ANALYSIS QUALIFYING EXAM

January 2002

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit -3 HOURS.

1. Let $\Omega = \mathbb{C} - \{Non - Negative real numbers\}$. Is there a non-trivial (non-constant) bounded holomorphic function on Ω ? Justify your answer.

2. Does there exist an analytic function mapping the annulus

$$A = \{ z \mid 1 \le |z| \le 4 \}$$

onto the annulus

$$B = \{ z \mid 1 \le |z| \le 2 \}$$

and taking $C_1 \to C_1$, $C_4 \to C_2$, where C_r is the circle of radius r?

3. Prove that a convex function on \mathbb{R} is continuous.

4. If f is an entire holomorphic function, is there necessarily an entire holomorphic function g such that $e^g = f$? Prove your answer.

5. For real-valued functions on \mathbb{R} : If $f \in L1(\mathbb{R})$, (for the Lebesgue integral), find a necessary and sufficient condition that

$$\lim_{t \to 0} \frac{||f + tg||_1 - ||f||_1}{t}$$

exists for all $g \in L1(\mathbb{R})$.