Solutions to Analysis Exam, Fall 2005

1. (a) Suppose f :[0,1] — R is Lebesgue integrable. Find
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Noting the bound,
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| @) < Jzl[f(0)] < [f(@)],

we use Lebesgue’s Dominated Convergence Theorem to see that the limit is fol x f(z)dx.

(b) Taking f =1 and noting that 57" is increasing in n and approaches 1/z as n

approaches oo, we conclude from the Monotone Convergence Theorem or Fatou’s Lemma

that
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Alternately one can substitute to compute that
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/0 ﬁ#dw = élog(l—kg) — 400 as n — oo .

2. Suppose g is holomorphic on {z € C : |z| < 2} and [g(z)| < 1 whenever |z| = 1.
The function h(z) = z — g(z) is holomorphic on {z € C : |z|] < 2} and satisfies

|z =h(z)] = l9(2)] < 1 = |2]

on the unit circle. By Rouché’s Theorem h has, like the function z, a single simple zero w

in the unit disk. This is the desired unique point w € C with |w| < 1 and g(w) = w.

3. Suppose f: R — R is infinitely differentiable and a € R.
(a) The order of vanishing

N(f,a) = sup{n : f"(a)=0}.

Thus N(f,a) is a positive integer in case some derivative of f at a is nonzero, and
N(f,a) = oo in case the derivatives of f at a of all orders vanish.

(b) For convenience, we also define N(f,b) = 0 for a point b with f(b) # 0. Then
for any zero a of f, we immediately verify the relation N(f’,a) = N(f,a) — 1. Also the
Mean Value Theorem implies that, strictly between any 2 consecutive zeros of f, is a zero



of f’. Tt then follows that N(f’') = oo whenever N(f) = co. So we now may assume that
N(f) < oco. We then find that

N(f)y = >, N(f.a)
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4. Evaluate the integral
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For R large, consider the upper disk bounded by the interval [—R, R] and the semicircle

Tr = {Re* : 0<t<7}.

One is tempted to apply the Residue Theorem with the meromorphic function <=£.

However the upper boundary integral does not approach 0 as R — oo. Note that
cosz = 3(e* + e7*) and that
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by Dominated Convergence. Since the function % has only one pole at i with residue
e~ !, the Residue Theorem gives that
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To find the other term [ © e dx, we use the lower half disk with lower boundary
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yr = {—Re'" : 0<t<r} and see that, just like above,

e—iz
| -dz| — ocoas R— o0
yr # 1

[

f has no pole in the lower half plane. So the Residue
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The meromorphic function
Theorem now gives

and we conclude that ffooo



5. Suppose f : R — R is infinitely differentiable.

(a) [y f"(t)(z —t)dt is the integral form for the remainder term in a degree 1 Taylor
approximation of f and so equals f(x) — f(0) — f/(0)z. One can also prove this directly
by integrating by parts:
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(b) From (a)

[f(@)] < |f(0)+f’(0)w+/Oif”(t)(érf—t)dtl

v 1
< |f(0)|+|f’(0)llﬂcl+l\4/0 (w—t)dt = |f(0)| +|f (0)[2] + 5 M]z[*
for x > 0. For x < 0 one gets the same estimate by symmetry.

6. Suppose g is holomorphicon A={2€C : 0<|z] <1} and

limsup|g(z) —A| > 0

|z|—0

for every A € C. Show that either

(1) limy, o |22]g(2)] = o0 or

(IT) g(A) is dense in C.

The hypothesis implies that the singularity of f is not remowvable and thus is either
(I) a pole or (II) an essential singularity. In case (I), g is meromorphic at 0 and so, near
0, lg(2)| > 7 for some ¢ >0 and j € {1,2,...}, hence,
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In any neighborhood of an essential singularity, g becomes arbitrarily close to any complex
number so that g(A) is dense in case (II).

A specific example of a g satisfying (II) is g(z) = e/>.



