Suppose U is a bounded smooth domain in \mathbf{R}^n and $0 < R < \infty$. Recall that

$$\partial [U \times (0, R)] = \partial U \times (0, R) \cup U \times \{0\} \cup U \times \{R\} .$$

For any function $u \in W^{1,2}(U)$, let g(x) = u(x) for $x \in \partial U$ (in the sense of traces) and

$$u_R: U \times (0, R) \to \mathbf{R}$$
, $u_R(x, t) = u(x)$.

Also, let

$$g_R: \partial[U \times (0,R)] \to \mathbf{R}$$
, $g_R(x,t) = g(x)$ for $x \in \partial U \times (0,R)$,

and

$$g_R(x,0) = g_R(x,1) = u(x) \text{ for } x \in U$$
.

Consider the 2 statements.

(1) u minimizes $\int_U |Dw|^2 dx$ among functions $w \in W^{1,2}(U)$ with w = g on ∂U . (2) u_R minimizes $\int_{U \times (0,R)} |Dv|^2 dx$ among functions $v \in W^{1,2}(U \times (0,R))$ with $v = g_R$ on $\partial [U \times (0, R)]$.

(a) Prove that (1) implies (2).

(b) Prove that (2) implies (1) for R sufficiently large.

We will discuss this problem later with a more interesting functional.