ANALYSIS QUALIFYING EXAM

AUGUST 1999

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit -3 HOURS.

1. Suppose that f_1, f_2, \ldots are nonnegative continuous functions on [0, 1] with $\int_0^1 f_n(x) dx \leq M$.

(1) Show that there exists a point $a \in [0, 1]$ with $f_1(a) \leq 2M$ and $f_2(a) \leq 2M$.

(2) Does there exist a better estimate? That is, a number N < M so that $\inf_{0 \le a \le 1} \max\{f_1(a), f_2(a)\} \le N$ for all such f_1, f_2 . If so, find the smallest such N. If not, give a counterexample.

(3) Show that there always exists an $a \in [0, 1]$ so that $f_n(a) \leq M$ for infinitely many n.

2. Suppose f is a holomorphic function on $\{z \mid |z| < 3R\}$, f(0) = 0, $M_R = \sup_{|z| \le R} |f(z)|$, and $N_R = \sup_{|z| \le R} |f'(z)|$.

(1) Estimate M_R (from above) in terms of N_R .

(2) Estimate N_R (from above) in terms of M_{2R} .

3. Suppose that f(x) is defined on [-1, 1], and that f''(x) is continuous. Show that the series

$$\sum_{n=1}^{\infty} (n(f(1/n) - f(-1/n)) - 2f'(0))$$

converges.

4. Prove that there is no one-to-one conformal map of the punctured disc $G = \{z \in \mathbb{C} | \ 0 < |z| < 1\}$ onto the annulus $A = \{z \in \mathbb{C} | \ 1 < |z| < 2\}.$

5. Let f is a meromorphic function on the complex plane such that $f(z) = 1 + z + z^2 + \cdots$ whenever |z| < 1. Define a sequence of real numbers $a_0, a_1, a_2 \cdots$ by

$$f(z) = \sum_{n=0}^{\infty} a_n (z+2)^n$$

What is the radius of convergence of the new series $\sum_{n=0}^{\infty} a_n z^n$?.

6. A function $g: [0,1] \to \mathbb{R}$ is concave if $tg(x) + (1-t)g(y) \le g(tx + (1-t)y)$ for $0 \le t \le 1$. Prove that for any continuous $f: [0,1] \to \mathbb{R}$ with f(0) = 0, there is a continuous concave function $g: [0,1] \to \mathbb{R}$ such that g(0) = 0 and $g(x) \ge f(x)$ for all $x \in [0,1]$.

(Hint: Show that

 $g(x) = \inf\{h(x) : h \text{ is a continuous concave function on } [0,1], h(y) \ge f(y) \text{ for } y \in [0,1]\}$ works (in particular, g(0) = 0).