1. (a)

$$\int_{1}^{\infty} t^{p}(\sin^{2} t) dt < \infty \iff p < -1$$

because

$$\sum_{j=1}^{\infty} j^p \leq \sum_{j=1}^{\infty} (j\pi)^p \frac{\pi}{2} \leq \int_1^{\infty} t^p (\sin^2 t) dt < \int_1^{\infty} t^p dt$$

and both $\sum_{j=1}^{\infty} j^p$ and $\int_1^{\infty} t^p dt$ are finite $\iff p < -1$. (b)

$$\int_0^1 t^q(\sin^2 t) \, dt < \infty \iff q > -3$$

because

$$\int_0^1 t^q (t/2)^2 \, dt \, \le \int_0^1 t^q (\sin^2 t) \, dt \, \le \int_0^1 t^{q+2} \, dt$$

and $\int_0^1 t^{q+2} dt$ is finite $\iff q+2 > -1$. (c)

$$\int_{\mathbf{R}^3 \setminus \mathbf{B}_1} |x|^s (\sin^2 |x|) \, dx_1 dx_2 dx_3 < \infty \iff s < -3$$

because, using spherical coordinates,

$$\int_{\mathbf{R}^3 \setminus \mathbf{B}_1} |x|^s (\sin^2 |x|) \, dx_1 dx_2 dx_3 = \int_0^\pi \int_0^{2\pi} \int_1^\infty \rho^s (\sin^2 \rho) \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \, ,$$

which, as in (a), is finite $\iff s+2 < -1$.

2. For $\varepsilon > 0$, let $\phi_{\varepsilon}(t) = \varepsilon^{-1}\phi(t/\varepsilon)$ where $\phi(t) = 1 - |t|$ for $|t| \le 1$ and $\phi(t) = 0$ for |t| > 1. Then, for $f \in L^1(\mathbf{R})$, let

$$f_{\varepsilon}(x) = \int_{-\infty}^{\infty} f(y)\phi_{\varepsilon}(x-y) \, dy$$

(a) To estimate $|f_{\varepsilon}(w) - f_{\varepsilon}(x)|$, first note that

$$|\phi_{\varepsilon}(w-y) - \phi_{\varepsilon}(x-y)| \leq \int_{w-y}^{x-y} |\phi_{\varepsilon}'(t)| dt \leq \varepsilon^{-2} |w-x|.$$

 So

$$|f_{\varepsilon}(w) - f_{\varepsilon}(x)| \leq \int_{-\infty}^{\infty} |f(y)(\phi_{\varepsilon}(w-y) - \phi_{\varepsilon}(x-y)| \, dy \leq \varepsilon^{-2} |w-x| \Big(\int |f(y)| \, dy\Big).$$

(b) Since f is uniformly continuous, we may chose, for any $\eta > 0$, a positive δ so that $|f(y) - f(x)| \leq \eta$ whenever $|x - y| < \delta$. Note also that $\phi_{\varepsilon}(x - y)$ is nonzero only for $|x - y| < \varepsilon$. Since $\int_{-\infty}^{\infty} \phi_{\varepsilon}(x - y) \, dy = 1$, we conclude that, for $\varepsilon < \delta$, $|f_{\varepsilon}(x) - f(x)| = |\int_{-\infty}^{\infty} \left[f(y) - f(x) \right] \phi_{\varepsilon}(x - y) \, dy | \leq \int_{-\infty}^{\infty} |f(y) - f(x)| \phi_{\varepsilon}(x - y) \, dy \leq \eta \cdot 1$.

This is independent of x and gives the desired uniform convergence of f_{ε} to f.

3. (a) There does exist, for every $\varepsilon > 0$, an open dense subset U of the plane \mathbb{R}^2 with 2-dimensional Lebesgue measure less than ε . First make a list a_1, a_2, a_3, \ldots of all the points of the plane whose X and Y coordinates are both rational numbers. Then, the union of open balls

$$U = \bigcup_{j=1}^{\infty} \mathbf{B}_{\varepsilon/5^j}(a_j)$$

is a dense open set with Lebesgue measure $\leq \pi \sum_{j=1}^{\infty} (\varepsilon/5^j)^2 < \varepsilon$.

(b) Suppose, for $\theta \in [0, 2\pi)$, ℓ_{θ} is the ray $\{(t \cos \theta, t \sin \theta) \in \mathbf{R}^2 : 0 \le t < +\infty\}$. If E is a measurable subset of \mathbf{R}^2 with positive 2-dimensional Lebesgue measure, then

 $\{\theta \in [0, 2\pi) : E \cap \ell_{\theta} \text{ has positive } 1 - \text{dimensional Lebesgue measure in } \ell_{\theta}\}$

has positive 1-dimensional Lebesgue measure. To verify this, we may transform to r, θ polar coordinates and then apply Fubini's theorem. In detail, note that for some positive numbers R < S and $0 < \Theta < 2\pi$, the annular sector

$$A \; = \; \{ z \; : \; R \leq |z| \leq S, \; 0 \leq \arg(z) \leq \Theta \, \}$$

will have positive measure intersection with E. The polar coordinate transformation $T(z) = (|z|, \arg(z))$ maps A to the rectangle $[R, S] \times [0, \Theta]$ and is Lipschitz with Lipschitz inverse there. It also maps the interval $A \cap \ell_{\theta}$ to the horizontal interval $[R, S] \times \{\theta\}$. Since T is bilipschitz on A, it preserves measurability, positive 2- dimensional measuredness in A and positive 1-dimensional measuredness in each interval $A \cap \ell_{\theta}$. So $T(A \cap E)$ has positive 2-dimensional measure. By Fubini's Theorem, the slices $S_{\theta} = T(A \cap E) \cap ([R, S] \times \{\theta\})$, and hence $E \cap A \cap \ell_{\theta} = T^{-1}(S_{\theta})$, each have positive measure for a positive measure set of $\theta \in [0, \Theta]$.

4. To compute $\int_0^\infty \frac{dx}{x^2 + \mathbf{i}}$, let $f(z) = 1/(z^2 + \mathbf{i}) = 1/(z^2 - (-\mathbf{i})) = 1/(z + \alpha)(z - \alpha)$ where $\alpha = (-1 + \mathbf{i})/\sqrt{2}$. Since $\int_0^M \frac{dx}{x^2 + \mathbf{i}} = \frac{1}{2} \int_{-M}^M \frac{dx}{x^2 + \mathbf{i}}$,

we will use the Cauchy residue formula on the upper semi-disk with base [-M, M]. As $M \to \infty$, the boundary integral over the upper semi-circle C_M satisfies

$$\left| \int_{C_M} f(z) \, dz \right| \leq \int_0^{\pi} |f(z)| M \, d\theta \leq \pi \frac{M}{M^2 - 1} \to 0 \; .$$

Only the pole α lies in the upper semi-disks, and the residue of f(z) at α is $\frac{1}{\alpha+\alpha} = \frac{\overline{\alpha}}{2}$. We conclude that

$$\int_0^\infty \frac{dx}{x^2 + \mathbf{i}} = \frac{1}{2} \cdot 2\pi \mathbf{i} \frac{\overline{\alpha}}{2} = \frac{\pi}{2\sqrt{2}} (1 - \mathbf{i})$$

5. Suppose that D is the unit disk $\{z \in \mathbb{C} : |z| < 1\}$ and f is a nonconstant holomorphic function on some connected open neighborhood of \overline{D} and that |f(z)| = 1 whenever |z| = 1. By the maximum modulus principle $f(D) \subset \overline{D}$. Moreover, $f(D) \subset D$ because f, being nonconstant, is an open mapping so that f(D) is open.

We readily check that $\partial f(D) \subset \partial D$. In fact, for any $b \in \partial f(D)$, any sequence of points $a_i \in D$ with $f(a_i) \to b$ has a subsequence convergent to some $a \in \overline{D}$. Since b = f(a) and f is an open mapping, $a \notin D$. Thus $a \in \partial D$, and $b = f(a) \in \partial D$.

We conclude that f(D) is closed as well as open relative to D. Since, being the continuous image of a connected set, f(D) is connected, and so f(D) = D.

6. (a) The simple connectivity of Ω is a necessary and sufficient condition that every holomorphic function f on Ω will admit a holomorphic function F on Ω with F' = f.

If Ω is simply-connected, then we can define F in each component Ω_i of Ω by fixing one point $p \in \Omega_i$ and defining F(z), for $z \in \Omega_i$, as the path integral of f along any path in Ω_i from z_0 to z. The independence of the path follows from the simple connectivity of Ω .

If Ω is not simply connected, then we choose a non-contractible loop Γ in Ω and a point $a \in \mathbb{C} \setminus \Omega$ inside Γ , i.e. the winding number of Γ about a is nonzero. The function f(z) = 1/(z-a) is holomorphic in Ω . If f admitted a primitive F with F' = f, then the path integral of f along Γ would be zero, by the fundamental theorem of calculus. However this integral is nonzero because a is inside Γ .

(b) Suppose A is a finite subset of the unit disk D and $U = D \setminus A$. A necessary and sufficient condition on a holomorphic function f on U to have a holomorphic F with F' = f on U is the vanishing of every path integral of f along any circle $\partial \mathbf{B}_{\varepsilon}(a)$ for all $a \in A$ and sufficiently small positive ε . (For meromorphic f, one says simply that its residue at each $a \in A$ is zero.)

Under this condition, F(z) is well-defined by taking an arbitrary path integral of f in U from a fixed point z_0 to z.

If the path integral of f is nonzero on some circle, then it is impossible that f = F', by the fundamental theorem of calculus.

It is not necessary that the singularities be removable. One gets examples by starting with F and differentiating. e.g. $f(z) = (1/z)' = -1/z^2$ or $f(z) = (e^{-z})' = -e^{-z}$.