ANALYSIS QUALIFYING EXAM

May 2002

Justify answers as completely as you can. Give careful statements of theorems you are using. Time limit – 3 HOURS.

1. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable,

$$C_f = \{a \in \mathbb{R} : f'(a) = 0\} and I_f = \{a \in \mathbb{R} : f''(a) = 0\}$$

(a) Show that the number of points in C_f and I_f satisfy: $\#C_f \leq 1 + \#I_f$.

(b) Give a specific example of a polynomial f with $\#C_f = 1, \ \#I_f = 1$, and $#(C_f \cap I_f) = 0.$

2. Suppose that Γ is the counter-clockwise oriented circle of radius 2 about the origin.

- (a) Find $\int_{\Gamma} \frac{e^z}{1+z^2} dz$.
- (b) Find $\int_{\Gamma} e^{-\frac{1}{z^2}} dz$.

3. Suppose that f is a differentiable function on \mathbb{R}^2 , $|\frac{\partial f}{\partial u}|$ is bounded, and $\{(x, y) : f(x, y) \neq 0\}$ is a bounded set.

- (a) Prove that $\frac{d}{dt} \int_{-\infty}^{t} f(x, y) dx = f(t, y).$ (b) Prove that $\frac{d}{dy} \int_{-\infty}^{\infty} f(x, y) dx = \int_{-\infty}^{\infty} \frac{\partial f}{\partial y}(x, y) dx.$
- **4.** (a) Describe all entire functions f having $\inf_{z\neq 0} \frac{|f(z)|}{|z|} > 0$.
- (b) Describe all holomorphic functions g on $\mathbb{C} \setminus \{0\}$ having $\inf_{z \neq 0} \frac{|g(z)|}{|z|} > 0$.

5. Suppose that f is meromorphic on \mathbb{C} and holomorphic and bounded on the unit disk $\{z : |z| < 1\}$. Prove that f is holomorphic on a larger disk $\{z : |z| < 1+\epsilon\}$ for some $\epsilon > 0$.

6. Suppose that f_n is a sequence of positive continuous functions on [0, 1] and $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in [0, 1]$. Let $M_n = \max_{x \in [0, 1]} f_n(x)$.

(a) Give an example (either by sketching a careful graph or by writing a formula) of such a sequence where $\lim_{n\to\infty} M_n = 1$.

(b) Show that if the sequence f_n is also decreasing (i.e. $f_{n+1}(x) \leq f_n(x)$ for all (n, x), then $\lim_{n \to \infty} M_n = 0$.