Solutions to ANALYSIS QUALIFYING EXAM, May 2004
1. (a)
/ tP(sin?t)dt < 0o <= p<—1
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and both 3777, jp and [, tP dt are finite <= p < —1.
(b)
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/ ti(sin®t)dt < oo <= q> —3
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/ t4(t/2)* dt g/ t9(sin? t) dt g/ 92 dt
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and fol t9+2 dt is finite &= ¢ +2 > —1.

(¢)

because

/ |z|*(sin? |z] ) dzidrodrs < 0o <= s < —3
R3\B;

because, using spherical coordinates,

™ 27 00
/R3\B |z|* (sin? |2| ) dz1dwodrs = / / / p*(sin® p)p? sin pdp df do
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which, as in (a), is finite <<= s+2 < —1.

2. For e > 0, let ¢ (t) = e 1p(t/e) where ¢p(t) = 1 — |t| for |t| < 1 and ¢(t) = 0 for [t| > 1.

Then, for f € L'(R), let
— / F@)ée(z — y) dy

(a) To estimate |f.(w) — f-(x)|, first note that

putw—y) = o -l < [ 160lde < ho—a).
So
o) = E@I < [ 106w —) — bl ldy < <o —al( [ 170)] ).

(b) Since f is uniformly continuous, we may chose, for any n > 0, a positive § so
that |f(y) — f(z)| < n whenever |x — y| < 6. Note also that ¢.(x — y) is nonzero only for
|z —y| <e. Since [*_¢.(z —y)dy =1, we conclude that, for € < 4,

o0

fe(a) - / ()] bl —y) dy| < / F@)— F(@)|oe(a—y) dy < 7-1.

— o0

This is independent of x and gives the desired uniform convergence of f. to f.
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3. (a) There does exist, for every € > 0, an open dense subset U of the plane R? with
2-dimensional Lebesgue measure less than . First make a list a1, as, as, ... of all the points
of the plane whose X and Y coordinates are both rational numbers. Then, the union of
open balls

U = U2 B.si(ay)

is a dense open set with Lebesgue measure < 7 Zjoil (8/ 57 )2 <eE.
(b) Suppose, for § € [0,27), £y is the ray {(tcosf,tsinf) € R* : 0 <t < +oo}. If
is a measurable subset of R? with positive 2-dimensional Lebesgue measure, then

{6 € [0,27) : E N ¥y has positive 1 — dimensional Lebesgue measure in fy}

has positive 1-dimensional Lebesgue measure. To verify this, we may transform to r,60
polar coordinates and then apply Fubini’s theorem. In detail, note that for some positive
numbers R < § and 0 < © < 27, the annular sector

A={z: R<|z| <S5, 0<arg(z) <O}

will have positive measure intersection with E. The polar coordinate transformation
T(z) = (|2|,arg (z)) maps A to the rectangle [R, S] x [0,0] and is Lipschitz with Lipschitz
inverse there. It also maps the interval AN ¥y to the horizontal interval [R, S] x {#}. Since
T is bilipschitz on A, it preserves measurability, positive 2- dimensional measuredness in A
and positive 1-dimensional measuredness in each interval AN¥¢y. So T(AN E) has positive
2-dimensional measure. By Fubini’s Theorem, the slices Sy = T(A N E) N ([R, S] x {6}),
and hence EN ANy =T71(Sy), each have positive measure for a positive measure set of
6 € [0,0].

4. To compute [;° —#2- let f(z) =1/(z* +1i) =1/(2* — (-i)) = 1/(z + a)(z — a) where

$2+i’
/M dv 1/M dx
0 .7}2 +i - 2 -M xz + i7

a = (—1+1i)/v2. Since
we will use the Cauchy residue formula on the upper semi-disk with base [—M, M]. As
M — oo, the boundary integral over the upper semi-circle C; satisfies

M

[, s < /O FEIMdD < 7m0

Only the pole « lies in the upper semi-disks, and the residue of f(2) at a is —4— =

at«
/ = ot = i),
o 22+i 2 T2 23
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conclude that




5. Suppose that D is the unit disk {z € C : |z| < 1} and f is a nonconstant holomorphic
function on some connected open neighborhood of D and that |f(z)| = 1 whenever |z| = 1.
By the maximum modulus principle f(D) C D. Moreover, f(D) C D because f, being
nonconstant, is an open mapping so that f(D) is open.

We readily check that 0f(D) C 9dD. In fact, for any b € 9f(D), any sequence of
points a; € D with f(a;) — b has a subsequence convergent to some a € D. Since b = f(a)
and f is an open mapping, a ¢ D. Thus a € 9D, and b = f(a) € 9D.

We conclude that f(D) is closed as well as open relative to D. Since, being the
continuous image of a connected set, f(D) is connected, and so f(D) = D.

6. (a) The simple connectivity of € is a necessary and sufficient condition that every
holomorphic function f on Q will admit a holomorphic function F on 2 with F’ = f.

If  is simply-connected, then we can define F' in each component §2; of 2 by fixing
one point p € Q; and defining F'(z), for z € €, as the path integral of f along any path in
Q; from zy to z. The independence of the path follows from the simple connectivity of €.

If Q is not simply connected, then we choose a non-contractible loop I' in ) and a
point a € C\ Q inside T, i.e. the winding number of I" about a is nonzero. The function
f(2) = 1/(z — a) is holomorphic in Q. If f admitted a primitive F' with F’ = f, then the
path integral of f along I" would be zero, by the fundamental theorem of calculus. However
this integral is nonzero because a is inside I'.

(b) Suppose A is a finite subset of the unit disk D and U = D \ A. A necessary
and sufficient condition on a holomorphic function f on U to have a holomorphic F' with
F’ = f on U is the vanishing of every path integral of f along any circle 9B, (a) for all
a € A and sufficiently small positive €. (For meromorphic f, one says simply that its
residue at each a € A is zero.)

Under this condition, F'(z) is well-defined by taking an arbitrary path integral of f in
U from a fixed point zy to z.

If the path integral of f is nonzero on some circle, then it is impossible that f = F”,
by the fundamental theorem of calculus.

It is not necessary that the singularities be removable. One gets examples by starting
with F' and differentiating. e.g. f(2) = (l/z)/ =—1/2%or f(2) = (e_z)/ = —e %,



