ANALYSIS QUALIFYING EXAM

September 1997

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit -3 HOURS.

1. Let P, Q be complex polynomials with the degree of Q at least two more than the degree of P. Prove there is an r > 0 such that if C is a closed curve outside |z| = r, then

$$\int_C \frac{P(z)}{Q(z)} dz = 0.$$

2. Let λ be a real number with $\lambda > 1$. Prove that the equation $\lambda - z - e^{-z} = 0$ has exactly one root z_0 with $Rez_0 > 0$.

3. Let *B* be the open unit ball in \mathbb{R}^n and $f: B \to \mathbb{R}$ a differentiable function whose partial derivatives are uniformly bounded but not necessarily continuous. Prove that *f* has a unique continuous extension to the closure of *B*.

4. Let $f : [0,1] \to \mathbb{R}$ be Riemann integrable over [b,1] for all b such that $0 < b \le 1$.

a. If f is bounded, prove that f is Riemann integrable over [0, 1].**b.** What if f is not bounded?

5a. Find a counter example to the following assertion: If $g_n(z)$ is an entire function having only real zeros for n = 1, 2, ... and if

$$\lim_{n \to \infty} g_n(z) = g(z)$$

uniformly on compact sets in \mathbb{C} , then g(z) has only real zeros.

5b. Add an additional hypothesis about g to make the assertion true, and prove the result.

6. Prove that for each open set $U \subset \mathbb{R}^n$, there exists a countable family \mathfrak{F} of closed, disjoint cubes, each contained in U such that the Lebesgue measure

$$m(U - \cup \{C : C \in \mathfrak{F}\}) = 0.$$