Homework 9 due Wed. Mar.21

1. Verify by direct computation that, for $n \ge 3$, the function $u : \mathbf{R}^n \to \mathbf{S}^{n-1}$ given by u(x) = x/|x| satisfies the harmonic map equation $\Delta u + |Du|^2 u = 0$.

2. Consider a solution u of the obstacle problem discussed in section 8.4.2 with n = 2, and assume that the boundary between the contact set C and the non-contact set O is locally a smooth curve Γ and that on \overline{O} the solution is continuously differentiable all the way up to Γ . Show that above Γ the graph of u is tangent to the graph of h.

3. Suppose U is the open unit ball in \mathbf{R}^2 , $h: \mathbf{R}^2 \to \mathbf{R}$, $h(x, y) = 1 - 2(x^2 + y^2)$ and

$$\mathcal{A} = \{ w \in W_0^{1,2}(U) : w \ge h(x,y) \text{ for } (x,y) \in U \}$$

(a) Show that $\mathcal{A} \neq \emptyset$.

(b) Guess a formula for the minimizer of $\int_U |Du|^2 dx dy$ in \mathcal{A} . Hint: Assume u = u(r) where $r = \sqrt{x^2 + y^2}$ and use #2.