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1. Suppose f : C → C is continuous and the complex derivative f ′(z) exists for all z ∈ C.
(a) What is the Cauchy integral formula for f on the disk |z| < R ?

f(z) =
1

2πi

∫
∂BR(z)

f(ζ)
ζ − z

dζ .

(b) Since dn

dzn

(
1

ζ−z

)
= n!

(ζ−z)n+1 , which is bounded for |z| ≤ r < R, we may differentiate
under the integral in the Cauchy Integral formula to find that all the complex derivatives
exist and satisfy

f (n)(z) =
n!
2πi

∫
∂BR(z)

f(ζ)
(ζ − z)n+1

dζ .

(c) Taking z = 0 in this formula, we readily find

|f (n)(0)| ≤ MR
n!
Rn

.

2. For 0 < α ≤ 1, a function f : [0, 1] → [0, 1] is α-Hölder continuous if there is a positive
constant C so that

|f(x)− f(y)| ≤ C |x− y|α for 0 ≤ x < y ≤ 1 .

(a) Since x =
√

x
√

x <
√

y
√

x, y + 2x < y + 2
√

y
√

x, and(√
y −

√
x
)2 = y − 2

√
y
√

x + x < y − x =
(√

y − x
)2

.

Taking square roots gives the desired Hölder estimate
√

y −
√

x <
√

y − x.

(b) If g(x) =
√

x were 1-Hölder continuous at x = 0, then
√

y = g(y) − g(0) ≤
C(y − 0). But this inequality is false for y ≤ C−2.

3. (a) Show that if f is meromorphic (but not holomorphic) at 0, then, for some
n ∈ {1, 2, · · ·},

lim
r→0

rn

∫ 2π

0

|f(reiθ)| dθ exists and is nonzero .

Choose n to be the order of the pole of f at 0 so that the Laurent expansion for f begins
bn

zn + bn

zn−1 +· · · with bn 6= 0. For 0 < r < 1 this series is absolutely and uniformly convergent
on |z| = r. Taking the absolute value, multiplying by rn, integrating, using the triangular
inequality, and taking the limit at r → 0, we find that limr→0 rn

∫ 2π

0
|f(reiθ)| dθ = |bn|.



(b) Show that if g is an entire holomorphic function, and

lim
r→∞

r−1/2

∫ 2π

0

|g(reiθ)| dθ < ∞ , then g is a constant .

We may repeat the proof of 1(c) with f replaced by g and MR replaced by

NR =
∫ 2π

0

|g(Reiθ| dθ ≤ CR1/2 .

So for n ≥ 1, |g(n)(0)|
n! ≤ NR R−n ≤ C R

1
2−n → 0 an R → ∞. Using the power series

expansion for g at 0 we find that g ≡ g(0), a constant.

4. Suppose f : R → R is continuously differentiable with
∫∞
0
|f(t)| dt < ∞.

(a) Since |f(t)| ≥ |f(t)e−εt2 | and f(t)e−εt2 → f(t) as ε → 0, Lebesgue’s dominated
convergence gives

lim
ε→0

∫ ∞

0

f(t)e−εt2 dt =
∫ ∞

0

f(t) dt .

(b) Since |f(t)| ≥ |f(t)e−t2/ε| and f(t)e−t2/ε → 0 as ε → 0, dominated convergence
this time gives

lim
ε→0

∫ ∞

0

f(t)e−t2/ε dt = 0 .

(c) Write f = f1 + f2 with f1 and f2 both integrable and continuously differentiable,
f1 | [3,∞) ≡ 0, and f2 | [0, 1] ≡ 0. We readily check (for example by differentiating) that,
for each ε < 1, the function te−t2/ε is decreasing on [1,∞). So

|1
ε

∫ ∞

0

f2(t)te−t2/ε dt| ≤ 1
ε

e−1/ε

∫ ∞

1

|f2(t)| dt → 0 as ε → 0 .

For the f1 term, we use integration by parts with g(t) = − 1
2e−t2/ε to get that

1
ε

∫ ∞

0

f1(t) t e−t2/ε dt =
∫ 3

0

f1(t)g′(t) dt

= f1(3)g(3) − f1(0)g(0) −
∫ 3

0

f ′1(t)g(t) dt

= 0 +
1
2
f(0) +

1
2

∫ 3

0

f ′(t)e−t2/ε dt

→ 1
2
f(0) + 0 as ε → 0 .

So limε→0
1
ε

∫∞
0

f1(t)te−t2/ε dt = 1
2f(0).



5. (a) Suppose that A is a (possibly uncountable) set. Prove that if fa : R → [0, 1] is
a continuous function for each a ∈ A, then f(x) = supa∈A fa(x) is Lebesgue measurable.
For each t ∈ R, let Et = {x : f(x) > t} and Ea,t = {x : fa(x) > t}. So x ∈ Et iff
f(x) > t iff fa(x) > t for some a ∈ A iff x ∈ ∪a∈AEa,t. Since f is continuous, each Ea,t is
open so Et = ∪a∈AEa,t is also open, hence measurable. So f is measurable.

(b) Show that there exists a set A and a family {ga : a ∈ A} of Lebesgue measurable
functions ga : R → [0, 1] so that g(x) = supa∈A ga(x) is not Lebesgue measurable. For
an unmeasurable subset A of R, g = χA is not measurable. But g = supa∈A ga where each
ga = χ{a} is measurable.

6. (a) For what complex numbers z is the series
∑∞

k=0 2−k ekz absolutely convergent?

Since a geometric series
∑∞

k=0 ak converges absolutely iff |a| < 1 and |2−k ekz| =
( 1
2ex)k we see that the series from 6(a) converges iff 1

2ex < 1 or x < log 2.
(b) For these z, the sum of this series is given by the formula for the sum of a geometric

series, namely,
1

1− 1
2ez

=
2

2− ez
.

(c) The series
∑∞

k=0 2−k cos kz is absolutely convergent iff |y| < log 2. In fact, note
that cos kz = 1

2 (eikz + e−iks). Also

|1
2
eiz| = 1

2
e−y < 1 ⇔ ey >

1
2

and
|1
2
e−iz| = 1

2
ey < 1 ⇔ ey < 2 .

Thus for |y| < log 2 both geometric series of exponentials
∑∞

k=0(
1
2eiz)k and

∑∞
k=0(

1
2e−iz)k

converge absolutely and hence so does
∑∞

k=0 2−k cos kz.
For |y| ≥ log 2 one of the two geometric series of exponentials does converge absolutely

while the other definitely does not. Thus it is impossible that their average converges
absolutely.


