Introduction to Riemannian holonomy groups and calibrated geometry

Dominic Joyce (Oxford University)

Abstract: The holonomy group of a Riemannian manifold \((M, g)\) is a global invariant which encodes the tensors constant under the Levi-Civita connection of \(g\). The possible holonomy groups were classified by Berger in 1955, and include Kahler, hyperkahler, Calabi-Yau manifolds and the exceptional geometries G2 and Spin(7) – basically, a list of the most interesting special geometric structures in Riemannian geometry.

Calibrated geometry was introduced by Harvey and Lawson in 1981. Given a Riemannian manifold \((M, g)\), one uses a closed k-form \(\phi\) called a calibration to define a distinguished class of minimal k-dimensional submanifolds \(N\) in \(M\) called calibrated submanifolds. It is a natural companion to Riemannian holonomy groups, because manifolds with special holonomy come equipped with one or more natural, interesting calibrations. Examples include complex submanifolds of Kahler manifolds and special Lagrangian m-folds in Calabi-Yau m-folds.

This will be an introductory survey at an elementary level, with no new research. Experts should skip it and start early on the buffet.