ANALYSIS QUALIFYING EXAM

January 1998

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit -3 HOURS.

1. Show that there is a complex analytic function defined on the set $U = \{z \in \mathbb{C} | |z| > 4\}$ whose derivative is

$$\frac{z}{(z-1)(z-2)(z-3)}$$

Is there a complex analytic function defined on the set U whose derivative is

$$\frac{z^2}{(z-1)(z-2)(z-3)}$$
 ?

2. Let f be a Lebesgue integrable function on [a, b]. Show that

$$\frac{d}{dx}\int_{a}^{x}|f(t) - r|dt = |f(x) - r|$$

for almost all x in [a, b] and all rational number r.

3. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an analytic function in the open unit disk |z| < 1 where

$$\sum_{n=2}^{\infty} n |a_n| \le |a_1|$$
 and $a_1 \ne 0$.

Prove f is injective (i.e. one-to-one).

4. Find a sequence of measurable functions $f_n : [0,1] \to \mathbb{R}$ such that $\lim_{n\to\infty} f_n(x) = f_0(x)$ for all $x \in [0,1]$ but such that for any measurable subset E of [0,1] with the Lebesgue measure m([0,1]-E) = 0, f_n does not converge to f_0 uniformly on E.

5. Prove that

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos nx \, dx = 0$$

for any Lebesgue integrable function f on the real line.

6. Let

$$f(z) = z + z^2 + z^4 + \dots + z^{2^n} + \dots$$

in the open unit disk |z| < 1. Prove that every point z_0 on the circle |z| = 1 is a singular point of f(z), i.e. there is no holomorphic function $\phi(z)$ in a neighborhood of z_0 such that $\phi(z) = f(z)$ in |z| < 1. [Hint: Note that $f(z^2) = f(z) - z$ and that $z_0 = 1$ is a singular point.]