Solutions to ANALYSIS QUALIFYING EXAM
 January 2004

1. (a) Classify all entire functions $f: \mathbf{C} \rightarrow \mathbf{C}$ such that

$$
\sup _{z \in \mathbf{C}} \frac{|f(z)|}{1+|z|^{4}}<\infty
$$

The function $f\left(\frac{1}{z}\right)$ has an isolated singularity at 0 . If this singularity is removable, then f is bounded and so constant by Louiville's theorem, which is one possibility. If it had a transcendental singularity at 0 , then $z^{4} f\left(\frac{1}{z}\right)$ would also have a transcendental singularity at 0 and be unbounded, contradicting the growth assumption on f at ∞. We see that $f\left(\frac{1}{z}\right)$ must have a pole at 0 so that f is necessarily a polynomial. Also we see that the degree of f is at most 4 , and any such polynomial satisfies the hypothesis. Thus $f(z)=a_{0}+a_{1} z+a-2 z^{2}+a_{3} z^{3}+a_{4} z^{4}$ for some complex numbers a_{0}, \ldots, a_{4}
(b) Classify all entire functions $g: \mathbf{C} \rightarrow \mathbf{C}$ such that

$$
\inf _{z \in \mathbf{C}} \frac{|g(z)|}{|z|^{4}}>0
$$

Again $g\left(\frac{1}{z}\right)$ cannot have a transcendental singularity at 0 because then $z^{4} g\left(\frac{1}{z}\right)$ would be arbitrarily close to zero for some points z near 0 . So again g is a polynomial. But now the condition implies that g can vanish only at the origin. So, by the fundamental theorem of algebra, $g(z)=a z^{m}$. The condition $\inf _{z \in \mathbf{C}}|a||z|^{m-4}>0$ requires that $m-4 \geq 0$ (for z near 0) and $m-4 \leq 0$ (for z near ∞). So $g(z)=a z^{4}$ with $a \neq 0$.
2. Suppose that $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function for every positive integer n, $M=\sup _{n, x}\left|f_{n}^{\prime}(x)\right|<\infty$ and that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \in \mathbf{R}$ exists for all $x \in \mathbf{R}$.
(a) Show that the functions f_{n} are uniformly bounded on each fixed interval $[a, b] \subset \mathbf{R}$.

Since $f(a)=\lim _{n \rightarrow \infty} f_{n}(a), N=\sup _{n}\left|f_{n}(a)\right|<\infty$. Then for any $x \in[a, b]$ the fundamental theorem of calculus gives the uniform bound

$$
\left|f_{n}(x)\right| \leq\left|f_{n}(a)\right|+\left|\int_{a}^{x} f_{n}^{\prime}(t) d t\right| \leq N+M|b-a|
$$

(b) Is f continuous on \mathbf{R} ? Prove or find a counterexample. Yes, as in (a) the fundamental theorem of calculus implies that for $-\infty<x<y<\infty$,

$$
|f(y)-f(x)|=\lim _{n \rightarrow \infty}\left|f_{n}(y)-f_{n}(x)\right| \leq \limsup _{n \rightarrow \infty} \int_{x}^{y}\left|f_{n}^{\prime}(t)\right| d t \leq M(y-x)
$$

(c) Is f differentiable on \mathbf{R} ? Prove or find a counterexample. Not necessarily. One easily obtains an example with $f(x)=|x|$ and the graph of $f_{n}(x)$ being obtained by slightly rounding the graph of $|x|$.
3. Compute the (improper) integral

$$
\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} d x
$$

This improper integral exists as $\lim _{R \rightarrow \infty} I_{R}$ where

$$
I_{R}=\int_{1 / R}^{R} \frac{\sin x}{x\left(x^{2}+1\right)} d x=\frac{1}{2}\left[\int_{-R}^{-1 / R}+\int_{1 / R}^{R}\right] \frac{\sin x}{x\left(x^{2}+1\right)} d x
$$

because $\left|\frac{\sin x}{x}\right| \leq 1$ and $\frac{1}{x^{2}+1}$ is integrable on $[0, \infty)$. We want to use the Cauchy integral formula, but we need to choose the $f(z)$ so that the integral on the extra outer boundary curve will approach 0 as the domain gets larger. [Warning: The estimate $|\sin z| \leq 1$ is not always true for z complex.] One thing that works is to note that $\frac{\sin x}{x\left(x^{2}+1\right)}=\operatorname{Im} \frac{e^{i x}}{x\left(x^{2}+1\right)}$ for x real and take

$$
f(z)=\frac{e^{i z}}{z\left(z^{2}+1\right)}
$$

on the domain Ω_{R} in the upper halfplane bounded by the 4 curves

$$
\left[-R,-\frac{1}{R}\right], \quad \gamma_{R}=\left\{\frac{1}{R} e^{i \theta}: \pi \geq \theta \geq 0\right\}, \quad\left[\frac{1}{R}, R\right], \quad \Gamma_{R}=\left\{R e^{i \theta}: 0 \leq \theta \leq \pi\right\}
$$

Inside $\Omega_{R}, f(z)$ has a single pole at $z=i$ with residue $\frac{e^{i^{2}}}{i(i+i)}=-\frac{1}{2 e}$. Thus, Cauchy's residue formula gives

$$
-\frac{\pi}{e}=\operatorname{Im}\left(2 \pi i\left(-\frac{1}{2 e}\right)\right)=\mathcal{I} m \int_{\partial \Omega_{R}} f(z) d z=2 I_{R}+\mathcal{I} m \int_{\gamma_{R}} f(z) d z+\mathcal{I} m \int_{\Gamma_{R}} f(z) d z
$$

On $\Gamma_{R},\left|e^{i R e^{i \theta}}\right|=\left|e^{-R \sin \theta}\right| \leq 1$ because $\sin \theta \in[0,1]$. So we see that

$$
\left|\int_{\Gamma_{R}} f(z) d z\right| \leq \frac{1}{R^{3}} \pi R \rightarrow 0 \text { as } R \rightarrow \infty
$$

Finally

$$
\int_{\gamma_{R}} f(z) d z=-\frac{1}{2} \int_{\partial \mathbf{B}_{1 / R}} f(z) d z=-\frac{1}{2}(2 \pi i) \operatorname{Res}_{0} f=-\pi i(1)
$$

So, taking imaginary parts,

$$
\lim _{R \rightarrow \infty} I_{R}=\frac{1}{2}\left[-\frac{\pi}{e}+\pi\right]=\frac{\pi}{2}\left(1-e^{-1}\right)
$$

4. (a) In the unit disk $\{z \in \mathbf{C}:|z|<1\}$ how many solutions are there to the equation $z^{8}-5 z^{3}+z=2$? We apply Rouché's Theorem with $f(z)=z^{8}-5 z^{3}+z_{2}$ and $g(z)=-5 z^{3}$ on the unit disk noting that for $|z|=1$,

$$
|f(z)-g(z)|=\left|z^{8}+z-2\right| \leq|z|^{8}+|z|+2=1+1+2=4<5(1)^{3}=|g(z)|
$$

Thus, in the unit disk, $f(z)$ has the same number of zeros as $g(z)$ (counting multiplicities), namely 3 . So the equation $z^{8}-5 z^{3}+z=2$ has 3 solutions in the unit disk.
(b) In the radius- 2 disk $\{z \in \mathbf{C}:|z|<2\}$ how many solutions are there to the same equation $z^{8}-5 z^{3}+z=2$? Here we use the same f but now take $g(z)=z^{8}$ and note that for $|z|=2$ one has

$$
|f(z)-g(z)|=\left|-5 z^{3}+z-2\right| \leq 5(2)^{3}+2+2=44<(2)^{8}=|g(z)|
$$

So the equation $z^{8}-5 z^{3}+z=2$ has 8 solutions in the radius- 2 disk.
5. (a) Suppose that f is integrable on $[0,1]$. Show that there exists a sequence of positive numbers $a_{n} \downarrow 0$ so that $\lim _{n \rightarrow \infty} a_{n}\left|f\left(a_{n}\right)\right|=0$.

If this were false, then $\epsilon=\liminf _{x \rightarrow 0} x|f(x)|>0$, and there there would exist a positive δ so that $x|f(x)| \geq \frac{1}{2} \epsilon$ whenever $0<x \leq \delta$. But then

$$
\int_{0}^{1}|f(x)| d x \geq \int_{0}^{\delta}|f(x)| d x \geq \int_{0}^{\delta} \frac{\epsilon}{2 x} d x=\infty
$$

contradicting the integrability of f.
(b) Let f_{n} be a sequence of functions integrable on $[0,1]$ with $\sup _{n} \int_{0}^{1}\left|f_{n}(x)\right| d x<\infty$. Does there exist a subsequence $f_{n_{k}}$ of f_{n} and sequence of positive numbers $b_{k} \downarrow 0$ and so that $\lim _{k \rightarrow \infty} b_{k}\left|f_{n_{k}}\left(b_{k}\right)\right|=0$. If so, prove it. If not, find a counterexample.

As Frank pointed out, a stronger result is true. One need only assume that each f_{n} is integrable and one doesn't need to pass to a subsequence $f_{n_{k}}$ for the conclusion. Here we first choose $\alpha_{k} \downarrow 0$ so that $\sum_{k=1}^{\infty} \alpha_{k} \int_{0}^{1}\left|f_{k}(x)\right| d x<\infty$, and apply (a) to the integrable function $f(x)=\sum_{k=1}^{\infty} \alpha_{k}\left|f_{k}(x)\right|$ to find points $a_{m} \downarrow 0$ so that $\lim _{m \rightarrow \infty} a_{m} f\left(a_{m}\right)=0$. Passing to a subsequence we can make this sequence converge as fast as we want. In particular we can choose inductively $a_{m_{k}} \downarrow 0$ so that $a_{m_{k}} f\left(a_{m_{k}}\right) \leq \alpha_{k}^{2}$. Letting $b_{k}=a_{m_{k}}$, we conclude that

$$
b_{k} f_{k}\left(b_{k}\right) \leq b_{k} \alpha_{k}^{-1} f\left(b_{k}\right) \leq \alpha_{k}^{-1} \alpha_{k}^{2}=\alpha_{k} \rightarrow 0 \text { as } k \rightarrow \infty .
$$

6. Suppose $1 \leq p \leq \infty, f \in L^{p}([0,1])$, and $h(t)$ is the Lebesgue measure of the set $\{x \in[0,1]:|f(x)|>t\}$ for $0 \leq t<\infty$.
(a) Show that $\int_{0}^{\infty} h(t) d t<\infty$ if $1<p \leq \infty$.
(b) Is this still true for $p=1$? Prove or find a counterexample.

Here this is true for $p=1$. Since Hölder's inequality implies that $L^{p}([0,1]) \subset$ $L^{1}([0,1])$, we only need do the case $p=1$ and part (a) follows.

For this, one uses Fubini's theorem with the characteristic function of the subgraph

$$
A=\{(x, y): 0 \leq x \leq 1,0 \leq y<|f(x)|\}
$$

Let λ denote 1 dimensional Lebesgue measure. By Fubini's theorem, A is 2 dimensional Lebesgue measurable with 2 dimensional measure

$$
|A|=\int_{0}^{1} \lambda\{y:(x, y) \in A\} d x=\int_{0}^{1}|f(x)| d x<\infty
$$

But slicing the other way shows that

$$
\int_{0}^{\infty} h(y) d y=\int_{0}^{\infty} \lambda\{x:|f(x)|>y\} d y=\int_{0}^{\infty} \lambda\{x:(x, y) \in A\} d y=|A|<\infty
$$

One can get an alternate proof of (a) (but not (b)) by using Chebychev's inequality to see that

$$
h(t)=\lambda\left\{x \in[0,1]:|f(x)|^{p}>t^{p}\right\} \leq \frac{1}{t^{p}} \int_{0}^{1}|f(x)|^{p} d x
$$

So

$$
\int_{0}^{\infty} h(t) d t \leq 1+\int_{1}^{\infty} h(t) d t \leq 1+\left(\int_{0}^{1}|f(x)|^{p} d x\right) \int_{1}^{\infty} t^{-p} d t<\infty
$$

