ANALYSIS QUALIFYING EXAM

May 2004

1. (a) For what real numbers p is

$$\int_1^\infty t^p(\sin^2 t)\,dt \ < \ \infty \ ?$$

(b) For what real numbers q is

$$\int_0^1 t^q(\sin^2 t) \, dt \ < \ \infty \ ?$$

(c) For what real numbers s is

$$\int_{\mathbf{R}^3 \setminus \mathbf{B}_1} |x|^s (\sin^2 |x|) \, dx_1 dx_2 dx_3 < \infty ,$$

where $|x| = \sqrt{x_1^2 + x_2^2 + x_3^2}$ and $\mathbf{B}_1 = \{x \in \mathbf{R}^3 : |x| < 1\}$?

2. For $\varepsilon > 0$, let $\phi_{\varepsilon}(t) = \varepsilon^{-1}\phi(t/\varepsilon)$ where $\phi(t) = 1 - |t|$ for $|t| \le 1$ and $\phi(t) = 0$ for |t| > 1. Then, for $f \in L^1(\mathbf{R})$, let

$$f_{\varepsilon}(x) = \int_{-\infty}^{\infty} f(y)\phi_{\varepsilon}(x-y) \, dy$$
.

(a) Show that each f_{ϵ} is continuous, and even satisfies the estimate

$$|f_{\varepsilon}(w) - f_{\varepsilon}(x)| \leq \varepsilon^{-1} \left(\int |f(t)| dt \right) |w - x|$$

(b) Show that if f itself is uniformly continuous, then f_{ε} approaches f uniformly as $\varepsilon \to 0$.

3. (a) Does there exist, for every $\varepsilon > 0$, an open dense subset U of the plane \mathbf{R}^2 with 2-dimensional Lebesgue measure less than ε ? If so, construct one. If not, explain why it can't exist.

(b) Suppose, for $\theta \in [0, 2\pi)$, ℓ_{θ} is the ray $\{(t \cos \theta, t \sin \theta) \in \mathbf{R}^2 : 0 \le t < +\infty\}$. If E is a measurable subset of \mathbf{R}^2 with positive 2-dimensional Lebesgue measure, then

 $\{\theta \in [0, 2\pi): E \cap \ell_{\theta} \text{ has positive } 1 - \text{dimensional Lebesgue measure in } \ell_{\theta}\}$

has positive 1-dimensional Lebesgue measure.

4. Compute

$$\int_0^\infty \frac{dx}{x^2 + \mathbf{i}} \quad (\text{where } \mathbf{i} \text{ is the usual complex } \sqrt{-1}) \ .$$

5. Suppose that D is the unit disk $\{z \in \mathbb{C} : |z| < 1\}$ and f is a nonconstant holomorphic function on some connected open neighborhood of \overline{D} and that |f(z)| = 1 whenever |z| = 1. Show that f(D) = D.

6. (a) Give a necessary and sufficient (topological) condition on an open set Ω in the complex plane so that for *every* holomorphic function f on Ω there will exist a holomorphic function F on Ω with F' = f. Justify your answer.

(b) Suppose A is a finite subset of the unit disk D and $U = D \setminus A$. Give a necessary and sufficient condition on a holomorphic function f on U so that there will exist a holomorphic function F with F' = f on U. Justify your answer.