## Solutions to ANALYSIS QUALIFYING EXAM January 2004

**1.** (a) Classify all entire functions  $f : \mathbf{C} \to \mathbf{C}$  such that

$$\sup_{z \in \mathbf{C}} \frac{|f(z)|}{1+|z|^4} < \infty .$$

The function  $f(\frac{1}{z})$  has an isolated singularity at 0. If this singularity is removable, then f is bounded and so constant by Louiville's theorem, which is one possibility. If it had a transcendental singularity at 0, then  $z^4 f(\frac{1}{z})$  would also have a transcendental singularity at 0 and be unbounded, contradicting the growth assumption on f at  $\infty$ . We see that  $f(\frac{1}{z})$  must have a pole at 0 so that f is necessarily a polynomial. Also we see that the degree of f is at most 4, and any such polynomial satisfies the hypothesis. Thus  $f(z) = a_0 + a_1 z + a - 2z^2 + a_3 z^3 + a_4 z^4$  for some complex numbers  $a_0, \ldots, a_4$ 

(b) Classify all entire functions  $g: \mathbf{C} \to \mathbf{C}$  such that

$$\inf_{z \in \mathbf{C}} \frac{|g(z)|}{|z|^4} > 0 .$$

Again  $g(\frac{1}{z})$  cannot have a transcendental singularity at 0 because then  $z^4g(\frac{1}{z})$  would be arbitrarily close to zero for some points z near 0. So again g is a polynomial. But now the condition implies that g can vanish only at the origin. So, by the fundamental theorem of algebra,  $g(z) = az^m$ . The condition  $\inf_{z \in \mathbb{C}} |a| |z|^{m-4} > 0$  requires that  $m - 4 \ge 0$  (for znear 0) and  $m - 4 \le 0$  (for z near  $\infty$ ). So  $g(z) = az^4$  with  $a \ne 0$ .

**2.** Suppose that  $f_n : \mathbf{R} \to \mathbf{R}$  is a differentiable function for every positive integer n,  $M = \sup_{n,x} |f'_n(x)| < \infty$  and that  $f(x) = \lim_{n \to \infty} f_n(x) \in \mathbf{R}$  exists for all  $x \in \mathbf{R}$ .

(a) Show that the functions  $f_n$  are uniformly bounded on each fixed interval  $[a, b] \subset \mathbf{R}$ . Since  $f(a) = \lim_{n \to \infty} f_n(a)$ ,  $N = \sup_n |f_n(a)| < \infty$ . Then for any  $x \in [a, b]$  the fundamental theorem of calculus gives the uniform bound

$$|f_n(x)| \leq |f_n(a)| + |\int_a^x f'_n(t) dt| \leq N + M|b-a|.$$

(b) Is f continuous on  $\mathbf{R}$ ? Prove or find a counterexample. Yes, as in (a) the fundamental theorem of calculus implies that for  $-\infty < x < y < \infty$ ,

$$|f(y) - f(x)| = \lim_{n \to \infty} |f_n(y) - f_n(x)| \le \limsup_{n \to \infty} \int_x^y |f'_n(t)| dt \le M(y - x)$$

(c) Is f differentiable on  $\mathbf{R}$ ? Prove or find a counterexample. Not necessarily. One easily obtains an example with f(x) = |x| and the graph of  $f_n(x)$  being obtained by slightly rounding the graph of |x|.

## **3.** Compute the (improper) integral

$$\int_0^\infty \frac{\sin x}{x(x^2+1)} \, dx \; .$$

This improper integral exists as  $\lim_{R\to\infty} I_R$  where

$$I_R = \int_{1/R}^R \frac{\sin x}{x(x^2+1)} \, dx = \frac{1}{2} \Big[ \int_{-R}^{-1/R} + \int_{1/R}^R \Big] \frac{\sin x}{x(x^2+1)} \, dx$$

because  $|\frac{\sin x}{x}| \leq 1$  and  $\frac{1}{x^2+1}$  is integrable on  $[0, \infty)$ . We want to use the Cauchy integral formula, but we need to choose the f(z) so that the integral on the extra outer boundary curve will approach 0 as the domain gets larger. [Warning: The estimate  $|\sin z| \leq 1$  is not always true for z complex.] One thing that works is to note that  $\frac{\sin x}{x(x^2+1)} = \mathcal{I}m\frac{e^{ix}}{x(x^2+1)}$  for x real and take

$$f(z) = \frac{e^{iz}}{z(z^2+1)}$$

on the domain  $\Omega_R$  in the upper halfplane bounded by the 4 curves

$$[-R, -\frac{1}{R}], \quad \gamma_R = \{\frac{1}{R}e^{i\theta} : \pi \ge \theta \ge 0\}, \quad [\frac{1}{R}, R], \quad \Gamma_R = \{Re^{i\theta} : 0 \le \theta \le \pi\}.$$

Inside  $\Omega_R$ , f(z) has a single pole at z = i with residue  $\frac{e^{i^2}}{i(i+i)} = -\frac{1}{2e}$ . Thus, Cauchy's residue formula gives

$$-\frac{\pi}{e} = \mathcal{I}m\left(2\pi i(-\frac{1}{2e})\right) = \mathcal{I}m\int_{\partial\Omega_R} f(z)\,dz = 2I_R + \mathcal{I}m\int_{\gamma_R} f(z)\,dz + \mathcal{I}m\int_{\Gamma_R} f(z)\,dz$$

On  $\Gamma_R$ ,  $|e^{iRe^{i\theta}}| = |e^{-R\sin\theta}| \le 1$  because  $\sin\theta \in [0,1]$ . So we see that

$$\left|\int_{\Gamma_R} f(z) dz\right| \leq \frac{1}{R^3} \pi R \to 0 \text{ as } R \to \infty$$

Finally

$$\int_{\gamma_R} f(z) dz = -\frac{1}{2} \int_{\partial \mathbf{B}_{1/R}} f(z) dz = -\frac{1}{2} (2\pi i) \operatorname{Res}_0 f = -\pi i (1) .$$

So, taking imaginary parts,

$$\lim_{R \to \infty} I_R = \frac{1}{2} \left[ -\frac{\pi}{e} + \pi \right] = \frac{\pi}{2} (1 - e^{-1}) .$$

4. (a) In the unit disk  $\{z \in \mathbb{C} : |z| < 1\}$  how many solutions are there to the equation  $z^8 - 5z^3 + z = 2$ ? We apply Rouché's Theorem with  $f(z) = z^8 - 5z^3 + z_2$  and  $g(z) = -5z^3$  on the unit disk noting that for |z| = 1,

$$|f(z) - g(z)| = |z^8 + z - 2| \le |z|^8 + |z| + 2 = 1 + 1 + 2 = 4 < 5(1)^3 = |g(z)|.$$

Thus, in the unit disk, f(z) has the same number of zeros as g(z) (counting multiplicities), namely 3. So the equation  $z^8 - 5z^3 + z = 2$  has 3 solutions in the unit disk.

(b) In the radius-2 disk  $\{z \in \mathbb{C} : |z| < 2\}$  how many solutions are there to the same equation  $z^8 - 5z^3 + z = 2$ ? Here we use the same f but now take  $g(z) = z^8$  and note that for |z| = 2 one has

$$|f(z) - g(z)| = |-5z^3 + z - 2| \le 5(2)^3 + 2 + 2 = 44 < (2)^8 = |g(z)|$$

So the equation  $z^8 - 5z^3 + z = 2$  has 8 solutions in the radius-2 disk.

5. (a) Suppose that f is integrable on [0, 1]. Show that there exists a sequence of positive numbers  $a_n \downarrow 0$  so that  $\lim_{n\to\infty} a_n |f(a_n)| = 0$ .

If this were false, then  $\epsilon = \liminf_{x \to 0} x |f(x)| > 0$ , and there there would exist a positive  $\delta$  so that  $x|f(x)| \geq \frac{1}{2}\epsilon$  whenever  $0 < x \leq \delta$ . But then

$$\int_0^1 |f(x)| \, dx \ \ge \ \int_0^\delta |f(x)| \, dx \ \ge \ \int_0^\delta \frac{\epsilon}{2x} \, dx \ = \ \infty \ ,$$

contradicting the integrability of f.

(b) Let  $f_n$  be a sequence of functions integrable on [0,1] with  $\sup_n \int_0^1 |f_n(x)| dx < \infty$ . Does there exist a subsequence  $f_{n_k}$  of  $f_n$  and sequence of positive numbers  $b_k \downarrow 0$  and so that  $\lim_{k\to\infty} b_k |f_{n_k}(b_k)| = 0$ . If so, prove it. If not, find a counterexample.

As Frank pointed out, a stronger result is true. One need only assume that each  $f_n$  is integrable and one doesn't need to pass to a subsequence  $f_{n_k}$  for the conclusion. Here we first choose  $\alpha_k \downarrow 0$  so that  $\sum_{k=1}^{\infty} \alpha_k \int_0^1 |f_k(x)| \, dx < \infty$ , and apply (a) to the integrable function  $f(x) = \sum_{k=1}^{\infty} \alpha_k |f_k(x)|$  to find points  $a_m \downarrow 0$  so that  $\lim_{m\to\infty} a_m f(a_m) = 0$ . Passing to a subsequence we can make this sequence converge as fast as we want. In particular we can choose inductively  $a_{m_k} \downarrow 0$  so that  $a_{m_k} f(a_{m_k}) \le \alpha_k^2$ . Letting  $b_k = a_{m_k}$ , we conclude that

$$b_k f_k(b_k) \leq b_k \alpha_k^{-1} f(b_k) \leq \alpha_k^{-1} \alpha_k^2 = \alpha_k \rightarrow 0 \text{ as } k \rightarrow \infty.$$

**6.** Suppose  $1 \le p \le \infty$ ,  $f \in L^p([0,1])$ , and h(t) is the Lebesgue measure of the set  $\{x \in [0,1] : |f(x)| > t\}$  for  $0 \le t < \infty$ .

(a) Show that  $\int_0^\infty h(t) dt < \infty$  if 1 .

(b) Is this still true for p = 1? Prove or find a counterexample.

Here this is true for p = 1. Since Hölder's inequality implies that  $L^p([0,1]) \subset L^1([0,1])$ , we only need do the case p = 1 and part (a) follows.

For this, one uses Fubini's theorem with the characteristic function of the subgraph

$$A = \{(x, y) : 0 \le x \le 1, 0 \le y < |f(x)|\}.$$

Let  $\lambda$  denote 1 dimensional Lebesgue measure. By Fubini's theorem, A is 2 dimensional Lebesgue measurable with 2 dimensional measure

$$|A| = \int_0^1 \lambda\{y : (x,y) \in A\} \, dx = \int_0^1 |f(x)| \, dx < \infty \, .$$

But slicing the other way shows that

$$\int_0^\infty h(y) \, dy \ = \ \int_0^\infty \lambda\{x \ : \ |f(x)| > y\} \, dy \ = \ \int_0^\infty \lambda\{x \ : \ (x,y) \in A\} \, dy \ = \ |A| \ < \ \infty \ .$$

One can get an alternate proof of (a) (but not (b)) by using Chebychev's inequality to see that

$$h(t) = \lambda \{ x \in [0,1] : |f(x)|^p > t^p \} \le \frac{1}{t^p} \int_0^1 |f(x)|^p \, dx \; .$$

 $\operatorname{So}$ 

$$\int_0^\infty h(t) \, dt \, \leq \, 1 + \int_1^\infty h(t) \, dt \, \leq \, 1 + \left( \int_0^1 |f(x)|^p \, dx \right) \int_1^\infty t^{-p} \, dt \, < \, \infty \, .$$