ANALYSIS QUALIFYING EXAM

January 2000

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit -3 HOURS.

1. Do there exist function f(z) that is analytic at z = 0 and that satisfy

$$f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^3}, \quad n = 1, 2, \dots$$

2. Let $\{f_n\}$ be a sequence of continuous maps $[0,1] \to \mathbb{R}$ such that

$$\int_0^1 (f_n(y))^2 dy \le 5$$

for all n. Define $g_n: [0,1] \to \mathbb{R}$ by

$$g_n(x) = \int_0^1 \sqrt{x+y} f_n(y) dy.$$

Prove that a subsequence of the sequence $\{g_n\}$ converges uniformly.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous, with

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty.$$

Show that there is a sequence $x_n \in \mathbb{R}$ such that $x_n \to \infty$, $x_n f(x_n) \to 0$ and $x_n f(-x_n) \to 0$ as $n \to \infty$.

4. Let f be a holomorphic map of the unit disk $\mathbb{D} = \{z : |z| < 1\}$ into itself which is not the identity map f(z) = z. Show that f can have at most one fixed point.

5. Let g(z) be analytic in the right half-plane Rez > 0, with |g(z)| < 1 for all such z. If g(1) = 0 how large can |g(2)| be ?

6. Let f be a C^2 function on the real line. Assume f is bounded with bounded second derivative. Let

$$A = \sup_{x \in \mathbb{R}} |f(x)|, \qquad B = \sup_{x \in \mathbb{R}} |f''(x)|.$$

Prove that

$$\sup_{x \in \mathbb{R}} |f'(x)| \le 2\sqrt{AB}.$$