ANALYSIS QUALIFYING EXAM

January 2004

Please explain all your answers and indicate which theorems you are using.

1. (a) Classify all entire functions $f: \mathbf{C} \rightarrow \mathbf{C}$ such that

$$
\limsup _{R \rightarrow \infty} \sup _{|z|=R} \frac{|f(z)|}{R^{4}}<\infty .
$$

(b) Classify all entire functions $f: \mathbf{C} \rightarrow \mathbf{C}$ such that

$$
\liminf _{R \rightarrow \infty} \inf _{|z|=R} \frac{|f(z)|}{R^{4}}>0 .
$$

2. Suppose that $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function for every positive integer n, $M=\sup _{n, x}\left|f_{n}^{\prime}(x)\right|<\infty$ and that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \in \mathbf{R}$ exists for all $x \in \mathbf{R}$.
(a) Show that the functions f_{n} are uniformly bounded on each fixed interval $[-R, R]$.
(b) Is f continuous on \mathbf{R} ? Prove or find a counterexample.
(b) Is f differentiable on \mathbf{R} ? Prove or find a counterexample.
3. Compute the (improper) integral

$$
\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)\left(x^{2}+2\right)^{2}} d x
$$

4. (a) In the unit disk $\{z \in \mathbf{C}:|z|<1\}$ how many solutions are there to the equation $z^{8}-5 z^{3}+z=2$?
(b) In the radius- 2 disk $\{z \in \mathbf{C}:|z|<2\}$ how many solutions are there to the same equation $z^{8}-5 z^{3}+z=2$?
5. (a) Suppose that f is integrable on $[0,1]$. Show that there exists a decreasing sequence $a_{n} \downarrow 0$ so that $\lim _{n \rightarrow \infty} a_{n}\left|f\left(a_{n}\right)\right|=0$.
(b) Let f_{n} be a sequence of functions integrable on $[0,1]$ with $\sup _{n} \int_{0}^{1}\left|f_{n}(x)\right| d x<\infty$. Does there exist a subsequence $f_{n_{k}}$ of f_{n} and sequence of points $b_{k} \downarrow 0$ and so that $\lim _{k \rightarrow \infty} b_{k}\left|f_{n_{k}}\left(b_{k}\right)\right|=0$. If so, prove it. If not, find a counterexample.
6. Suppose $1 \leq p \leq \infty, f \in L^{p}([0,1])$, and $g(t)$ is the Lebesgue measure of the set $\{x \in[0,1]:|f(x)|>t\}$ for $0 \leq t<\infty$.
(a) Show that $\int_{0}^{\infty} g(t) d t<\infty$ if $1<p \leq \infty$.
(b) Is this still true for $p=1$? Prove or find a counterexample.
