
Solutions to ANALYSIS QUALIFYING EXAM, May 2004

1. (a) ∫ ∞

1

tp(sin2 t) dt < ∞ ⇐⇒ p < −1

because
∞∑

j=1

jp ≤
∞∑

j=1

(jπ)p π

2
≤

∫ ∞

1

tp(sin2 t) dt <

∫ ∞

1

tp dt

and both
∑∞

j=1 jp and
∫∞
1

tp dt are finite ⇐⇒ p < −1.
(b) ∫ 1

0

tq(sin2 t) dt < ∞ ⇐⇒ q > −3

because ∫ 1

0

tq(t/2)2 dt ≤
∫ 1

0

tq(sin2 t) dt ≤
∫ 1

0

tq+2 dt

and
∫ 1

0
tq+2 dt is finite ⇐⇒ q + 2 > −1.

(c) ∫
R3\B1

|x|s(sin2 |x| ) dx1dx2dx3 < ∞ ⇐⇒ s < −3

because, using spherical coordinates,∫
R3\B1

|x|s(sin2 |x| ) dx1dx2dx3 =
∫ π

0

∫ 2π

0

∫ ∞

1

ρs(sin2 ρ)ρ2 sinφ dρ dθ dφ ,

which, as in (a), is finite ⇐⇒ s + 2 < −1.

2. For ε > 0, let φε(t) = ε−1φ(t/ε) where φ(t) = 1− |t| for |t| ≤ 1 and φ(t) = 0 for |t| > 1.
Then, for f ∈ L1(R), let

fε(x) =
∫ ∞

−∞
f(y)φε(x− y) dy .

(a) To estimate |fε(w)− fε(x)|, first note that

|φε(w − y)− φε(x− y)| ≤
∫ x−y

w−y

|φ′ε(t)| dt ≤ ε−2|w − x| .

So

|fε(w)− fε(x)| ≤
∫ ∞

−∞
|f(y)

(
φε(w − y)− φε(x− y)| dy ≤ ε−2|w − x|

( ∫
|f(y)| dy

)
.

(b) Since f is uniformly continuous, we may chose, for any η > 0, a positive δ so
that |f(y)− f(x)| ≤ η whenever |x− y| < δ. Note also that φε(x− y) is nonzero only for
|x− y| < ε. Since

∫∞
−∞ φε(x− y) dy = 1, we conclude that, for ε < δ,

|fε(x)−f(x)| = |
∫ ∞

−∞

[
f(y)−f(x)

]
φε(x−y) dy| ≤

∫ ∞

−∞
|f(y)−f(x)|φε(x−y) dy ≤ η ·1 .

This is independent of x and gives the desired uniform convergence of fε to f .
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3. (a) There does exist, for every ε > 0, an open dense subset U of the plane R2 with
2-dimensional Lebesgue measure less than ε. First make a list a1, a2, a3, . . . of all the points
of the plane whose X and Y coordinates are both rational numbers. Then, the union of
open balls

U = ∪∞j=1Bε/5j (aj)

is a dense open set with Lebesgue measure ≤ π
∑∞

j=1

(
ε/5j

)2
< ε.

(b) Suppose, for θ ∈ [0, 2π), `θ is the ray {(t cos θ, t sin θ) ∈ R2 : 0 ≤ t < +∞}. If E

is a measurable subset of R2 with positive 2-dimensional Lebesgue measure, then

{θ ∈ [0, 2π) : E ∩ `θ has positive 1− dimensional Lebesgue measure in `θ}

has positive 1-dimensional Lebesgue measure. To verify this, we may transform to r, θ

polar coordinates and then apply Fubini’s theorem. In detail, note that for some positive
numbers R < S and 0 < Θ < 2π, the annular sector

A = {z : R ≤ |z| ≤ S, 0 ≤ arg (z) ≤ Θ }

will have positive measure intersection with E. The polar coordinate transformation
T (z) =

(
|z|, arg (z)

)
maps A to the rectangle [R,S]× [0,Θ] and is Lipschitz with Lipschitz

inverse there. It also maps the interval A∩ `θ to the horizontal interval [R,S]×{θ}. Since
T is bilipschitz on A, it preserves measurability, positive 2- dimensional measuredness in A

and positive 1-dimensional measuredness in each interval A∩ `θ. So T (A∩E) has positive
2-dimensional measure. By Fubini’s Theorem, the slices Sθ = T (A ∩ E) ∩

(
[R,S] × {θ}

)
,

and hence E ∩A∩ `θ = T−1(Sθ), each have positive measure for a positive measure set of
θ ∈ [0,Θ].

4. To compute
∫∞
0

dx
x2 + i , let f(z) = 1/(z2 + i) = 1/

(
z2 − (−i)

)
= 1/(z + α)(z − α) where

α = (−1 + i)/
√

2. Since ∫ M

0

dx

x2 + i
=

1
2

∫ M

−M

dx

x2 + i
,

we will use the Cauchy residue formula on the upper semi-disk with base [−M,M ]. As
M →∞, the boundary integral over the upper semi-circle CM satisfies

|
∫

CM

f(z) dz| ≤
∫ π

0

|f(z)|M dθ ≤ π
M

M2 − 1
→ 0 .

Only the pole α lies in the upper semi-disks, and the residue of f(z) at α is 1
α+α = α

2 . We
conclude that ∫ ∞

0

dx

x2 + i
=

1
2
· 2πi

α

2
=

π

2
√

2
(1− i) .
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5. Suppose that D is the unit disk {z ∈ C : |z| < 1} and f is a nonconstant holomorphic
function on some connected open neighborhood of D and that |f(z)| = 1 whenever |z| = 1.
By the maximum modulus principle f(D) ⊂ D. Moreover, f(D) ⊂ D because f , being
nonconstant, is an open mapping so that f(D) is open.

We readily check that ∂f(D) ⊂ ∂D. In fact, for any b ∈ ∂f(D), any sequence of
points ai ∈ D with f(ai) → b has a subsequence convergent to some a ∈ D. Since b = f(a)
and f is an open mapping, a /∈ D. Thus a ∈ ∂D, and b = f(a) ∈ ∂D.

We conclude that f(D) is closed as well as open relative to D. Since, being the
continuous image of a connected set, f(D) is connected, and so f(D) = D.

6. (a) The simple connectivity of Ω is a necessary and sufficient condition that every
holomorphic function f on Ω will admit a holomorphic function F on Ω with F ′ = f .

If Ω is simply-connected, then we can define F in each component Ωi of Ω by fixing
one point p ∈ Ωi and defining F (z), for z ∈ Ωi, as the path integral of f along any path in
Ωi from z0 to z. The independence of the path follows from the simple connectivity of Ω.

If Ω is not simply connected, then we choose a non-contractible loop Γ in Ω and a
point a ∈ C \ Ω inside Γ, i.e. the winding number of Γ about a is nonzero. The function
f(z) = 1/(z − a) is holomorphic in Ω. If f admitted a primitive F with F ′ = f , then the
path integral of f along Γ would be zero, by the fundamental theorem of calculus. However
this integral is nonzero because a is inside Γ.

(b) Suppose A is a finite subset of the unit disk D and U = D \ A. A necessary
and sufficient condition on a holomorphic function f on U to have a holomorphic F with
F ′ = f on U is the vanishing of every path integral of f along any circle ∂Bε(a) for all
a ∈ A and sufficiently small positive ε. (For meromorphic f , one says simply that its
residue at each a ∈ A is zero.)

Under this condition, F (z) is well-defined by taking an arbitrary path integral of f in
U from a fixed point z0 to z.

If the path integral of f is nonzero on some circle, then it is impossible that f = F ′,
by the fundamental theorem of calculus.

It is not necessary that the singularities be removable. One gets examples by starting
with F and differentiating. e.g. f(z) =

(
1/z

)′ = −1/z2 or f(z) =
(
e−z

)′ = −e−z.
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