore, we also
assume a ≥ 0. Then we have for |z| = R that

|f(z)| ≤ 1
R2 − 1 ,

and we conclude that since the length of the semicircle is πR, the line integral∣∣∣∣∣∣∣∣∣∣∣
∫
|z|=R

Im(z)>0

f(z)dz

∣∣∣∣∣∣∣∣∣∣∣
≤ πR

R2 − 1 → 0 as R→∞.

Thus, the residue theorem implies (after letting R→∞) that
∫ ∞
−∞

f(x)dx = 2πiRes(f(z), i)

= 2πie
iai

2i = πe−a.

Thus, we obtain ∫ ∞
−∞

eiax

x2 + 1dx = πe−a for a ≥ 0.

Finish: if a < 0 we obtain immediately by conjugation the result πea. There-
fore, we have in general

∫ ∞
−∞

eiax

x2 + 1dx = πe−|a| for all a ∈ R

What a terrific result! If a = 0 this is a very elementary integral since arctan
has derivative

1
x2 + 1 . But for a 6= 0 there’s no convenient indefinite integral.
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Example 2:
∫ ∞
−∞

xeiax

x2 + 1dx

Again, we must assume that a ∈ R. We will also first deal with the case a > 0.
(The case a = 0 is quite different, as

∫ ∞
−∞

x

x2 + 1dx

exists only in the principal value sense — and clearly is 0.)

Thus, we define

f(z) = zeiaz

z2 + 1 .

The residue at z = i is
ieiai

2i = 1
2e
−a.

We employ the same semicircular path, and we first try to estimate the line
integral along |z| = R:

∣∣∣∣∣∣∣∣∣∣
∫
|z|=R
Im z>0

f(z)dz

∣∣∣∣∣∣∣∣∣∣
≤

∫
|z|=R
Im z>0

|z|e−a Im z

|z|2 − 1 |dz|

= R

R2 − 1
∫ π

0
e−aR sin θRdθ

= R2

R2 − 1
∫ π

0
e−aR sin θdθ.

Uh oh! We can no longer simply use the estimate e−aR sin θ ≤ 1, so we have
to be cleverer. Not knowing how to integrate e−aR sin θ, we employ a useful

estimate. First, we can integrate from 0 to
π

2 only and double the answer to get

the estimate

2R2

R2 − 1
∫ π

2

0
e−aR sin θdθ < 3

∫ π
2

0
e−aR sin θdθ

for large R. Then we estimate sin θ from below by observing its graph:
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π

2
0

sin θ ≥ 2θ
π

for 0 ≤ θ ≤ π

2 .

Therefore, we find
∫ π

2

0
e−aR sin θdθ <

∫ π
2

0
e
−aR2θ
π dθ

<
∫ ∞

0
e
−aR2θ
π dθ = π

2aR !

Conclusion: the line integral of f(z) along the semicircle has modulus no big-
ger than:

R2

R2 − 1
3π

2aR → 0 as R→∞.

Thus, we again obtain from the residue theorem:
∫ ∞
−∞

f(x)dx = 2πiRes(f(z), i)

= 2πie
−1

2
= πie−1.

Here is the result for all a ∈ R:

∫ ∞
−∞

xeiax

x2 + 1dx =


πie−a for a > 0,
0 for a = 0 (PV integral),
−πiea for a < 0.

SUMMARY: Using Euler’s formula eiax = cos ax + i sin ax, we see that the
symmetry of the integrands gives the two results in the form:

∫ ∞
−∞

cos ax
x2 + 1dx = πe−|a| for a ∈ R,
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∫ ∞
−∞

x sin ax
x2 + 1 dx =


πe−a for a > 0,
0 for a = 0,
−πea for a < 0.

REMARK: The integrals
∫ ∞
−∞

x sin ax
x2 + 1 dx are not principal value integrals, as

the integrand is an even function of x. However, they are improper integrals as
they are not absolutely integrable:

∫ ∞
−∞

∣∣∣∣∣x sin ax
x2 + 1

∣∣∣∣∣ dx =∞ (for a 6= 0).

Two more example involving trigonometric functions:

• The first can be found in almost every textbook on complex analysis. It’s
the integral ∫ ∞

0

sin ax
x

dx, where as usual a ∈ R.

This integral is of course 0 if a = 0. Otherwise, it is an improper integral,
since ∫ ∞

0

∣∣∣∣∣sin axx
∣∣∣∣∣ dx =∞. (Not hard to show.)

Thus, it has to be interpreted as

lim
R→∞

∫ R
0

sin ax
x

dx.

The choice of holomorphic function is crucial! We must not choose
sin az
z

, because of its large modulus when Im z 6= 0. Therefore, the

logical choice is

f(z) = eiaz

z
.

(This actually introduces a pole at 0.) Prior experience leads us to assume
at first that a > 0 and to choose a path like this one:

−R R−ε ε
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Our earlier estimates on page 101 show that the integral along |z| = R
tends to 0, since a > 0. Thus, the residue theorem gives

∫ −ε
−∞

f(x)dx+
∫
CW

semicircle

f(z)dz +
∫ ∞
ε
f(x)dx = 0.

Then our work on page 98 yields in the limit as ε→ 0

PV
∫ ∞
−∞

f(x)dx− πiRes(f, 0) = 0.

This residue is 1, so our result is

PV
∫ ∞
−∞

eiax

x
dx = πi for a > 0.

I.e.,

PV
∫ ∞
−∞

cos ax+ i sin ax
x

dx = πi.

All that survives from this equation is
∫ ∞
−∞

sin ax
x

dx = π for a > 0.

Note: no PV is left, as that goes only with the cosine term. Or we could
have taken the imaginary part of each side.

Since the integrand is even as a function of x, we obtain
∫ ∞
0

sin ax
x

dx = π

2 for a > 0.

Finally, since sin ax is an odd function of a, our final result is

∫ ∞
0

sin ax
x

dx =



π

2 for a > 0,
0 for a = 0,
−π2 for a < 0.

• Our second example is the integral
∫ ∞

0

1− cos ax
x2 dx.

(This is a proper integral, thanks to the boundedness of the integrand as
z → 0 and its x−2-like decay at∞.)
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Our experience leads us to assume a > 0 and to choose

f(z) = 1− eiaz
z2 .

This function has a simple pole at z = 0, with

Res(f, 0) = Res
(−iaz + . . .

z2 , 0
)

= −ia.

Using the same path as above and letting R→∞, ε→ 0, we obtain

PV
∫ ∞
−∞

1− eiax
x2 dx = πi(−ia) = πa.

And then Euler’s formula gives

∫ ∞
−∞

1− cos ax
x2 dx = πa for a > 0.

Final result:

∫ ∞
0

1− cos ax
x2 dx = π|a|

2 for all a ∈ R

(A standard trig identity⇒

∫ ∞
0

2 sin2 ax
2

x2 dx = π|a|
2 ,

and thus (a→ 2a)

2
∫ ∞
0

sin2 ax

x2 dx = π|a|,

giving the result ∫ ∞
−∞

sin2 ax

x2 dx = π|a| )

PROBLEM 4-14. Calculate

PV
∫ ∞

0

cos ax
x2 − 1dx for a ∈ R.
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PROBLEM 4-15. Calculate

PV
∫ ∞

0

x sin ax
x2 − 1 dx for a ∈ R.



Chapter 5

Residues (Part II)

Section A: The Counting Theorem
We now consider some astonishing theoretical consequences of the residue
theorem.

Here is the situation we are going to be discussing. We will have a “nice”
simple closed path γ in C. It can be regarded as the oriented boundary of a
“nice” bounded open set D:

D

γ

We also will have a function f defined in an open set containing D ∪ γ,
and we assume that f is holomorphic except for finitely many poles (no
essential singularities allowed.)

Furthermore, we assume that on γ our function f has no zeros and no poles.
It therefore makes sense to form the line integral

∫
γ

f ′(z)
f(z) dz.

(The denominator is never 0 for z ∈ γ and the numerator is continuous on

107
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γ.)

Then we have

THE COUNTING THEOREM

Assuming the above hypothesis

1
2πi

∫
γ

f ′

f
dz = NUMBER OF ZEROS OF f IN D

− NUMBER OF POLES OF f IN D.

Here these numbers are counted according to their multiplicities.

Proof: The residue theorem (page 81) asserts that the LHS of this equation
equals

the sum of the residues of
f ′(z)
f(z) at all its singularities in D.

So, we must examine these singularities. They occur precisely at points z0 ∈ D
such that either z0 is a zero of f or z0 is a pole of f .

If z0 is a zero of f of order m ≥ 1: We then write the Taylor series of f cen-
tered at z0

f(z) =
∞∑
k=m

ck(z − z0)k (cm 6= 0).

Then we factor (z − z0)m from the RHS to arrive at

f(z) = (z − z0)mg(z),

where g is holomorphic in a neighborhood of z0 and g(z0) 6= 0. Then

f ′(z)
f(z) = (z − z0)mg′(z) +m(z − z0)m−1g(z)

(z − z0)m(z)

= g′(z)
g(z) + m

z − z0
.

(note that g(z) is

holomorphic near z0)

Thus,
f ′(z)
f(z) has a simple pole at z0 with

Res
f ′
f
, z0

 = m.
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If z0 is a pole of f of order n ≥ 1: In the very same manner we can factor f in
the form

f(z) = (z − z0)−nh(z),
where h is holomorphic in a neighborhood of z0 and h(z0) 6= 0. Then

f ′(z)
f(z) = (z − z0)h′(z)− n(z − z0)−n−1h(z)

(z − z0)−nh(z)

= h′(z)
h(z) −

n

z − z0
.

(note that h(z) is

holomorphic near z0)

Then
f ′(z)
f(z) has a simple pole at z0 with

Res
f ′
f
, z0

 = −n.

Conclusion: when we sum the residues of
f ′(z)
f(z) at all its singularities in D, we

are obtaining the total order of all zeroes of f in D minus the total order of all
the poles of f in D.

QED

An interesting corollary of this result depends on a way of interpreting the line

integral of
f ′

f
. At any point z0 ∈ γ, f(z0) is not zero and is holomorphic and not

zero in a small disc centered at z0. Thus, there is a continuous determination of
arg f(z) in this disc. (See the discussion on page 27.) And therefore, log f(z)
becomes a holomorphic function, with derivative

d

dz
log f(z) = f ′(z)

f(z) .

Now if we start at some point z0 ∈ γ with a choice of arg f(z0) and extend that
choice continuously as we traverse γ, then arg f(z0) at the end of the path will
be the original choice +2πN , for some integer N . Then we may write∫

γ

f ′(z)
f(z) dz = log f(z)

∣∣∣∣
end of γ

− log f(z)
∣∣∣∣
beginning of γ

.

But of course, log f(z) = log |f(z)| + i arg f(z), so there is no net change in
log |f(z)| and we have∫

γ

f ′(z)
f(z) dz = i (arg f(z))

∣∣∣∣
end of γ

− i (arg f(z))
∣∣∣∣
start of γ

.

Our counting theorem is thus equivalent to
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THE ARGUMENT PRINCIPLE

Under all the same hypothesis,

CHANGE OF ARG f(z) AROUND γ

2π
= NUMBER OF ZEROS OF f IN D

− NUMBER OF POLES OF f IN D

EXAMPLE: apply this to the holomorphic function P = P (z), where P is a
polynomial of degree n, and γ is a large circle |z| = R. Then

P (z) = czn + lower order terms,

so for |z| = R
P (z)
c

= zn(1 + small terms).

Let z = Reiθ:
P (z)
c

= Rneinθ(1 + small terms),

so that arg P (z)
c

is approximately nθ. Thus, the change in arg P (z)
c

around

this circle is approximately 2πn. Thus, the LHS of the argument principle is
approximately n. Thus, we have a second proof of the fundamental theorem of
algebra:

a polynomial of degree n has precisely n complex
zeros, counted accordining to multiplicity.

PROBLEM 5-1.

Recall the definition of the Bernoulli numbers: from Problem 3-4,

z

ez − 1 =
∞∑
n=0

Bn

n! z
n.
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In the solution of problem #4 we discover that

z

2 coth
(
z

2

)
=
∞∑
k=0

B2k

(2k)!z
2k.

1. Now prove that the Laurent expansion of cot z centered at 0 is

cotz =
∞∑
k=0

B2k

(2k)!(−1)k22kz2k−1.

2. Verify the trigonometric identity

tanz = cotz − 2 cot2z.

3. Now prove that the Maclaurin expansion of tanz is

tanz =
∞∑
k=1

B2k(−1)k−1

(2k)! 22k (22k − 1
)
z2k−1.

4. Prove that
B2k(−1)k−1 > 0 for all k ≥ 1.

Short list:

B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42
B8 = − 1

30 , B10 = 5
66 , B12 = − 691

2730 .

Illustration of the argument principle:
We do two of these. . . both to locate which quadrants of C contain zeros of a
polynomial.

• f(z) = z4− 6z3 + 18z2− 16z + 10
(An example with real coefficients.) Of course, f has 4 zeros.

First, note that f has no real zeros. There are several ways to see this.
Here’s an ad hoc way: for z ∈ R
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f(z) = z2(z2 − 6z + 9) + 9z2 − 16z + 10
= z2(z − 3)2 + (9z2 − 16z + 10) > 0

always ≥ 0 always positive since discriminant
= 162 − 4 · 9 · 10 = 256− 360 < 0

We are going to write f(z) = |f(z)|eiθ(z), where θ(z) stands for an argu-
ment of f(z). We’ll do this on the coordinate axes as well as on a large
circle |z| = R.

|z| = R: Quite easy, since f(Reit) = R4e4it(1 + small quantity) for

large R. Thus θ ∼ 4t, so that as t increases by
π

2 , θ increases by 2π,
approximately.

Real Axis: Also quite easy, since f(x) > 0 for all x ∈ R. Thus, we
actually can choose θ ≡ 0 on the real axis.

Imaginary Axis: This becomes significant (no pun intended):

f(iy) = y4 + 6iy3 − 18y2 − 16iy + 10.

Thus, for y ∈ R, f(iy) = (y4 − 18y2 + 10) + i(6y3 − 16y). We notice
that this is nonzero for y ∈ R, so θ is well defined and

tan θ = 6y3 − 16y
y4 − 18y2 + 10 .

We roughly sketch this, noting that it’s odd as a function of y, so we can
restrict attention to y > 0. The denominator changes sign at two places,
and we note that when the numerator vanishes for a value of y > 0, then

y2 = 16
6 = 8

3 . There the denominator equals

(8
3

)2
− 18 · 83 + 10 = 64

9 − 38 < 0.

Here’s a sketch of tan θ:
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0

den > 0 den < 0 den > 0

θ = 0 θ = −π θ = −2π

θ = −π2 θ = −3π
2

y θ = −2π

num < 0 num > 0

i

Starting with θ = 0 at y = 0, note the values of θ at crucial places.

Summary of changes in θ:

∆θ = 0

∆θ = −2π

∆θ = 0

∆θ = −2π

Impose the approximate changes on |z| = R, R large:

∆θ ∼= 4π

∆θ ∼= 4π∆θ ∼= 0

∆θ ∼= 0
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These approximate values are good enough, and the argument principle
locates the number of zeros in each quadrant:

0

0

2

2

• f(z) = z9 + 5iz4 + 7
Same strategy. In this case it’s clear there are no zeros on the coordinate
axes.

|z|=R: For large R, θ increases by approximately
9π
2 on each quadrant.

Real axis: f(x) = x9 + 7 + 5ix4, tan θ = 5x4

x9 + 7 .

θ = 0

0

θ = 0

θ = π

2

θ = π

x

Imaginary axis: f(iy) = 9iy7 + 5iy4 + 7, tan θ = 9y7 + 5y4

7 .
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θ = 0

θ = −π2 θ = π

2

Summary of changes in θ:

0

π

2

−π

π

2

4π

4π6π

4π
Argument principle yields
numbers of zeros per quadrant:

2

3

2

2

MATHEMATICA output:

{{x→ −1.255504501880301− 0.27198147935082784i},
{x→ −1.012461828409084− 0.5403423271892956i},
{x→ −0.8920069996513834 + 1.0379290053741679i},
{x→ −0.34036461818177277 + 1.0240247108970417i},
{x→ 0.08570449919877836− 1.4126419862113073i},
{x→ 0.44338217546397485− 0.9488109790334857i},
{x→ 0.8038223045822586 + 1.1975545074749976i},
{x→ 0.9608045914177918 + 0.3811634298839924i},
{x→ 1.3780333758572947− 0.4668948818452832i}}



116 CHAPTER 5. RESIDUES (PART II)

PROBLEM 5-2

1. Consider the quadratic polynomial f(z) = z2 + iz+2− i. It has two
zeros. Determine which quadrants they are in. (Use the argument
principle, no calculators, no “quadratic formula.”)

2. For any positive numbers a, b, c consider the polynomial
f(z) = z8 + az3 + bz + c. How many zeros does it have in the
first quadrant?

3. Suppose λ ∈ C has Re(λ) > 1.

a. Show that the equation

e−z + z = λ

has exactly one solution satisfying Re(z) ≥ 0.

b. Show that the solution is real⇔ λ is real.

4. Let f be an entire holomorphic function. Use log z defined by
0 < arg z < 2π. Prove that for any R > 0

∫
|z|=R
CCW

f(z) log z dz = 2πi
∫ R

0
f(x)dx.

We continue with the counting theorem and the argument principle. We’re now
going to derive an especially useful corollary of the results called Rouché’s
theorem. Just for convenience we’ll restrict attention to functions holomorphic
on an open set containing D ∪ γ —in other words, our functions will have no
isolated singularities—they’re simply holomorphic.

(We continue with the picture and notation from the beginning of this chapter.)

Section B: Rouché’s Theorem

ROUCHÉ’S THEOREM

Suppose the function f and g are holomorphic as discussed above, and
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assume that
|g(z)| < |f(z)| for all z ∈ γ.

Then f and f+g have the same number of zeros inD. (As always, counted
according to multiplicity.)

Proof using the argument principle: As z traverses γ, f(z) varies in C \ {0}
and winds around 0 a number N times, where N = the number of zeros of f in
D. The assumption |g(z)| < |f(z)| for z ∈ γ always yields a picture like this:

0
(N = 2)

f(z)

f(z) + g(z)
0

and this prevents f(z) + g(z) from gaining or losing any circuits around 0.
Thus, f(z) + g(z) also winds around 0 the same number N times.

QED 1

Proof using the counting theorem: (My favorite proof.) Note again that the
hypothesis |g(z)| < |f(z)| on γ implies that both

f(z) 6= 0 on γ

and
f(z) + g(z) 6= 0 on γ.

The counting theorem thus shows that

1
2πi

∫
γ

f ′

f
dz = # of zeros of f in D

and
1

2πi
∫
γ

(f + g)′
f + g

dz = # of zeros of f + g in D.
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So we need to show these two integrals are equal. That is, that

∫
γ

(f + g)′
f + g

− f ′

f

 dz = 0.

The integrand equals

f ′ + g′

f + g
− f ′

f
= f(f ′ + g′)− (f + g)f ′

(f + g)f

= fg′ − gf ′

(f + g)f

= fg′ − gf ′

f 2 · f

f + g

=
(
g

f

)′
· f

f + g
!

We are thus led to define the function

h(z) = g(z)
f(z) for z in an open set containing γ.

So, our integrand equals

h′ · 1
1 + g

f

= h′

1 + h
.

This quotient of course equals
(1 + h)′
1 + h

. Aha! Since |h(z)| < 1 by hypothesis,

the values 1 + h(z) lie in the disc |w − 1| < 1.

0 1

In particular, we can choose argw to be between −π2 and
π

2 , so that logw is

holomorphic. Thus, with this choice the function log(1 + h(z)) is holomorphic
for z near γ. In particular

∫
γ

h′

1 + h
dz =

∫
γ

d

dz

(
log(1 + h(z))

)
dz = 0
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because of the fundamental theorem of calculus (Ch 3, page 50).
QED 2

Elegant version: This introduces a parameter 0 ≤ t ≤ 1 to gradually move
from f(z) to f(z) + g(z). Namely, consider the function N(t) by

N(t) = 1
2πi

∫
γ

f ′(z) + tg′(z)
f(z) + tg(z) dz.

Thus, N(t) = # of zeros of f + tg in D. Therefore, N(t) is an integer. But it’s
also a continuous function of r because of its representation in that particular
integral form. Therefore, it must be constant. In particular,

N(0) = N(1).

QED 3

ILLUSTRATIONS:

1. FTA once again! Consider a polynomial of degree n:

P (z) = zn + an−1z
n−1 + . . .+ a1z + a0.

Let D be the disc with center 0 and radius R. Let

R

f(z) = zn,

g(z) = an−1z
n−1 + . . .+ a1z + a0.

For |z| = R with R > 1,

|g(z)| ≤ (|an−1|+ . . .+ |a0|)Rn−1 =: CRn−1.

Thus, if also R > C, then for |z| = R,

|g(z)| < Rn = |f(z)|.

Rouché’s theorem applies: P = f + g has the same number of zeros in
D as f = zn. The latter has n zeros (at 0). Thus, P has n zeros in D.
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2. z3 + ez

• For |z| = 2, |ez| = eRe z ≤ e2 < 8 = |z|3, so z3 + ez has three zeros
in |z| < 2. (z3 dominates)

• For |z| = 3
4 , |ez| = eRe z ≥ e−

3
4 = .472 . . . and |z3| = .421 . . .

(ez dominates). Therefore, z3 + ez has no zeros in |z| < 3
4 .

Now we begin an interesting investigation of what we might call “mapping
properties of holomorphic functions.” First, we work an exercise we could have
done long ago—Chapter 2, page 24, when we first mentioned the Cauchy-
Riemann equation:

THEOREM: Suppose f is a holomorphic function defined on a connected
open set D, and suppose the modulus of f is constant. Then f is constant.

Proof: We’re given that |f(z)| = C (constant) for all z ∈ D. If C = 0, there’s
nothing to prove, since then f(z) = 0. So, we assume C > 0. Write the
hypothesis in the form

f(z)f(z) = C2.

The product rule gives immediately

fxf̄ + ff̄x = 0

(note that
∂f̄

∂x
= ∂f

∂x
). That is,

Re
(
fxf̄

)
= 0. F

In the same way,
Re

(
fyf̄

)
= 0.

Aha! The Cauchy-Riemann equation is fy = ifx, so the second equation be-
comes

Re
(
ifxf̄

)
= 0.

That is,
Im(fxf̄) = 0. FF

Then F and FF⇒
fxf̄ = 0.
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But f̄ 6= 0, so we conclude fx = 0. I.e., f ′(z) = 0 for all z ∈ D. Thus f is
constant. (Chapter 2, page 43)

QED

Next, we have the famous

MAXIMUM PRINCIPLE: Let f be a nonconstant holomorphic function
defined on a connected open set D. Then the modulus |f(z)| cannot have
a local maximum value at any point of D.

Proof: Suppose to the contrary that there is a closed disc with center z0 and
radius a > 0 such that for all z in the disc

z0
|f(z)| ≤ |f(z0)|.

The mean value property of holomorphic functions (Chapter 3, page 61) yields
the equation

f(z0) = 1
2π

∫ 2π

0
f(z0 + reiθ)dθ for 0 ≤ r ≤ a.

Therefore,

|f(z0)| ≤
1

2π
∫ 2π

0

∣∣∣f(z0 + reiθ)
∣∣∣ dθ.

Thus,

0 ≤ 1
2π

∫ 2π

0

(∣∣∣f(z0 + reiθ)
∣∣∣− |f(z0)|

)
dθ,

but the integrand here is continuous and≤ 0 — since its integral is≥ 0, it must
be the case that the integrand is exactly 0: thus,∣∣∣f(z0 + reiθ)

∣∣∣ = |f(z0)| for all 0 ≤ θ ≤ 2π.
And this is true for all 0 < r ≤ a. Thus, |f(z0 + w)| = |f(z0)| for all complex
w such that |w| ≤ a. Thus, |f | is constant on this disc. The preceding theorem
⇒ f is constant on this disc. Since D is connected, f is constant on D.

QED
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MINIMUM PRINCIPLE: Let f be a nonconstant holomorphic function
defined on a connected open set D. Suppose that the modulus |f(z0)| has
a local minimum value at a point z0 ∈ D. Then f(z0) = 0.

Proof: We reason by contradiction, so we assume f(z0) 6= 0. Then consider the

function
1
f

. It’s defined in a neighborhood of z0 (since f(z) 6= 0 close enough

to z0 and is nonconstant and holomorphic). And has a local maximum at z0,
contradicting the maximum principle. Therefore, f(z0) = 0.

QED

Now we are going to discuss function which are open mappings. This is a
description requiring f to have the following equivalent properties:

1. For every open set E, the image f(E) is open.

2. For every point z0 in the domain of definition of f , there exist δ > 0 and
ε > 0 such that for all w for which |w − f(z0)| < ε, there exists z for
which |z − z0| < δ and f(z) = w.

z0
f(z0)

f

Think this way: “f preserves openness.”

EXAMPLE: R f→ R strictly increasing and continuous

NONEXAMPLE: R
sin
→ R

NONEXAMPLE: constant function

Section C: Open Mapping Theorem
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OPEN MAPPING THEOREM: Every nonconstant holomorphic func-
tion defined on a connected open subset of C is an open mapping.

Brute force proof: Let f(z0) = w0. Since the zeros of f(z) = w0 are isolated,
there exists δ > 0 such that in the closed disc

Dz0 =
{
z
∣∣∣|z − z0| ≤ δ

}

f(z) is never equal to w0 except at the center. In particular, on the circle
Cz0 = ∂Dz0 the continuous function |f(z)−w0| is positive. Since Cz0 is closed
and bounded, there exists a positive lower bound ε > 0:

z0

Cz0

|f(z)− w0| ≥ ε for all z ∈ Cz0.

Now we shall prove that for any w such that

w0

w

|w − w0| <
ε

2 ,

w = f(z) for some z ∈ Dz0. This will finish the proof of the theorem. To this
end define g(z) = f(z) − w, a nonconstant holomorphic function defined on
an open set containing Dz0. Two observations:

1. for z ∈ Cz0, |g(z)| > ε

2 .
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(Proof:
|g(z)| = |f(z)− w0 + (w0 − w)|

≥ |f(z)− w0| − |w0 − w|
≥ ε− |w0 − w|

> ε− ε

2
= ε

2 . )

2. |g(z0)| = |w0 − w| <
ε

2 .

Since Dz0 is closed and bounded, the continuous function |g(z)| attains its min-
imum value at some point of Dz0. The combination of (1) and (2) shows that
this minimum is not attained at any point of Cz0, and we conclude that it is at-
tained at a point z in the interior of Dz0: |z − z0| < δ. Therefore, the minimum
principle⇒ g(z) = 0. That is, f(z) = w.

QED

PROBLEM 5-3 For this problem assume the Gaussian integral from vec-
tor calculus: ∫ ∞

−∞
e−t

2
dt =

√
π.

Apply the Cauchy integral theorem to the function e−z
2

and the path

0 R

Rei
π
4

a. Take great care in showing that the line integral
∫
e−z

2
dz along the

circular arc tends to 0 as R→∞.

b. Conclude the Fresnel formulas
∫ ∞

0
cos(x2)dx =

∫ ∞
0

sin(x2)dx =
√
π

8 .
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OPEN MAPPING THEOREM bis

We continue discussing the terrific theorem, but now we give an

Elegant proof: We begin this proof with the same setup as we just did, but
now we use the counting theorem instead of the maximum principle as our
main tool. We have f(z) = w0, but now we let N = the number of times
f(z) = w0 at z = z0. That is,

N = the order of the zero of f(z)− w0 at z0.

Just for clarification, this means that the Taylor series of f(z) at z0 has the form

f(z) = w0 + cN(z − z0)N + cN+1(z − z0)N+1 + . . . ,

where cN 6= 0. In other words,

f(z0) = w0,

f (k)(z0) for 1 ≤ k ≤ N − 1,
f (N)(z0) 6= 0.

The counting theorem (page 108)⇒

1
2πi

∫
Cz0

f ′(z)
f(z)− w0

dz = N.

(We’ve applied the theorem to f − w0 rather than to f .)

f

z0 w0

radius ε

all points in f(Cz0) are out here
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Now we notice that if |w − w0| < ε, then f(z) − w is never 0 on Cz0, so the
counting theorem again implies that

1
2πi

∫
Cz0

f ′(z)
f(z)− wdz =

the number of times
f(z) = w for
|z − z0| < δ.

The left side of this equation is a continuous function of w for |w − w0| < ε,
since the denominator is never 0 for z ∈ Cz0. But it’s an integer! Therefore, it
is constant! And thus equal to its value N at z0.

CONCLUSION: for |w − w0| < ε, the equation f(z) = w has exactly N
solutions for |z − z0| < δ (counting according to multiplicity).

QED bis

Notice how much better this result is than what we previously knew! Before
we needed to assume |w − w0| <

ε

2 , but now only that |w − w0| < ε. But the

better aspect by far is that we now know the number of solutions of f(z) = w.
Not merely “at least one,” but now exactly N .

Section D: Inverse Functions
Now we focus all our attention on the case in which f(z0) = w0 just one time,
or N = 1. Then for |w − w0| < ε (in our notation), there is one and only one z
such that

f(z) = w and |z − z0| < δ.

Rough sketch

f
z0

w0

w

z
BIJECTION BETWEEN

THE SHADED
REGIONS

curve where |f(z)− w0| = ε

Thus f is locally a bijection between a neighborhood of z0 and a neighborhood
(a disc) of w0. In this situation we may say that there is an inverse function f−1
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defined near w0, giving points z near z0:

f(z) = w ↔ z = f−1(w).

Thus we have easily established an inverse function theorem for holomorphic
functions! We are now going to analyze this f−1.

First, suppose g is a holomorphic function defined near z0, and try to apply the
residue theorem to the holomorphic function

g(z)f ′(z)
f(z)− w.

So we assume g is holomorphic in a neighborhood of the closed disc Dz0 and
that |w−w0| < ε. Then the function we are considering has just one singularity
in Dz0 and it is the point (unique) where f(z) − w = 0. This is a simple pole,
so we calculate the residue to be

g(z)f ′(z)
f ′(z) = g(z).

The residue theorem gives the result

1
2πi

∫
Cz0

g(ζ)f ′(ζ)
f(ζ)− wdζ = g(z).

In particular, when g(z) = z we obtain

1
2πi

∫
Cz0

ζf ′(ζ)
f(ζ)− wdζ = z.

That gives us an “explicit” formula for f−1:

f−1(w) = 1
2πi

∫
Cz0

ζf ′(ζ)
f(ζ)− wdζ

This formula alone shows that f−1 is holomorphic!

More about this later, but now we obtain the Taylor series for f−1, centered at
w0. We simply note that for ζ ∈ Cz0,

|f(ζ)− w0| > ε,
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so that for |w − w0| < ε,

f(ζ)− w = f(ζ)− w0 − (w − w0)

= (f(ζ)− w0)
1− w − w0

f(ζ)− w0


and we have a geometric series expansion

1
f(ζ)− w =

∞∑
n=0

(w − w0)n
(f(ζ)− w0)n+1 .

Therefore,

f−1(w) =
∞∑
n=0

cn(w − w0)n,

where the Taylor coefficients are

cn = 1
2πi

∫
Cz0

ζf ′(ζ)
(f(ζ)− w0)n+1dζ

= Res
 zf ′(z)

(f(z)− w0)n+1 , z0

 .
Notice that, of course, c0 = z0.

PROBLEM 5-4

1. Apply the Lagrange-Bürmann expansion theorem (it’s coming soon)
to the function

f(z) = 1− e−z,
with f(0) = 0.

Also solve the equation explicitly near z = 0, w = 0, and write down
the Taylor series for f−1(w).

Compare these results to compute for all n ≥ 1

Res
 1

(1− e−z)n , 0
 .

2. From page 91 in Chapter 4 we have the formula

∫ ∞
0

xα−1

x+ 1dx = π

sinαπ for 0 < α < 1.
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Manipulate this formula using real change of integration variable to
find a formula for

∫ ∞
−∞

eβx

cosh xdx for − 1 < β < 1.

Express your result elegantly as
π

?? .

Continuation of the formula for f−1

We are still in the situation where f is holomorphic in a neighborhood of z0 and
f(z0) = w0 and f ′(z0) 6= 0. We’ve seen that f has a holomorphic inverse f−1

mapping w0 to z0 and defined in a neighborhood of w0.

Moreover, if g is holomorphic in a neighborhood of z0, then

z0

Cz0

g(f−1(w)) = 1
2πi

∫
Cz0

g(ζ)f ′(ζ)
f(ζ)− wdζ.

By applying geometric series to expand
1

f(ζ)− w in a power series centered at

w0, we then obtain

g(f−1(w)) =
∞∑
n=0

cn(w − w0)n,

where

cn = Res
 g(z)f ′(z)

(f(z)− w0)n+1 , z0

 .
We now make a technical adjustment in this formula by noting that

c0 = g(z0)

and for n ≥ 1
f ′

(f − w0)n+1 = − d

dz

1
n(f − w0)n

,

so that we can apply our so-called “integration by parts” residue formula from
page 91, Chapter 4 to write

cn = 1
n

Res
 g′(z)

(f(z)− w0)n
, z0

 .
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The result we have obtained goes under the name of the

LAGRANGE-BÜRMANN EXPANSION

g(f−1(w)) = g(z0) +
∞∑
n=1

cn(w − w0)n,

where

cn = 1
n

Res
 g′(z)

(f(z)− w0)n
, zo

 .
EXAMPLE: f(z) = ze−z, f(0) = 0
As f ′(0) = 1, f is indeed one-to-one near 0, and our results apply.

(Preliminary: f ′(z) = (1 − z)e−z, so f ′(1) = 0, so f is not one-to-one in
any neighborhood of 1. So, we’ll try δ = 1 for the radius of the circle in the
z-plane.)

For |z| = 1 we have |f(z)| = |e−z| = eRe z ≥ e−1, so we can take any
0 < ε < e−1 for our radius in the w-plane.

f
0 e−11

−i/e

i/e

0

radius e−1

radius 1

Then the Lagrange-Bürmann coefficients for g(z) = z and n ≥ 1 are

cn = 1
n

Res
 1

(ze−z)n , 0


= 1
n

Res
(
enz

zn
, 0
)

= 1
n
· (coefficient of zn−1 in the Maclaurin expansion of enz)

= nn−1

n(n− 1)! .
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Thus, |w| < 1
e
⇒

f−1(w) =
∞∑
n=1

nn−1

n! wn.

First few terms:

f−1(w) = w + w2 + 3
2w

3 + 8
3w

4 + 125
24 w

5 + . . . .

We fully expect this series to have radius of convergence e−1. We can verify
this directly by using the ratio test:

lim
n→∞

cn
cn+1

= lim
n→∞

nn−1

n!
(n+1)n
(n+1)!

= lim
n→∞

(n+ 1)nn−1

(n+ 1)n

= lim
n→∞

nn−1

(n+ 1)n−1

= lim
n→∞

1(
1 + 1

n

)n−1

= 1
e
.

REMARK: It appears that the above result is valid for |w| < e−1, but that it also
should apply in the limit with w ∈ R increasing to e−1, and giving the expected
z = 1. That is,

1 =
∞∑
n=1

nn−1

n! e−n

It is rather easy to verify this result, but

CHALLENGE: Verify this equation directly. (I don’t know how!)

PROBLEM 5-5 Let 1 < a < ∞ be a fixed real number. This problem is
concerned with trying to solve the equation

wza − z + 1 = 0

for z, where the complex number w is small. For w = 0 we obtain the
unique solution z = 1, and we want our solution to remain close to 1 for
small |w|.
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To fit the Lagrange-Bürmann framework we define

f(z) = z − 1
za

for z near 1,

where we use the determination of za given by

za = exp(a log z), with − π < arg z < π.

1. Prove that for |w| < (a− 1)a−1

aa
,

f−1(w) = 1 +
∞∑
n=1

1
n

 an

n− 1

wn.

2. For |w| sufficiently small, f−1(w) is close to 1, so we can define
log(f−1(w)) close to 0. Then calculate all the cn’s in the Maclaurin
series

log(f−1(w)) =
∞∑
n=1

cnw
n.

Section E: Infinite Series and Infinite Products

Now we continue our theme of using the residue theorem in various ways,
first by a discussion of evaluating certain infinite series. We shall discover a
prominent role played by the function π cot πzπ cot πzπ cotπz.

This function is holomorphic on C except for its poles at the points where
sin πz. . . namely the integers n ∈ Z. At each such n we have

Res(π cotπz, n) = Res
(
π

cosπz
sin πz , n

)

= π cos πn
π cos πn

= 1.

We’re also going to require a couple of important estimates. We’ll use the
standard coordinate representation z = x+ iy.

Re(z) = integer + 1/2: Since cot πz is periodic with period 1, we may as well
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assume z = 1
2 + iy. Then

cot πz = cot
(
π

2 + πiy

)
= − tan(πiy)

= − sin πiy
cos πiy

= −i sinh πy
cosh πy ,

so
| cotπz| = | sinh πy|

cosh πy < 1.

Im z = y with |y| large: From Problem 1-7 on page 7 we have

| cotπz|2 = | cos(πx+ πiy)|2
| sin(πx+ πiy)|2

= | cosh(iπx− πy)|2
| sinh(iπx− πy)|2

= sinh2 πy + cos2 πx

sinh2 πy + sin2 πx

≤ sinh2 πy + 1
sinh2 πy

= 1 + 1
sinh2 πy

< 2 (say),

since sinh2πy →∞ as |y| → ∞.

We are going to be interested in this rectangular path, which we call γN :

iN

(N + 1
2)π

−iN

−(N + 1
2)π

0
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For large N we have for all z ∈ γN that

| cotπz| <
√

2,

so that
|π cotπz| < 5.

Now consider any holomorphic function of f on C with finitely many isolated
singularities, which we’ll designate generically by ζ . Furthermore, suppose
that f(z)→ 0 as z →∞ at a rate at least as fast as |z|−2:

|f(z)| ≤ C

|z|2
for large |z|.

We then apply the residue theorem to the product

f(z)π cotπz

inside γN for large N , large enough to contain all the singularities of f . We
obtain

1
2πi

∫
γN
f(z)π cotπz dz

=
∑

z inside γN
Res(f(z)π cotπz, z)

=
N∑

n=−N
Res(f(z)π cot πz, n) +

∑
ζ /∈Z

Res(f(z)π cot πz, ζ).

On the left side of the equation we have an estimate∣∣∣∣∣
∫
γN
f(z)π cotπz dz

∣∣∣∣∣ ≤ C

N 2 · 5 · length of γN

= 5C
N 2 · ((2N + 1)π + 2N)

→ 0 as N →∞.

Thus, when N →∞ we obtain

0 = lim
N→∞

N∑
n=−N

Res(f(z)π cotπz, n) +
∑
ζ /∈Z

Res(f(z)π cot πz, ζ)

Therefore, we write briefly

F
∞∑

n=−∞
Res(f(z)π cotπz, n) = −

∑
ζ /∈Z

Res(f(z)π cot πz, ζ)
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EXAMPLE: f(z) = 1
z2 + a2 , where we assume ia /∈ Z. Our conditions are

met, so we obtain immediately
∞∑

n=−∞

1
n2 + a2 = −Res

(
π cot πz
z2 + a2 , ia

)
− Res

(
π cot πz
z2 + a2 ,−ia

)

= −π cotπia
2ia − π cot(−πia)

−2ia
= −π cotπia

ia

= −π cos πia
ia sin πia

= −π cosh πa
iai sinh πa

= π cosh πa
a sinh πa .

Thus,
∞∑

n=−∞

1
n2 + a2 = π coth πa

a

P.S. We can let a→ 0 to obtain

2
∞∑
n=1

1
n2 + a2 = π coth πa

a
− 1
a2

= π cosh πa
a sinh πa −

1
a2

= πa cosh πa− sinh πa
a2 sinh πa

= πa cosh πa− sinh πa
πa3 · πa3

a2 sinh πa,

and l’Hôpital’s rule gives progressive fractions for a→ 0:

πa cosh πa− sinh πa
πa3 ,

π cosh πa+ π2a sinh πa− π cosh πa
3πa2 ,

π2 sinh πa
3πa ,

π3 cosh πa
3π ,

π2

3 .
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Thus, we find for a→ 0,
∞∑
n=1

1
n2 = π2

6
REMARK: We’ll soon obtain the last result more easily, and at the same time

∞∑
n=1

1
n4 = π4

90 ,
∞∑
n=1

1
n6 = π6

945 ,

and all the rest:
∞∑
n=1

1
n2k !

Now we apply F to the holomorphic function

f(z) = 1
z2k ,

where k is any positive integer. Thus, we obtain immediately
∞∑

n=−∞
Res

(
π cotπz
z2k , n

)
= 0.

For n 6= 0 we have simple poles, so we obtain
∑
n 6=0

1
n2k = −Res

(
π cot πz
z2k , 0

)
.

Since 2k is even, we can also write
∑
n=1

1
n2k = −1

2 Res
(
π cotπz
z2k , 0

)
.

The function in question has a pole of order 2k + 1 at 0, which would make it
difficult to compute the residue. However, we have a formula already for the
Laurent series of cot z! It’s form Problem 3-4:

cot z =
∞∑
k=0

B2k

(2k)!(−1)k22kz2k−1. (Bernoulli numbers)

Thus, the right side of the formula we have obtained equals

−1
2 · coefficient of

1
z

in
π cotπz
z2k

= −1
2 · coefficient of z2k−1 in π cotπz

= −1
2 · π

B2k

(2k)!(−1)k22kπ2k−1.
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Thus, we have derived

∞∑
n=1

1
n2k =

B2k(−1)k−1

(2k)! 22k−1
 π2k

(Notice that this shows in another way that B2k(−1)k−1 > 0 for k ≥ 1.)

DEFINITION: the infinite series on the left side are special values of the
Riemann zeta function:

ζ(z) =
∞∑
n=1

1
nz

converges absolutely if Re z > 1.

(In this formula n−z = exp(−z lnn) and we use lnn ∈ R.)

SOME VALUES: from page 111 we compute

ζ(2) = π2

6

ζ(4) = π4

90

ζ(6) = π6

945

ζ(8) = π8

9450

ζ(10) = π10

93555
REMARK: The numbers ζ(3), ζ(5), etc. are not well understood. A startling
result was proved by Roger Apéry in 1979:

ζ(3) is irrational.

In that regard
∞∑
n=0

1
(2k + 1)3 = 7

8ζ(3),

but we can actually compute

∞∑
n=0

(−1)k
(2k + 1)3 = π3

32 . (we’ll prove this soon)

Another calculation: We now apply our formula to the function

f(z) = 1
z(z − a) ,
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where a is any complex number other than an integer. From F we obtain
immediately

∞∑
n=−∞

Res
 π cotπz
z(z − a) , n

 = −Res
 π cot πz
z(z − a) , a


= −π cotπa

a
.

Therefore,
∑
n 6=0

1
n(n− a) + Res

 π cot πz
z(z − a) , 0

 = −π cotπa
a

.

This remaining residue has a pole of order 2, but we can write
1

z(z − a) =
( 1
z − a

− 1
z

) 1
a

so, we obtain

Res
 π cotπz
z(z − a) , 0

 = 1
a

[
Res

(
π cotπz
z − a

, 0
)
− Res

(
π cotπz

z
, 0
)]

= 1
a

[
−1
a
− 0

]
(0, because it’s an even function)

= − 1
a2

So, we have ∑
n 6=0

1
n(n− a) −

1
a2 = −π cot πa

a
.

DIFFERENT VIEWPOINT: regard this as a formula for cot. Thus

π cotπa = 1
a

+
∑
n 6=0

a

n(a− n) .

Adjustment:

π cot πa = 1
a

+ lim
N→∞

N∑
n=−N
n6=0

a

n(a− n)

= 1
a

+ lim
N→∞

N∑
n=−N
n6=0

(1
n

+ 1
a− n

)

= 1
a

+ lim
N→∞

N∑
n=−N

( 1
a− n

)

= lim
N→∞

N∑
n=−N

( 1
a− n

)
.
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We rewrite this formula as

π cotπz =
∞∑

n=−∞

1
z − n

with the assumption that z 6= integer and the doubly infinite series is taken in a
“principle value” sense

lim
N→∞

N∑
n=−N

( 1
z − n

)
.

This formula is a dramatic display of two things about π cotπz:

1. simple pole at each n with residue 1,

2. periodic with period 1.

(If we knew nothing about cot we would be tempted to concoct the infinite
series as a function satisfying these two conditions!)

PRODUCT REPRESENTATION OF SINE:
We begin with the preceding formula

π cotπz = lim
N→∞

N∑
n=−N

1
z − n

.

This is valid for all z ∈ C \ Z. First, we rewrite it as

π cotπz − 1
z

= lim
N→∞

N∑
n=−N
n 6=0

1
z − n

= lim
N→∞

N∑
n=1

1
z − n

+
N∑
n=1

1
z + n

(changed n to −n)

=
∞∑
n=1

( 1
z − n

+ 1
z + n

)

=
∞∑
n=1

( 1
n+ z

− 1
n− z

)
.

We prepare to integrate by first noting that the left side equals

π cos πz
sin πz −

1
z

= d

dz
(log sin πz − log z)

= d

dz
log sin πz

z

= d

dz
log sin πz

πz
;
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we’ve supplied an extra π so that not only is the quotient
sin πz
πz

holomorphic

near 0 (removable singularity), but also equals 1 at z = 0. We now integrate
from 0 to z, avoiding all integers except 0. We obtain

log sin πz
πz

=
∞∑
n=1

[
log

(
1 + z

n

)
+ log

(
1− z

n

)]
.

There’s a great deal of ambiguity in this “equation,” all having to do with the
fact that the choice of logarithm involves additive constants 2Nπi for integers
N . For z = 0 both sides are 0 (to within 2Nπi).

Notice, however, that for large n we have terms for which the principle value
of log may be used, and the corresponding Maclaurin expansions then give

log
(

1 + z

n

)
= z

n
− z2

2n2 + . . . ,

log
(

1− z

n

)
= −z

n
− z2

2n2 + . . . ,

so that the sum equals

0− z2

n2 + . . .

and the series converges.

Now we exponentiate, thus wiping away all ambiguity, since e2Nπi = 1. Thus,
we obtain

sin πz
πz

= lim
N→∞

N∏
n=1

(
1 + z

n

) (
1− z

n

)

= lim
N→∞

N∏
n=1

1− z2

n2


=:

∞∏
n=1

1− z2

n2

 .
Therefore,

sin πz = πz
∞∏
n=1

1− z2

n2

 Euler product

for sine

This amazing equation displays elegantly that sin πz equals 0 precisely when
z ∈ Z, and “factors” sin πz as if it were a polynomial divisible by z − n for all
n ∈ Z.



.SECTION E: INFINITE SERIES AND INFINITE PRODUCTS 141

When we let z = 1
2 we obtain the equations

1 = π

2
∞∏
n=1

(
1− 1

4n2

)
,

so that

2
π

=
∞∏
n=1

4n2 − 1
4n2


=
∞∏
n=1

(2n− 1)(2n+ 2)
2n · 2n

 ,
or we might write

2
π

= 1
2 ·

3
2 ·

3
4 ·

5
4 ·

5
6 ·

7
6 · . . . ,

a formula that has the name Wallis’ product (1655).

A brief treatment of infinite products in general.
For given complex numbers c1, c2, . . . we want to define

∞∏
n=1

cn = lim
N→∞

N∏
n=1

cn.

We must take reasonable care in discussing this situation.

Case 1: Assume that for all n, cn 6= 0. We then institute the requirement that
the limit we have given be nonzero. It then necessarily follows that

lim
n→∞ cn = 1.

(Converse is false: consider cn = n

n+ 1 so that
N∏
n=1

cn = 1
N + 1 → 0.)

We can then compute that

log
N∏
n=1

cn =
N∑
n=1

log cn

and can assume that for large n we use the principle determination for log cn.
Then we also have the
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Proposition: Assume cn 6= 0 for all n and that cn → 1. Then
∞∏
n=1

cn exists

and is not 0⇔
∞∑
n=1

log cn converges.

General case: Assume only that

lim
n→∞ cn = 1

Then for sufficiently large n0, cn 6= 0 for n0 < n <∞, and we can use Case 1.
So, we say that the infinite product

∞∏
n=1

cn

converges if
∞∏

n=n0+1
cn 6= 0,

and we define
∞∏
n=1

cn =
 n0∏
n=1

cn

 ∞∏
n=n0+1

cn

 .
(thus,

∞∏
n=1

cn = 0⇔ some cn = 0. Therefore, convergent infinite products have

very obvious zeroes!)

PROBLEM 5-6 The technique described at the beginning of this section,
page 132, can be applied with π cotπz replaced by π csc πz. Same as-
sumptions on f . It’s easy to show that π csc πz is bounded on γN so the
line integral on γN tends to 0 as N →∞. You need not prove those facts.

Apply all of that to the function f(z) = 1
(z − a)3 , where a is not an integer,

and this find the sum of the infinite series

∞∑
n=−∞

(−1)n
(n− a)3 .

Now set a = 1
2 and thus calculate

∞∑
n=0

(−1)n
(2n+ 1)3 .
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PROBLEM 5-7

1. Calculate
∞∏
n=2

(
1− 1

n2

)
.

2. Calculate
∞∏
n=2

n3 + 1
n3 − 1

.

3. For |z| < 1 calculate
∞∏
n=0

(
1 + z2n) .

4. Prove that for all z ∈ C

cosπz =
∞∏
n=0

1− z2(
n+ 1

2
)2



HINT:
easy if you
are clever!





Chapter 6

The Gamma Function
This chapter introduces one of the most important “special functions” in all of
mathematics. It is always called by the capital Greek letter gamma, just as a
historical accident.

Section A: Development
Here’s what I’ll call a basic definition: Γ is the function defined by

(1) Γ(z) =
∫ ∞
0
e−ttz−1dt for Re z > 0.

In this definition we use the power tz−1 with ln t ∈ R. The restriction on
the real part of z is to insure that the integral is (absolutely) convergent
near t = 0, as

∫ 1

0

∣∣∣tz−1∣∣∣ dt =
∫ 1

0
tRe z−1dt <∞⇔ Re z > 0.

(The convergence for large t is assured, as e−t dominates any power of
t.)

(2) Recursion Γ(z + 1) = zΓ(z) The proof is an easy exercise in inte-
gration by parts:

Γ(z + 1) =
∫ ∞

0
tzd(−e−t)

= −tze−t
∣∣∣∞0 +

∫ ∞
0
e−td(tz)

= 0 +
∫ ∞

0
e−tztz−1dt

= zΓ(z).

145
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(3) Γ(n+ 1) = n! for n = 0, 1, 2, . . . Follows from (1), since

Γ(1) =
∫ ∞

0
e−tdt = 1.

(4) Analytic continuation: The recursion enables us to define Γ(z) for all
z ∈ C except 0,−1,−2, . . .. For we can define

Γ(z) = Γ(z + 1)
z

for Re z > −1, etc.

And then (2) continues to hold for all z except 0,−1,−2, . . ..

(5) Poles: Thus, for example we see that Γ has a pole at 0, and Res(Γ, 0) = 1.
Thus Γ is a holomorphic function on all of C except for poles at
0,−1,−2,−3, . . .. It’s given by the integral (1) only for Re z > 0.

(6) Another method for analytic continuation: For Re z > 0 we have the for-
mula

Γ(z) =
∫ 1

0
e−ttz−1dt+

∫ ∞
1
e−ttz−1dt.

The second integral is actually an entire holomorphic function, since
t ≥ 1 allows any value for z. The first integral can be rewritten, still for
Re z > 0, as ∫ 1

0
e−ttz−1dt =

∫ 1

0

∞∑
n=0

(−1)ntn
n! tz−1dt

=
∞∑
n=0

(−1)n
n!

∫ 1

0
tz+n−1dt

=
∞∑
n=0

(−1)n
n!

1
z + n

tz+n
∣∣∣∣1
0

=
∞∑
n=0

(−1)n
n!

1
z + n

.

We have used Re z > 0 throughout the computation, but the expression
on the last line needs no such restriction! Therefore, analytic continua-
tion gives

Γ(z) =
∞∑
n=0

(−1)n
n!

1
z + n

+
∫ ∞

1
e−ttz−1dt,

valid for all z ∈ C except 0,−1,−2, . . .. And we immediately read off
the residues at these (simple) poles:

Res(Γ,−n) = (−1)n
n!

for all n = 0, 1, 2, . . ..
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Section B: The Beta Function
(7) DEFINITION: For Re a > 0 and Re b > 0 we define

B(a, b) = 2
∫ π

2

0
sin2a−1 θ cos2b−1 θdθ.

Change variable sin θ =
√
t to get also

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt.

Note that B
(1

2 ,
1
2

)
= π.

(8) Beta in terms of gamma
In the integral formula for Γ replace t by x2 to get

Γ(z) = 2
∫ ∞

0
e−x

2
x2z−1dx for Re z > 0.

Then we multiply

Γ(a)Γ(b) = 4
∫ ∞

0
e−x

2
x2a−1dx ·

∫ ∞
0
e−x

2
x2b−1dx

= 4
∫ ∞

0
e−y

2
y2a−1dy ·

∫ ∞
0
e−x

2
x2b−1dx

Fubini= 4
∫ ∞

0

∫ ∞
0
e−x

2−y2
y2a−1x2b−1dxdy.

Now employ polar coordinates x = r cos θ, y = r sin θ, and the calculus
formula dxdy = rdrdθ, to get

y

x

Γ(a)Γ(b) = 4
∫ π

2

0

∫ ∞
0
e−r

2
r2a−1 sin2a−1 θ r2b−1 cos2b−1 θ rdrdθ

= 2
∫ π

2

0
sin2a−1 θ cos2b−1 θ dθ · 2

∫ ∞
0
e−r

2
r2(a+b)−1dr

= B(a, b)Γ(a+ b).
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Thus,

B(a, b) = Γ(a)Γ(b)
Γ(a+ b)

(9) Gaussian integral: Let a = b = 1
2 to get π = Γ

(1
2

)2
. That is,

Γ
(1

2

)
=
√
π

That is, from (8),
2
∫ ∞
0
e−x

2
dx =

√
π,

or in other words, ∫ ∞
−∞

e−x
2
dx =

√
π

(REMARK: The technique in (8) comes from the standard multivariate
calculus method for evaluating the Gaussian integral, so it’s no surprise
that (9) follows from (8).)

(10) Another amazing formula: Now we assume 0 < a < 1 and we take
b = 1− a. Then

Γ(a)Γ(1− a) = B(a, 1− a)

= 2
∫ π

2

0
sin2a−1 θ cos1−2a θ dθ

= 2
∫ π

2

0
tan2a−1 θ dθ.

Now change variables:

t = tan θ, so dt = sec2 θ dθ = (1 + tan2 θ)dθ = (1 + t2)dθ,

and we find

Γ(a)Γ(1− a) = 2
∫ ∞

0
t2a−1 dt

t2 + 1
t=
√
x= 2

∫ ∞
0

xa−
1
2

x+ 1 ·
1

2
√
x
dx

=
∫ ∞

0

xa−1

x+ 1dx
!= π

sin πa (page 91, Ch. 4)
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All functions in sight are holomorphic, so we obtain this formula not just
for real a, 0 < a < 1, but also

Γ(z)Γ(1− z) = π

sin πz

for all z ∈ C, z 6= integer. Notice that the poles of
π

sin πz at z =
1, 2, 3, . . . come from the factor Γ(1−z), and its poles at z = 0,−1,−2, . . .
come from the factor Γ(z). We also retrieve the residue calculation for
z = −n, where n = 0, 1, 2, . . .:

Res(Γ(z)Γ(1− z),−n) = Res
(

π

sin πz ,−n
)

;

Res(Γ(z),−n) · Γ(1 + n) = 1
cosπn = (−1)n;

Res(Γ,−n) = (−1)n
n! , as in (5).

(11) Γ(z) is never 0: (follows from (9)) Therefore,

1
Γ(z)is an entire holomorphic function and has zeros

only at 0,−1,−2, . . . , all of which are simple.

Section C: Infinite Product Representation
We begin with the original definition for Re z > 0:

Γ(z) =
∫ ∞
0
e−ttz−1dt.

We use the basic calculus fact

e−t = lim
n→∞

(
1− t

n

)n
.

We skip the (rather easy) verification of passing the limit across the integral
sign, so here’s what we find:

Γ(z) = lim
n→∞

∫ n
0

(
1− t

n

)n
tz−1dt.
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Let n be fixed and change variable with t = ns:∫ n
0

(
1− t

n

)n
tz−1dt =

∫ 1

0
(1− s)n(ns)z−1nds

= nz
∫ 1

0
(1− s)nsz−1ds

= nzB(n+ 1, z)

= nz
Γ(n+ 1)Γ(z)
Γ(n+ 1 + z)

= nzn! Γ(z)
Γ(n+ 1 + z)

= nzn! 1
(n+ z)(n− 1 + z) · · · (1 + z)z .

Therefore, we conclude

Γ(z) = lim
n→∞

nzn!
z(1 + z) · · · (n+ z)

This formula has been derived under the assumption that Re z > 0. However,
the left side is holomorphic for all z except 0,−1,−2, . . ., and it is possible to
prove the same is true for the right side. Therefore, the principle of analytic
continuation implies that formula is actually valid for all z ∈ C except the
nonpositive integers.

This formula is not quite an infinite product, and we now show how to arrange
it as such a product. So that we don’t have to continue to worry about the poles,
let’s rewrite it this way:

1
Γ(z) = lim

n→∞
z(1 + z) · · · (n+ z)

nzn!

= lim
n→∞n

−z · z · 1 + z

1 · 2 + z

2 · . . . · n+ z

n

= lim
n→∞n

−zz
n∏
k=1

(
1 + z

k

)
.

Almost there! However, n−z has no limit as n → ∞, nor does that finite
product. In fact,

∞∏
k=1

(
1 + z

k

)

diverges, because the infinite series
∞∑
k=1

log
(

1 + z

k

)
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diverges. This is essentially because log
(

1 + z

k

)
≈ z

k
for large k, and the

harmonic series
∞∑
k=1

1
k

diverges.

(Example:
n∏
k=1

(
1 + 1

k

)
= 2 · 32 ·

4
3 · · ·

n+ 1
n

= n+ 1→∞. But it’s interesting

that alternating signs give

∞∏
k=1

1 + (−1)k−1

k

 = 2 · 12 ·
4
3 ·

3
4 ·

6
5 ·

5
6 · · ·

so that
∞∏
k=1

1 + (−1)k−1

k

 = 1.)

This divergence can be fixed by multiplying the kth factor by e−
z
k . For we

have the Maclaurin series (1 + ε)e−ε = 1 − ε2

2 + . . ., so that
(

1 + z

k

)
e−

z
k =

1− z2

2k2 + . . . and the series
∞∑
k=1

z2

2k2 converges.

Thus we obtain

1
Γ(z) = z lim

n→∞n
−z ·

n∏
k=1

(
1 + z

k

)
e−

z
k ·

n∏
k=1

e
z
k

= z lim
n→∞ e

−z lnn ·
n∏
k=1

e
z
k ·

n∏
k=1

(
1 + z

k

)
e−

z
k

= z lim
n→∞ e

z(1+ 1
2 +...+ 1

n−lnn) ·
n∏
k=1

(
1 + z

k

)
e−

z
k .

Now we use the classical “Euler constant,” also called the “Euler-Mascheroni
constant,”

γ := lim
n→∞

(
1 + 1

2 + . . .+ 1
n
− lnn

)
.

We’ve therefore derived the infinite product we were seeking:

1
Γ(z) = zeγz

∞∏
n=1

(
1 + z

n

)
e−

z
n

Personal note: I first learned about Γ(z) around 1960, from studying the mas-
terful A Course of Modern Analysis by Whittaker and Watson, 1902. Their
Chapter XII starts with the formula we’ve just derived as their definition of
Γ(z).
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P.S. γ = 0.5772157 . . . and no one knows whether γ is a rational number! Its
decimal expansion has been calculated to over 29 billion digits!

PROBLEM 6-1

1. Prove that Γ′(1) =
∫ ∞

0
e−t ln tdt.

2. Prove that Γ′(1) = −γ.

3. Prove that for all nonzero real y, |Γ(iy)|2 = π

y sinh πy .

Section D: Gauss’ Multiplication Formula

We begin with the infinite product representation of
1

Γ(z) given at the end of

the preceding section:

1
Γ(z) = zeyz

∞∏
n=1

(
1 + z

n

)
e−

z
n .

Then compute log of both sides, producing

− log Γ(z) = log z + γz +
∞∑
n=1

(
log

(
1 + z

n

)
− z

n

)
;

we need not specify which values of log we are using (except that the conver-

gence of the series requires log
(

1 + z

n

)
to have limit 0 as n→∞). The reason

is we now differentiate with respect to z, removing all additive constants:

−(log Γ(z))′ = 1
z

+ γ +
∞∑
n=1

( 1
n+ z

− 1
n

)
.

One more derivative produces

(log Γ(z))′′ = 1
z2 +

∞∑
n=1

1
(n+ z)2

=
∞∑
n=0

1
(n+ z)2 . F

Now let N be a fixed integer ≥ 2. We obtain easily

(log Γ(Nz))′′ =
∞∑
n=0

N 2

(n+Nz)2 .
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Rewrite this as

(log Γ(Nz))′′ =
∞∑
n=0

1(
n
N + z

)2 . FF

We also obtain from F that for any integer 0 ≤ k ≤ N − 1(
log Γ

(
z + k

N

))′′
=
∞∑
n=0

1(
n+ k

N + z
)2 .

Therefore, (
log Γ

(
z + k

N

))′′
=

∞∑
m=0

1(
mN+k
N + z

)2 . FFF

Observation: the integers mN + k for m ≥ 0 and 0 ≤ k ≤ N − 1 are precisely
the integers n ≥ 0 counted exactly one time. We conclude that

(log Γ(Nz))′′ =
N−1∑
m=0

(
log

(
Γ
(
z + k

N

)))′′
.

Integrate twice to obtain

log Γ(Nz) =
N−1∑
k=0

log
(

Γ
(
z + k

N

))
+ c1z + c2

for some c1 and c2 both independent of z.

Now you may finish the development:

PROBLEM 6-2

1. Prove that Γ(Nz) = cec1z
N−1∏
k=0

Γ
(
z + k

N

)
.

2. Now replace z by z+ 1 and then divide the two equations. Conclude
that

ec1 = NN .

Γ(Nz) = cNNz
N−1∏
k=0

Γ
(
z + k

N

)
.

3. Now let z = 1
N

to obtain

1 = cN
N∏
j=1

Γ
(
j

N

)
.
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4. Rewrite in the form

1 = cN
N−1∏
j=0

Γ
(

1− j

N

)
.

5. Multiply to obtain

1 = c2N 2
N−1∏
j=1

Γ
(
j

N

)
Γ
(

1− j

N

)
.

6. Conclude that

1 = c2N 2 πN−1∏N−1
j=1 sin πj

N

.

7. Therefore, show that

1 = c2N(2π)N−1.

8. Therefore, conclude

Γ(Nz) = (2π) 1−N
2 NNz− 1

2
N−1∏
k=0

Γ
(
z + k

N

)

This is known as the Gauss Multiplication Formula.

PROBLEM 6-3 When N = 2 we call that result the Gauss duplication
formula

Γ(2z) = 1√
2π

22z− 1
2 Γ(z)Γ

(
z + 1

2

)
.

Show that if z is a positive integer, then this formula is elementary if we

know Γ
(1

2

)
=
√
π.

Section E: Another Representation of Γ

Again, we work using the fact that
1

Γ(z) is an entire function of z. Hermann

Hankel, a contemporary of Riemann, found an integral representation of
1
Γ

valid for all z. Here is his method.
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Let z ∈ C be fixed. Consider the holomorphic function of w given by

f(w) = eww−z, where − π < argw < π.

That is, we are using the principle value of argw. Then

|f(w)| = eRe(w)|w−z|,

so f tends to 0 exponentially as Re(w)→ −∞ and Im(w) remains bounded.

As a result, if γ is any curve of the following sort

then we can perform the integral

I(z) := 1
2πi

∫
γ
eww−zdw.

Here is the result that we are going to prove:

THEOREM:
1

Γ(z) = 1
2πi

∫
γ
eww−zdw

for any such curve γ.

REMARK: This terrific result displays the entire function
1

Γ(z) in terms of the

entire functions
w−z = e−(logw)z.

Thus I(z) and
1

Γ(z) are both entire functions.
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Proof: It suffices to give the proof for Re(z) < 1, thanks to analytic continua-
tion. Cauchy’s theorem and the exponential decay of ew as Re(w) → ∞ show
that the integral I(z) is independent of the choice of γ. Therefore, it’s up to us
to choose a convenient γ. Let ε > 0 and chooce γ = γε as shown:

0
ε

Then
2πiI(z) =

∫ −ε
−∞

argw=−π

. . . dw +
∫
|w|=ε

. . . dw +
∫ −∞
−ε

argw=π

. . . dw.

The middle of these three integrals is∫
|w|=z

eww−zdw.

We now show this has limit 0 as ε → 0: first, ew certainly has limit 1. The
crucial term is

w−z = e−z logw

= e−(x+iy)(log ε+i logw),

so

|w−z| = e−x log ε+y argw

= ε−xey argw

≤ ε−xe|y|π.

Thus, this middle integral is bounded by a constant times ε−x · 2πε→ 0 (since
x < 1).

Therefore, as I(z) doesn’t actually depend on ε, we can let ε→ 0 to find that

2πiI(z) =
∫ 0

−∞
argw=−π

eww−zdw +
∫ −∞
0

argw=π

e2w−zdw.
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Let t = −w. Then

2πiI(z) =
∫ 0

∞
argw=−π

e−te−z logw(−dt) +
∫ ∞
0

argw=π

e−te−z logw(−dt)

=
∫ 0

∞
e−te−z(log t−iπ)(−dt) +

∫ ∞
0
e−te−z(log t+iπ)(−dt)

=
∫ ∞

0
e−te−z log t (eiπz − e−iπz) dt

= 2i sin πz
∫ ∞
0
e−tt−zdt

= 2i sin πzΓ(1− z) (since Re(1− z) > 0).

Therefore,

I(z) = sin πz
π

Γ(1− z)

= 1
Γ(z)

QED

Section F: The Bohr-Mollerup theorem
This relatively recent (1922) theorem is the work of two mathematicians at the
University of Copenhagen, Harald Bohr and Johannes Mollerup. It was pub-
lished in Laerebog i Kompleks Analyse vol. III. Harald Bohr was a younger
brother of the famous physicist Niels Bohr.

I first heard about this theorem in the splendid 39-page book by Emil Artin, The
Gamma Function, originally published in 1931 as Einführung in die Theorie
der Gammafunktion.

The theorem deals with the concept of positive functions on R which are log convex;
f is log convex if ln f(x) is convex.

THEOREM: Γ(x) is log convex for 0 < x <∞.

Proof: Γ is a C∞ function on R, so it suffices to prove that (ln Γ)′′ ≥ 0. Now

(ln Γ)′ = Γ′
Γ ,
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so we need to show Γ′
Γ

′ = ΓΓ′′ − (Γ′)2

Γ2 ≥ 0.

That is,
(Γ′)2 ≤ ΓΓ′′.

Now

Γ(x) =
∫ ∞

0
eittx−1dt,

Γ′(x) =
∫ ∞

0
e−ttx−1 ln tdt,

Γ′′(x) =
∫ ∞

0
e−ttx−1 (ln t)2 dt.

This leads one to introduce an inner product for real valued functions on (0,∞):

〈u, v〉 :=
∫ ∞

0
e−ttx−1u(t)v(t)dt.

Thus we should prove

〈1, ln t〉2 ≤ 〈1, 1〉〈ln t, ln t〉.

Hah! This is the Cauchy-Schwarz inequality!
QED

Here, then, is the

Bohr-Mollerup theorem: Let (0,∞) f→ (0,∞) be a function with three
properties:

f(x+ 1) = xf(x) for 0 < x <∞,
f(1) = 1,
f is log convex.

Then f = Γ.

Proof: We’ll use another characterization of convex functions: the secant lines
of their graphs increase in slope as they move from left to right.

Let 0 < x ≤ 1 be fixed, and consider integers n ≥ 1. Then examine these three
intervals:
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n n+ 1 n+ 2n+ 1 + x

Then ln f(x) is convex, so

ln f(n+ 1)− ln f(n)
1 ≤ ln f(n+ 1 + x)− ln f(n+ 1)

x

≤ ln f(n+ 2)− ln f(n+ 1)
1 .

Therefore,

lnn ≤ ln f(n+ 1 + x)− ln f(n+ 1)
x

≤ ln(n+ 1). (F)

We also have
f(n+ 1) = n!

Therefore, multiply F by x to obtain

x lnn ≤ ln f(n+ 1 + x)− lnn! ≤ x ln(n+ 1).

Add lnn! to obtain

x lnn+ lnn! ≤ ln f(n+ 1 + x) ≤ x ln(n+ 1) + lnn!

Exponentiate:
nxn! ≤ f(n+ 1 + x) ≤ (n+ 1)xn!

Since

f(n+ 1 + x) = (n+ x)f(n+ x) = . . .

= (n+ x) . . . (1 + x)xf(x),

we have

nxn!
x(x+ 1) . . . (x+ n) ≤ f(x) ≤ (n+ 1)xn!

x(x+ 1) . . . (x+ n) .
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Rewrite:
nxn!

x(x+ 1) . . . (x+ n) ≤ f(x) ≤ nxn!
x(x+ 1) . . . (x+ n) ·

(
1 + 1

n

)x
.

Now we take the limit as n→∞. Since the extra factor
(

1 + 1
n

)x
has limit 1,

the two inequalities show that the limits exist as n→∞ and are equal to f(x)
for any 0 < x ≤ 1:

f(x) = lim
n→∞

nxn!
x(x+ 1) . . . (x+ n) . (FF)

And since Γ itself is log convex, we have

f(x) = Γ(x) = lim
n→∞

nxn!
x(x+ 1) . . . (x+ n) for 0 < x ≤ 1.

It’s very easy to check that if the limit in FF exists for x, then it also exists for
x + 1, and equals x times the limit for x. Thus, it satisfies exactly the property
f(x+ 1) = xf(x). Therefore FF holds for all x > 0. Therefore, we see that

f(x) = Γ(x) = lim
n→∞

nxn!
x(x+ 1) . . . (x+ n) for 0 < x < 1.

QED

That formula is very familiar to us, as it appears in Section C. But we did not
use it in the proof of Bohr-Mollerup. Instead, we derived the expression for the
log convex f and then used the log convexity of Γ.

Here is an illustration of the use of Bohr-Mollerop:

PROBLEM 6-2 outlines a proof of the Gauss multiplication formula. Here’s
another proof which starts with the function

f(z) := N z
N−1∏
k=0

Γ
(
z + k

N

)
.

We restrict attention to z = x ∈ R, and observe two things:

1.

f(x+ 1) = Nx+1
N−1∏
k=0

Γ
(
x+ 1 + k

N

)

= Nx+1
N∏
j=1

Γ
(
x+ j

N

)
,
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so we see

f(x+ 1)
f(x) = N

Γ
(
x+N
N

)
Γ
(
x
N

)
= N

Γ
(
x
N + 1

)
Γ
(
x
N

)
= N

x

N
= x;

thus f(x+ 1) = xf(x).

2.

ln f(x) = x lnN +
N−1∑
k=0

ln Γ
(
x+ k

N

)
,

a sum of convex functions of x. Thus, f is log convex.

∴ Bohr-Mollorup⇒ f

f(1) = Γ. I.e.,

f(x) = f(1)Γ(x).

Finally, we need to calculate f(1). By definition,

f(1) = N
N−1∏
k=0

Γ
(1 + k

N

)

= N
N∏
j=1

Γ
(
j

N

)
= N

N−1∏
j=1

Γ
(
j

N

)

j→N−j= N
N−1∏
j=1

Γ
(

1− j

N

)
.

∴

f(1)2 = N 2
N−1∏
j=1

Γ
(
j

N

)
Γ
(

1− j

N

)
.

We use
Γ(z)Γ(1− z) = π

sin πz
to get

f(1)2 = N 2πN−1
N−1∏
j=1

1
sin πj

N

= N 2πN−1

N
2N−1
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by PROBLEM 1-9 (5). So we find

f(1)2 = NπN−12N−1

and
f(1) = N

1
2 (2π)N−1

2 .

∴
f(x) = N

1
2 (2π)N−1

2 Γ(x).
∴

Γ(x) = N−
1
2 (2π) 1−N

2 Nx
N−1∏
k=0

Γ
(
x+ k

N

)
.

Finally, replace x by Nx:

Γ(Nx) = (2π) 1−N
2 NNx− 1

2
N−1∏
k=0

Γ
(
x+ k

N

)
.

QED



Chapter 7

Conformal Transformations
We introduced this topic in Section D of Chapter 2, but now we want to cover
it in much more detail. In order to make it clear, here is the

DEFINITION: Let D1 and D2 be open subsets of C, and consider a function

D1
f−→ D2.

Then f is a conformal transformation if f is a bijection from D1 to D2 (thus f
is an injection and f(D1) = D2) such that f is holomorphic and its inverse

D2
f−1
−→ D1

is also holomorphic.

As we noted in Chapter 3, f is angle preserving — hence the adjective conformal.

We begin with a very reasonable result, but whose proof seems quite involved:

Section A: Conformal Transformations of C

THEOREM: The conformal transformations C f−→ C are precisely the
functions of the form f(z) = az + b, where a 6= 0 and b are constants.

Proof:

Step 1: It must be true that lim
z→∞ f(z) =∞. To show this, letA be any (large)

positive number. Since f−1 is continuous, then it must be bounded when

163
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restricted to the closed disc |w| ≤ A. (Heine-Borel theorem) Thus, there
exists a B > 0 such that

|w| ≤ A⇒
∣∣∣f−1(w)

∣∣∣ ≤ B.

Replace w by f(z):

|f(z)| ≤ A⇒ |z| ≤ B.

The contrapositive statement is

|z| > B ⇒ |f(z)| > A.

As A is arbitrary, Step 1 is established.

Step 2: Define

g(z) = 1
f
(1
z

) for small |z|.

Then g is holomorphic for small z 6= 0, and from Step 1

lim
z→0

g(z) = 0.

Thus the isolated singularity of g at 0 is removed by defining g(0) = 0.
(Riemann’s removable singularity theorem)

Step 3: Since f is injective, so is g. Therefore,

g′(0) 6= 0.

Therefore, the Maclaurin series for g has the form

g(z) = Cz + . . . and C 6= 0.

Therefore,

|g(z)| ≥ D|z| for all small z, where D > 0.

Therefore,

|f(z)| = 1∣∣∣g (1
z

)∣∣∣ ≤
|z|
D

for large |z|.

Step 4: We apply the Cauchy integral formula:

f(z) = 1
2πi

∫
|ζ|=R

f(ζ)
ζ − z

dζ for all |z| < R.
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Differentiate twice:

f ′′(z) = 2!
2πi

∫
|z|=R

f(ζ)
(ζ − z)3dζ.

Estimate:

|f ′′(z)| ≤ 2
2π

∫
|ζ|=R

|f(ζ)|
|ζ − z|3

|dζ|

≤ 1
π

∫
|ζ|=R

|ζ||dζ|
D(|ζ| − |z|)3

= 1
Dπ

∫
|ζ|=R

R|dζ|
(R− |z|)3

= 2R2

D(R− |z|)3 .

Let R→∞ to conclude
|f ′′(z)| = 0.

Finally, we obtain that f(z) = az + b. (Of course, a 6= 0.)
QED

Section B: The Cayley Transformation
This example comes from PROBLEM 3-1. I’m going first to introduce some
notation:

D = the open unit disc |z| < 1

U = the open upper half plane Im(z) > 0

The Cayley transform U f−→ D is given by the Möbius transformation

f(z) = z − i
z + i

.


i→ 0
∞→ 1
0→ −1

Its inverse is

f−1(w) = i
1 + w

1− w.


−1→ 0
∞→ −1
0→ i
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Section C: The Schwarz “Lemma”
For historical reasons this extremely important theorem is called a lemma:

Schwarz Lemma: Let f be a holomorphic function defined on D which
satisfies  |f(z)| ≤ 1 for all z ∈ D,

f(0) = 0.
Then  |f(z)| ≤ |z| for all z ∈ D,

|f ′(0)| ≤ 1.

Moreover, if |f(z)| = |z| for some z 6= 0, or |f ′(0)| = 1, then f(z) = az,
where |a| = 1.

Proof: This proof almost works itself, provided we start by defining

g(z) =


f(z)
z

for 0 < |z| < 1,

f ′(0) for z = 0.

Clearly, g is holomorphic for 0 < |z| < 1 and continuous for all |z| < 1.
The Riemann removable singularity theorem implies that g is holomorphic for
|z| < 1.

We want to use the maximum modulus principle, but we need to insert a tech-
nicality: let 0 < a < 1 and restrict z to |z| ≤ a. Then the maximum modulus
principle implies that for |z| ≤ a,

D |g(z)| ≤ sup
|ζ|=a
|g(ζ)|

= sup
|ζ|=a

|f(ζ)|
a

≤ 1
a
.

Therefore,

0 < |z| ≤ a⇒ |f(z)| ≤ |z|
a

;

z = 0⇒ |f ′(0)| ≤ 1
a
.
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This argument required 0 < a < 1, but now for any fixed |z| < 1, we let a→ 1
and find that

|f(z)| ≤ |z|;
|f ′(0)| ≤ 1.

Finally, in the two cases of equality, |g(z)| = 1 for some |z| < 1. As |g(z)| ≤ 1
for all |z| < 1, we conclude by the maximum principle that g(z) = constant.
Write g(z) = a, where of course |a| = 1. Thus f(z) = az.

QED

COROLLARY: Let D f−→ D be holomorphic with f(0) = 0. Then f is a
conformal transformation of D onto itself⇔ f(z) = az, where |a| = 1.

Proof: ⇐ is clear, so we need to prove ⇒. The Schwarz lemma implies
that |f ′(0)| ≤ 1. But we can also apply the Schwarz lemma to f−1, so that∣∣∣∣(f−1)′ (0)

∣∣∣∣ ≤ 1. Aha!

f
(
f−1(z)

)
= z,

so the chain rule implies

f ′
(
f−1(z)

) (
f−1)′ (z) = 1.

Let z = 0:
f ′(0)

(
f−1)′ (0) = 1.

As both factors in this equation are complex numbers with moduli ≤ 1, we
conclude

|f ′(0)| = 1.
So the Schwarz lemma again implies that f(z) = az.

QED

Section D: Conformal Transformations of D
I’ll begin by defining some very special Möbius transformations. For any com-
plex number a with |a| < 1, let φa be this function:

φa(z) = z − a
1− az .

Notice that
φ−1
a = z + a

1 + az
,
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so
φ−1
a = φ−a.

A simple calculation:

|den|2 − |num|2 = |1− az|2 − |z − a|2

=
(
1− 2 Re(az) + |az|2

)
−
(
|z|2 − 2 Re(az) + |a|2

)
= 1 + |a|2|z|2 − |z|2 − |a|2

=
(
1− |z|2

) (
1− |a|2

)
.

As |a| < 1, we see that

|z| < 1⇔ |φa(z)| < 1,
|z| = 1⇔ |φa(z)| = 1,
|z| > 1⇔ |φa(z)| > 1.

∴ φa is a conformal transformation of D on D, and φa preserves the unit circle.

(Note that φa
(1
a

)
=∞.)

THEOREM: The conformal transformation of D onto D are precisely the
functions ωφa, where the constant ω satisfies |ω| = 1 and a ∈ D.

Proof: Let D f→ D be such a transformation. Let a ∈ D be the point satisfying
f(a) = 0. Clearly, we should look at the composition f ◦ φ−1

a . This function is
a conformal transformation of D onto D which sends 0→ 0:

(
f ◦ φ−1

a

)
(0) = f

(
φ−1
a (0)

)
= f(a) = 0.

The Schwarz lemma shows that

(
f ◦ φ−1

a

)
(z) = ωz,

where |ω| = 1. Therefore,
f(z) = ωφa(z).

QED
No wonder that the Schwarz lemma is so important!
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Section E: Statement of the Riemann mapping
theorem

This amazing and important theorem is beyond the scope of this book, be-
yond what I think of as computational complex analysis. However, it is very
important to know what this theorem says, and to be able to compute many
illustrations of it.

DEFINITION: In the development of the subject called topology, a space is
said to be simply connected if it is path connected and any closed curve in the
space can be continuously shrunk to a point while remaining in the space. The
idea is very clear for an open set D ⊂ C which is path connected—it is simply
connected if it “contains” no holes.

Simply connected D:
a disk, a convex region, a region whose complement is connected.

Not simply connected examples:
an annulus, C \ closed disk, C \ one point.

RIEMANN MAPPING THEOREM: Let D ⊂ C be a simply connected
open set which is not the space C itself. Then there exists a conformal
transformation of D onto the open unit disc D.

The conformal transformation in the statement of the theorem is called a
Riemann mapping of D onto D.

Here is a relatively easy fact:

THEOREM: A Riemann mapping of D onto D is “essentially unique.”
That is, if z0 ∈ D, then there exists one and only one D f→ D satisfying
the properties:

• f is a conformal transformation of D onto D,

• f(z0) = 0,

• f ′(z0) is a positive real number.
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Proof: Suppose that f and g both satisfy these conditions. Then consider the
composition

f ◦ g−1 : D→ D.
This is a conformal transformation of D onto D which maps 0 to 0:(

f ◦ g−1) (0) = f
(
g−1(0)

)
= f(z0) = 0.

The Schwarz lemma then shows that(
f ◦ g−1) (z) = ωz, where |ω| = 1.

That is,
f(z) = ωg(z).

Then
f ′(z0) = ωg′(z0),

so ω is a positive real number. Thus |ω| = 1⇒ ω = 1. This proves uniqueness.
To prove existence we appeal to the Riemann mapping theorem to get a Rie-
mann mapping h of D onto D. Then h(z0) ∈ D. We then first form the
composition

h1 = φh(z0) ◦ h.
Then

h1(z0) = 0.
As h1 is conformal, h′1(z0) 6= 0. Then h′1(z0) = |h′1(z0)| eiα for some real α.
Then

h2 = e−iαh1

gives
h′2(z0) = |h′1(z0)| > 0.

QED

REMARK: The disc D acts here as a “model” for simply connected open sets
D. Sometimes it seems more natural to use the upper half space U as a model.
We can simply move between D and U by using the Cayley transform. We
would then speak of a Riemann mapping of D onto the upper half plane.

We could also make such a Riemann mapping to be unique by requiring (say)

f(z0) = i,

f ′(z0) > 0.



Chapter 8

Introduction To Elliptic
Functions

Section A: Doubly Periodic Functions on C
“Introduction,” because this is a vast subject, in which there is still great interest
in further research.

Of course you know about periodic functions. Here are a few together with
their periods:

ez 2πi
sin z 2π
tan z π
cosh z −2πi
sin z 6π
tan z −13π
| sin z| π

What you have probably never thought of is functions with two significantly
different periods. Such a function defined f : C→ Ĉ would need to satisfy

f(z + w1) = f(z) and f(z + w2) = f(z).

We’ll insist that the ratio
ω1

ω2
is not real. (It’s not hard to show that if f is

continuous then f is either periodic with one period or constant.)

Since f has periods ω1 and ω2, it also satisfies

f(z +mω1 + nω2) = f(z) for all m,n ∈ Z.

171
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We say that f is doubly periodic.

It’s a good idea to have a geometric description in mind, such as this:

0 ω1

ω1 + ω2

ω1 − ω2−ω2

ω2

−ω1

−ω1 − ω2

−ω1 + ω2

The points mω1 + nω2 compose what’s called a lattice:

Λ = {mω1 + nω2|m,n ∈ Z}.

This is a subgroup of C.

Given this lattice there is what’s called its fundamental parallelogram:

0

P0 = {aω1 + bω2|0 ≤ a < 1, 0 ≤ b < 1}.
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The lattice and P0 produce a tiling of C,

C =
⋃

m,n∈Z
(mω1 + nω2 + P0)

= a disjoint union of translates of P0.

Finally, notice that all the information about a doubly periodic function is found
in any translate w + P0, where w ∈ C.

Immediately we are confronted with a very easy

OBSERVATION: If f is a doubly periodic function which is an entire
holomorphic function, then f = constant.

Proof: f is bounded in P0. By periodicity, f is bounded on C. Liouville’s
theorem thus implies that f is constant.

QED

Section B: Elliptic functions
Because of that observation we must work with doubly periodic functions which
are holomorphic except for isolated poles:

DEFINITION: An elliptic function is a nonconstant holomorphic function whose
isolated singularities are poles.

We now derive a few significant properties of elliptic functions, even though
we do not yet know even one example!

THEOREM: The number of poles of an elliptic function in any translate
of P0 is atleast 2 (counted according to multiplicity).

Proof: Let P be a translate of P0 chosen so that none of f ’s poles are on ∂P .
(Easy enough, as the poles of f are isolated.) Then the residue theorem⇒

∫
∂P

f(z)dz = 2πi
∑
ζ∈P

Res(f, ζ).

But periodicity⇒
∫
∂P

f(z)dz = 0.
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z + ω2

z

f(z + ω2) = f(z)

∴ the sum of the residues of f in P equals 0, implying that f cannot have only
one simple pole.

QED

DEFINITION: The order of an elliptic function is the number of poles it has in
any translate of P0. The order is therefore an integer ≥ 2.

REMINDER: The translates of P0 literally look like this:

w

Thus no two points in P differ by an element of the lattice. Thus the way of
counting is accurate.

THEOREM: Let f be an elliptic function of order m. Let P be any trans-
late of the fundamental parallelogram. Then for any point ζ ∈ Ĉ,

f = ζ exactly m times in P.

Proof: We can look a the elliptic function f − ζ; therefore, we may as well
assume ζ = 0. The counting theorem gives (Chapter 5, Section A) for a choice
of P with no zeros or poles of f in ∂P ,

∫
∂P

f ′

f
dz = 2πi · (#Zeros in P −#Poles in P ) ,

and the periodicity of
f ′

f
again implies the integral equals 0.

QED
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It’s a very good idea to think of the lattice Λ in a more geometric way. This is
to regard two complex numbers z and z′ to be equivalent modulo Λ if and only
if z − z′ ∈ Λ. Then we can look at any translate of P0 in the following way

P equivalent

Then think of “gluing” these two sides of P together, and likewise the other
pair of sides:

Thus when we look at a point z of C, we’re really looking at all points of z ∈ Λ
at the same time. Then we conclude that there are really no “special points”
(such as 0) of C in this context.

Now at least it’s time to produce our first example of an elliptic function:

Section C: The Weierstrass ℘ function
Knowing that every elliptic function must have order ≥ 2, we seek a function
of order 2. We try to make it as simple as possible by requiring it to have
exactly one pole of order 2. In doing our calculations we try to make it look as
simple as possible by placing this pole at the origin, with Laurent expansion at
that point having the form

1
z2 + 0

z
+ . . . .

An idea leaps to our attention. This function should have Laurent expansion at
any ω ∈ Λ of the form

1
(z − ω)2 + 0

z − ω
+ . . . .
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So why not define this function to be

∑
ω∈Λ

1
(z − ω)2 ?

Here’s why not: this infinite series diverges.

Remedy: there are two logical things to try, which we now discuss:

1. Form finite sums such as

∑
ω∈Λ
|ω|<R

1
(z − ω)2

and hope enough cancellation occurs to form a set of principle value

lim
R→∞

∑
ω∈Λ
|ω|<R

1
(z − ω)2 .

Something like this definitely works, but another remedy seems to be
easier:

2. Compute the derivative of the above function, and then let R → ∞ (this
series converges!) to get the derivative of the function we want:

∑
ω∈Λ

−2
(z − ω)3 .

That is definitely an elliptic function of order 3. But then we have to try
to integrate this function.

3. Now we modify (2) by defining

℘(z) =
∑
ω∈Λ

 1
(z − ω)2 −

1
ω2

 ;

but that’s no good since 0 ∈ Λ and − 1
02 is not allowed. Therefore, we

actually define

℘(z) = 1
z2 +

∑
ω∈Λ
ω 6=0

 1
(z − ω)2 −

1
ω2

 . F
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We’ll now prove that this makes sense. However, it’s tricky to prove it’s peri-
odic. So we’ll instead differentiate ℘(z) term by term to achieve

℘′(z) = − 2
z2 − 2

∑
ω∈Λ
ω 6=0

1
(z − ω)3

= −2
∑
ω∈Λ

1
(z − ω)3 . FF

That’s clearly doubly periodic and we’ll then be able to prove ℘(z) is also
doubly periodic.

We put aside for the time being the analysis of the convergence question.

Theorem: ℘ is doubly periodic.

Proof: Define

f(z) = ℘(z + ω1)− ℘(z).

We want to prove f = 0. First differentiate:

f ′(z) = ℘′(z + ω1)− ℘′(z) = 0

since ℘′ is doubly periodic. Therefore, f(z) is constant. Therefore,

−1
2ω1

0 1
2ω1

ω1

ω2

℘(z + ω1)− ℘(z) = C.
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We notice from the definition that ℘(z) is even:

℘(−z) =
∑
ω∈Λ

 1
(−z − ω)2 −

1
ω2


=

∑
ω∈Λ

 1
(z + ω)2 −

1
ω2


=

∑
ω→−ω

 1
(z − ω)2 −

1
(−ω)2


=

∑
ω∈Λ

 1
(z − ω)2 −

1
ω2


= ℘(z).

Now let z = −1
2ω1 above:

℘

(1
2ω1

)
− ℘

(
−1

2ω1

)
= C,

and therefore C = 0.

In the same way, we see that ℘(z + ω2) = ℘(z).
QED

DISCUSSION OF CONVERGENCE: First, we compare |mω1 + nω2|. It’s a
fact that there exists a positive number C depending only on Λ such that

1
C
≤ |mω1 + nω2|√

m2 + n2 ≤ C

for all ω = mω1 + nω2 ∈ Λ, ω 6= 0. The upper bound is clear, as

|mω1 + nω2| ≤ |mω1|+ |nω2|
≤ max (|ω1|, |ω2|) (|m|+ |n|)
≤ max (|ω1|, |ω2|)

√
2
√
m2 + n2.

The lower bound is a little trickier. We rely on the hypothesis that
ω1

ω2
is not

real. Therefore
ω1

ω2
=
∣∣∣∣∣ω1

ω2

∣∣∣∣∣ eiα
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and Re
(
eiα

)
= cosα, | cosα| < 1. Then

|mω1 + nω2|2 = |mω1|2 + 2 Re (mω1nω2) + |nω2|2

= |mω1|2 + 2mnRe
(
ω1

ω2
|ω2|2

)
+ |nω2|2

= |mω1|2 + 2mn|ω2|2
∣∣∣∣∣ω1

ω2

∣∣∣∣∣ cosα + |nω2|2

≥ |mω1|2 − 2| cosα| |mnω1ω2|+ |nω2|2.

Now the simple inequality for real numbers,

2|xy| ≤ x2 + y2,

implies

|mω1 + nω2|2 ≥ |mω1|2 − | cosα|
(
|mω1|2 + |nω2|2

)
+ |nω1|2

= (1− | cosα|)
(
|mω1|2 + |nω2|2

)
≥ (1− | cosα|) (min (|ω1|, |ω2|))2 (m2 + n2) ,

so that

|mω1 + nω2| ≥
√

1− | cosx|min (|ω1|, |ω2|)
√
m2 + n2.

Therefore, the convergence of

∑
ω∈Λ\{0}

1
|w|t

is equivalent to the convergence of

∑
(m,n)∈Z2\{0}

1(√
m2 + n2

)t .
Finally, the convergence of this latter double sum is equivalent to the conver-
gence of the double integral

∫∫
x2+y2≥1

1(√
x2 + y2

)tdxdy.
This can be determined by using polar coordinates in R2: the double integral
equals ∫ 2π

0

∫ ∞
1

rdrdθ

rt
= 2π

∫ ∞
1

dr

rθ−1
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and this is finite⇔ t > 2. We conclude that

∑
ω∈Λ\{0}

1
|w|t

<∞⇔ t > 2.

As a result, the series defining ℘′(z) is absolutely convergent since the corre-
sponding t = 3. And the terms in the series defining ℘(z) have modulus

∣∣∣∣∣∣ 1
(z − ω)2 −

1
ω2

∣∣∣∣∣∣ =
∣∣∣∣∣∣ω

2 − (z − ω)2

(z − ω)2ω2

∣∣∣∣∣∣
=
∣∣∣∣∣∣ 2zω − z2

(z − ω)2ω2

∣∣∣∣∣∣
≤ |2zω|+ |z|2

|ω|2 (|ω| − |z|)2 ,

and if |ω| > 2|z|, this is

≤ |2z||ω|+ |z|
2

|ω|2
(1

2 |ω|
)2

= 4|2z||ω|+
1
2 |z||ω|

|ω|4

= 10|z|
|ω|3

.

Again, absolute convergence for all z /∈ Λ.

This finishes our discussion of convergence. The result is

℘ is an even elliptic function of order 2,
℘′ is an odd function of order 3.

Section D: Basic properties of ℘
1. ℘′ has order 3. It has a triple pole at 0. We can also locate its zeros. For
℘′ is odd:

℘′(−z) = −℘′(z).
∴

℘′
(1

2ω1

)
periodic= ℘′

(
−1

2ω2

)
odd= −℘′

(1
2ω1

)
.
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∴

℘′
(1

2ω1

)
= 0.

Likewise for
1
2ω2 and

1
2ω1 + 1

2ω2:

P0

2. At a zero of ℘′ we have a double value of ℘. These are often denoted this
way:

e1 = ℘

(1
2ω1

)
,

e2 = ℘

(1
2ω2

)
,

e3 = ℘

(
ω1 + ω2

2

)
.

3. ℘ satisfies a nonlinear ordinary differential equation of order 1

This is a startling result!

We begin by defining the elliptic function

f(z) = (℘(z)− e1) (℘(z)− e2) (℘(z)− e3) .

f(z) = 0 only at points in Λ equivalent to
ω1

2 ,
ω2

2 , and
ω1 + ω2

2 .

Each of these is a double zero, as we’ve just noticed. Thus f is an elliptic
function of order 6.

Also ℘′(z)2 has double zeros at these points, and only there. Therefore,
the doubly periodic function

℘′(z)2

f(z)
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has no zeros at all! (It also has no poles: (℘′)2 has no poles of order 6
at points of Λ, and f also has no poles of order 6 at the same points.)
The quotient is therefore constant: it’s never 0, so it would have to be
elliptic of “order 0.” Also, it is entire holomorphic and therefore constant
by Liouville’s theorem.

We can calculate this constant by examining the function near 0:

℘(z) ∼ 1
z2 ;

f(z) ∼ 1
z6 ;

℘′(z) ∼ − 2
z3 ;

℘′(z)2 ∼ 4
z6 .

∴
(℘′)2

f
∼ 4 near 0.

∴
℘′(z)2 = 4 (℘(z)− e1) (℘(z)− e2) (℘(z)− e3) .

4. General elliptic functions for the lattice Λ

Suppose f is an elliptic function of order M . We are going to represent
it by using ℘ itself.

First, suppose f is also even: f(−z) = f(z).

Then consider a zero of f : f(a) = 0. Then f(−a) = 0 as well. There
are two cases: (1) a and −a are distinct modulo Λ. I.e., 2a /∈ Λ. In this
case, if a is of order k, then −a is also a zero of order k. Then a and −a
are equal modulo Λ. I.e., 2a ∈ Λ. Typically there are three cases: a = ω1

2
or
ω2

2 or
ω1 + ω2

2 . Then the zero a is a zero of even order.

Therefore, the zeros of f can be written a1, . . . , aM , and this list accounts
for all the zeros of f according to their multiplicities. And M is even.
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Then we notice that each aj yields a zero of ℘(z)−℘(aj), and the points
ω1

2 ,
ω2

2 , and
ω1 + ω2

2 are also double zeros for ℘(z)− ℘
(
ω1

2

)
etc.

Thus, the function
M∏
j=1

(℘(z)− ℘(aj))

has exactly the same zero structure as f(z).

In the same way, if the poles of f are written as b1, . . . , bM , then

M∏
j=1

1
℘(z)− ℘(bj)

has the same pole structure as f(z).

Therefore,
M∏
j=1

℘(z)− ℘(aj)
℘(z)− ℘(bj)

has the identical structure for its zeros and poles as f(z). This shows that
f(z) divided by that product has no zeros and no poles. Being doubly
periodic, Liouville’s theorem implies that it is constant! Therefore

f(z) = constant ·
M∏
j=1

℘(z)− ℘(aj)
℘(z)− ℘(bj)

.

Second, suppose f is odd: f(−z) = −f(z). Then, since ℘′ is odd,

f(z)
℘′(z)

is an even elliptic function. Therefore, it also has a representation of the
form

N∏
j=1

℘(z)− ℘(cj)
℘(z)− ℘(dj)

.

THEOREM: Every elliptic function for the lattice Λ is a rational
function of ℘ and ℘′. In fact, if f is elliptic, then

f(z) = g(z) + ℘′(z)h(z),
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where g and h are rational functions of ℘.

Proof: The equation

f(z) = f(z) + f(−z)
2 + f(z)− f(−z)

2
presents f as an even elliptic function plus an odd elliptic function.

QED

5. The Laurent expansion of ℘ centered at 0

Before writing this expansion we define the following lattice sums:

Gn = Gn(Λ) =
∑

ω∈Λ\{0}

1
ωn
, n = 3, 4, 5, . . . .

These series converge absolutely since n ≥ 3. And since −Λ = Λ, it
follows that

Gn = (−1)nGn.

∴ Gn = 0 for all odd n.

We’ll immediately need the first two:

G4 =
∑

Λ\{0}

1
ω4 ,

G6 =
∑

Λ\{0}

1
ω6 .

To work out the Laurent series we first write the geometric series

− 1
z − ω

= 1
ω − z

= 1
ω

1
1− z

ω

=
∞∑
n=0

zn

ωn+1

for small z. Differentiate:

1
(z − ω)2 =

∞∑
n=1

nzn−1

ωn+1 ;

1
(z − ω)2 −

1
ω2 =

∞∑
n=1

(n+ 1)zn
ωn+2 .
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Thus

℘ = 1
z2 +

∑
ω 6=0

 1
(z − ω)2 −

1
ω2


= 1
z2 +

∑
ω 6=0

∞∑
n=1

(n+ 1)zn
ωn+2

= 1
z2 +

∞∑
n=1

∑
ω 6=0

(n+ 1)zn
ωn+2

= 1
z2 +

∞∑
n=1

(n+ 1)Gn+2z
n.

Drop the odd terms:

Laurent series:

℘(z) = 1
z2 +

∞∑
n=1

(2n+ 1)G2n+2z
2n, near z = 0.

Next we give another method for producing the differential equation sat-
isfied by ℘(z).
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