
Solutions to Analysis Exam, August, 2003
1. Suppose 0 < α < 2.

(a) The principal value integral∫ ∞

0

xα

x− x3
dx = lim

ε→0

( ∫ 1−ε

0

+
∫ ∞

1+ε

) xα

x− x3
dx .

Here it is necessary to consider a limit (called an improper integral) because the
function xα

x−x3 is not integrable near x = 1. It is locally integrable near 0 and ∞.
The choice of 1 − ε and 1 + ε for approximating integration limits is the simplest
(the principal value) as opposed to other choices such as 1− ε, 1 + ε2.

(b) Here one can apply the Cauchy integral formula to the principal branch f(z)
of − zα

z(z−1)(z+1) on the domain Ωε in the upper half plane bounded by the 4 oriented
intervals [− 1

ε ,−1 − ε], [−1 + ε,−ε], [−ε, ε], [ε, 1 − ε], [1 + ε, 1
ε ], the upper counter-

clockwise oriented semicircle C1/ε of radius 1
ε , and the 3 clockwise oriented upper

semicircles D−1
ε , D0

ε , D+1
ε of radius ε centered at −1, 0, 1. As ε → 0, the integral

over the big semicircle C1/ε approaches 0 because there |f(z)|( 1
ε ) ≤ C( 1

ε )1+α−3 → 0.
Also the integral over D0

ε approaches 0 as ε → 0 because there |f(z)|ε ≤ Cεα → 0.
The integrals over D+1

ε and D−1
ε approach −πi times the residues of f at +1 and

−1, which are − 1
2 and − 1

2eπiα. On the positive X-axis f(z) = xα

x−x3 and on the

negative X-axis f(z) = eπiα|x|α
x−x3 . Changing variables x 7→ −x for the integrals on

the negative X-axis now gives

0 =
∫

Ωε

f(z) dz = o(ε) +
πi

2
(1 + eπiα) + (1− eπiα)

( ∫ 1−ε

ε

+
∫ 1/ε

1+ε

) xα

x− x3
dx .

Letting ε → 0 the principal value integral equals∫ ∞

0

xα

x− x3
dx = (

πi

2
)
eπiα + 1
eπiα − 1

=
π

2
cot(

πα

2
) .

(c)

I(α) =
∫ ∞

0

xα

x− x3
dx =

∫ 0

∞

y−α

1
y −

1
y3

−dy

y2
=

∫ ∞

0

y−α

y − 1
y

dy

=
∫ ∞

0

y2−α

y3 − y
dy = −

∫ ∞

0

y2−α

y − y3
dy = −I(2− α)

and cot π(2−α)
2 = cot

(
π − πα

2

)
= − cot πα

2 agrees.
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2. Suppose that f(x, y) is continuous on the plane and that there is finite M so
that |f(x, y)− f(x, z)| ≤ M |y − z| for all x, y, z ∈ R.

(a) For any x ∈ R, the function f(x, ·) is Lipschitz, hence absolutely continuous.
So the partial derivative ∂f

∂y (x, y) exists for almost all y ∈ R.

(b) Prove that d
dy

∫ 1

0
f(x, y) dx =

∫ 1

0
∂f
∂y (x, y) dx.

For each y ∈ R, x ∈ [0, 1], and sequence εi → 0 let

gi(x, y) =
f(x, y + εi)− f(x)

εi

Then |gi(x, y)| ≤ M for all i. So Lebesgue’s Dominated Convergence Theorem
implies that

lim
i→∞

ε−1
i

[ ∫ 1

0

f(x, y + εi) dx−
∫ 1

0

f(x, y) dx
]

= lim
i→∞

∫ 1

0

gi(x, y) dx

=
∫ 1

0

lim
i→∞

gi(x, y) dx =
∫ 1

0

∂f

∂y
(x, y) dx .

Since the RHS is independent of the sequence εi → 0, one finds that the derivative
d
dy

∫ 1

0
f(x, y) dx exists and equals the RHS.

(c) Express d
dy

∫ y2

0
f(x, y) dx in terms of integrals of f and ∂f

∂y . Letting
F (s, t) =

∫ s

0
f(x, t) dx, we see from the fundamental theorem and (b) that

∂F

∂s
(s, t) = f(s, t) and

∂F

∂t
(s, t) =

∫ s

0

∂f

∂y
(x, t) dx .

So we use the chain rule to compute

d

dy

∫ y2

0

f(x, y) dx =
d

dy
F (y2, y)

=
∂F

∂s
(y2, y)

∂y2

∂y
+

∂F

∂t
(y2, y)

∂y

∂y

= 2yf(y2, y) +
∫ y2

0

∂f

∂y
(x, y) dx

3.(a) Show that the direct analog of Rolle’s theorem does not apply to holomorphic
functions. Do this by exhibiting an entire holomorphic function f such that
f(0) = f(1) and yet f ′(z) never takes the value 0.
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ez doesn’t vanish and ez+2πi = ez. So we rotate the domain by 90o and rescale
by letting f(z) = e2πiz. Then f(0) = 1 = f(1) and f ′(z) = 2πie2πiz 6= 0.

(b) Suppose f is a holomorphic function on the unit disk {z : |z| < 1}. Show
that f must be constant if f(ai) = f(bi) for two sequences ai, bi of positive real
numbers that satisfy the inequalities

0 < . . . < ai+1 < bi+1 < ai < bi < . . . < a1 < b1 < 1 .

Both monotone sequences converge to some real number c with 0 ≤ c < 1. Writing
f = u + iv we find from Rolle’s theorem, points ai < ci < bi so that ∂u

∂x (ci) = 0.
Since ci → c, we deduce from the real analyticity of u(·, 0) that ∂u

∂x (·, 0) ≡ 0 and so
u is constant on the X-axis. Similarly v is also constant on the X-axis. But then
the holomorphic function f being constant on the X-axis, must itself be constant.

4. Suppose 0 < M < ∞ and, for each positive integer j, fj : [0, 1] → [−M,M ] is a
monotone increasing function. Prove that there is a subsequence fj′ and a countable
subset A of [0, 1] so that fj′(t) converges, as j′ →∞, for every t ∈ [0, 1] \A.

Proof : Suppose Q ∩
[
0, 1] = {a1, a2, . . .}. A subsequence fα1(1)(a1), fα1(2)(a1), . . .

of the bounded sequence of numbers f1(a1), f2(a1), . . . converges to a number
f(a1). Inductively, choose a subsequence fαj(1)(aj), fαj(2)(aj), . . . of the sequence
fαj−1(1)(aj), fαj−1(2)(aj), . . . convergent to a number f(aj).

Let j′ = αj(j) and f(x) = supai<x f(ai) = limε↓0 supx−ε<ai<x f(ai). Then f is
monotone increasing and the set A of discontinuities of f is at most countable. To
see that limj→∞ fj′(x) = f(x) for any x ∈ (0, 1) \A, we choose, for ε > 0, numbers
ai < x < aĩ so that f(aĩ)− ε < f(x) < f(ai) + ε, and then J so that

|fj′(ai)− f(ai)| < ε and |fj′(aĩ)− f(aĩ)| < ε

for j ≥ J . For such j it follows that

f(x)− 2ε < f(ai)− ε < fj′(ai) < fj′(x) < fj′(aĩ) < f(aĩ) + ε < f(x) + 2ε .

Thus |fj′(x)− f(x)| < 2ε.

5. (a) Is there a nonconstant real function h that is continuous on the closed disk
{z : |z| ≤ 1}, harmonic on the open disk {z : |z| < 1}, and vanishes on the upper
unit semi-circle (that is, h(eiθ) = 0 for 0 ≤ θ ≤ π)?

The Poisson integral formula shows that, for any continuous function g on the
unit circle, one may find a harmonic function on the open ball which is continuous
on the closed ball and has boundary values g. So it suffices to chose any nonconstant
g which vanishes on the upper semi-circle.
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(b) Is there a nonconstant complex function f that is continuous on the closed
disk {z : |z| ≤ 1}, holomorphic on the open disk {z : |z| < 1}, and vanishes on the
upper unit semi-circle (that is, f(eiθ) = 0 for 0 ≤ θ ≤ π)?

There is a conformal map from the unit disk to the upper half plane. This takes
the upper semi-circle to an interval on the X-axis. Composing with this conformal
map thus gives a holomorphic map on the upper half plane which vanishes on this
interval. Schwarz reflection about this interval then extends this function to be
a holomorphic function whose domain contains the interval and vanishes on the
interval. The identity theorem implies that this function, and hence the original
function, must vanish identically.

6. Assume that f(x) is a Lebesgue measurable function on R. Prove the function
defined on R2 by F (x, y) = f(x− y) is Lebesgue measurable

We need to show that F−1
(
(a, b)

)
is measurable in R2 for any interval

(a, b) ⊂ R. Note that F = f ◦P where P (x, y) = x+y. Also note that P = p◦
√

2 ·φ
where φ is a 45o rotation of the plane and p(x, y) = x. So

F−1
(
(a, b)

)
= (

√
2 · φ)−1

(
p−1[f−1

(
(a, b)

)
]
)

E = f−1
(
(a, b)

)
is measurable in R by the measurability of f , and p−1(E) =

E ×R is measurable by the definition of Lebesgue measure as a product measure.
Moreover, since Lebesgue measurability is preserved under rotation and homothety
F−1

(
(a, b)

)
= (

√
2 · φ)−1(E ×R) is measurable.
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