Solutions to ANALYSIS QUALIFYING EXAM

January 2005

1. Suppose $f: \mathbf{C} \rightarrow \mathbf{C}$ is continuous and the complex derivative $f^{\prime}(z)$ exists for all $z \in \mathbf{C}$.
(a) What is the Cauchy integral formula for f on the disk $|z|<R$?

$$
f(z)=\frac{1}{2 \pi \mathbf{i}} \int_{\partial \mathbf{B}_{R}(z)} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

(b) Since $\frac{d^{n}}{d z^{n}}\left(\frac{1}{\zeta-z}\right)=\frac{n!}{(\zeta-z)^{n+1}}$, which is bounded for $|z| \leq r<R$, we may differentiate under the integral in the Cauchy Integral formula to find that all the complex derivatives exist and satisfy

$$
f^{(n)}(z)=\frac{n!}{2 \pi \mathbf{i}} \int_{\partial \mathbf{B}_{R}(z)} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

(c) Taking $z=0$ in this formula, we readily find

$$
\left|f^{(n)}(0)\right| \leq M_{R} \frac{n!}{R^{n}}
$$

2. For $0<\alpha \leq 1$, a function $f:[0,1] \rightarrow[0,1]$ is α-Hölder continuous if there is a positive constant C so that

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha} \text { for } 0 \leq x<y \leq 1
$$

(a) Since $x=\sqrt{x} \sqrt{x}<\sqrt{y} \sqrt{x}, \quad y+2 x<y+2 \sqrt{y} \sqrt{x}, \quad$ and

$$
(\sqrt{y}-\sqrt{x})^{2}=y-2 \sqrt{y} \sqrt{x}+x<y-x=(\sqrt{y-x})^{2}
$$

Taking square roots gives the desired Hölder estimate $\sqrt{y}-\sqrt{x}<\sqrt{y-x}$.
(b) If $g(x)=\sqrt{x}$ were 1-Hölder continuous at $x=0$, then $\sqrt{y}=g(y)-g(0) \leq$ $C(y-0)$. But this inequality is false for $y \leq C^{-2}$.
3. (a) Show that if f is meromorphic (but not holomorphic) at 0 , then, for some $n \in\{1,2, \cdots\}$,

$$
\lim _{r \rightarrow 0} r^{n} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta \quad \text { exists and is nonzero. }
$$

Choose n to be the order of the pole of f at 0 so that the Laurent expansion for f begins $\frac{b_{n}}{z^{n}}+\frac{b_{n}}{z^{n-1}}+\cdots$ with $b_{n} \neq 0$. For $0<r<1$ this series is absolutely and uniformly convergent on $|z|=r$. Taking the absolute value, multiplying by r^{n}, integrating, using the triangular inequality, and taking the limit at $r \rightarrow 0$, we find that $\lim _{r \rightarrow 0} r^{n} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta=\left|b_{n}\right|$.
(b) Show that if g is an entire holomorphic function, and

$$
\lim _{r \rightarrow \infty} r^{-1 / 2} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right| d \theta<\infty, \quad \text { then } g \text { is a constant }
$$

We may repeat the proof of 1 (c) with f replaced by g and M_{R} replaced by

$$
N_{R}=\int_{0}^{2 \pi} \mid g\left(R e^{\mathbf{i} \theta} \mid d \theta \leq C R^{1 / 2}\right.
$$

So for $n \geq 1, \frac{\left|g^{(n)}(0)\right|}{n!} \leq N_{R} R^{-n} \leq C R^{\frac{1}{2}-n} \rightarrow 0$ an $R \rightarrow \infty$. Using the power series expansion for g at 0 we find that $g \equiv g(0)$, a constant.
4. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuously differentiable with $\int_{0}^{\infty}|f(t)| d t<\infty$.
(a) Since $|f(t)| \geq\left|f(t) e^{-\varepsilon t^{2}}\right|$ and $f(t) e^{-\varepsilon t^{2}} \rightarrow f(t)$ as $\varepsilon \rightarrow 0$, Lebesgue's dominated convergence gives

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{\infty} f(t) e^{-\varepsilon t^{2}} d t=\int_{0}^{\infty} f(t) d t
$$

(b) Since $|f(t)| \geq\left|f(t) e^{-t^{2} / \varepsilon}\right|$ and $f(t) e^{-t^{2} / \varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, dominated convergence this time gives

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{\infty} f(t) e^{-t^{2} / \varepsilon} d t=0
$$

(c) Write $f=f_{1}+f_{2}$ with f_{1} and f_{2} both integrable and continuously differentiable, $f_{1} \mid[3, \infty) \equiv 0$, and $f_{2} \mid[0,1] \equiv 0$. We readily check (for example by differentiating) that, for each $\varepsilon<1$, the function $t e^{-t^{2} / \varepsilon}$ is decreasing on $[1, \infty)$. So

$$
\left|\frac{1}{\varepsilon} \int_{0}^{\infty} f_{2}(t) t e^{-t^{2} / \varepsilon} d t\right| \leq \frac{1}{\varepsilon} e^{-1 / \varepsilon} \int_{1}^{\infty}\left|f_{2}(t)\right| d t \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

For the f_{1} term, we use integration by parts with $g(t)=-\frac{1}{2} e^{-t^{2} / \varepsilon}$ to get that

$$
\begin{aligned}
& \frac{1}{\varepsilon} \int_{0}^{\infty} f_{1}(t) t e^{-t^{2} / \varepsilon} d t=\int_{0}^{3} f_{1}(t) g^{\prime}(t) d t \\
& =f_{1}(3) g(3)-f_{1}(0) g(0)-\int_{0}^{3} f_{1}^{\prime}(t) g(t) d t \\
& =0+\frac{1}{2} f(0)+\frac{1}{2} \int_{0}^{3} f^{\prime}(t) e^{-t^{2} / \varepsilon} d t \\
& \rightarrow \frac{1}{2} f(0)+0 \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

So $\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{\infty} f_{1}(t) t e^{-t^{2} / \varepsilon} d t=\frac{1}{2} f(0)$.
5. (a) Suppose that A is a (possibly uncountable) set. Prove that if $f_{a}: \mathbf{R} \rightarrow[0,1]$ is a continuous function for each $a \in A$, then $f(x)=\sup _{a \in A} f_{a}(x)$ is Lebesgue measurable. For each $t \in \mathbf{R}$, let $E_{t}=\{x: f(x)>t\}$ and $E_{a, t}=\left\{x: f_{a}(x)>t\right\}$. So $x \in E_{t}$ iff $f(x)>t$ iff $f_{a}(x)>t$ for some $a \in A$ iff $x \in \cup_{a \in A} E_{a, t}$. Since f is continuous, each $E_{a, t}$ is open so $E_{t}=\cup_{a \in A} E_{a, t}$ is also open, hence measurable. So f is measurable.
(b) Show that there exists a set A and a family $\left\{g_{a}: a \in A\right\}$ of Lebesgue measurable functions $g_{a}: \mathbf{R} \rightarrow[0,1]$ so that $g(x)=\sup _{a \in A} g_{a}(x)$ is not Lebesgue measurable. For an unmeasurable subset A of $\mathbf{R}, g=\chi_{A}$ is not measurable. But $g=\sup _{a \in A} g_{a}$ where each $g_{a}=\chi_{\{a\}}$ is measurable.
6. (a) For what complex numbers z is the series $\sum_{k=0}^{\infty} 2^{-k} e^{k z}$ absolutely convergent?

Since a geometric series $\sum_{k=0}^{\infty} a^{k}$ converges absolutely iff $|a|<1$ and $\left|2^{-k} e^{k z}\right|=$ $\left(\frac{1}{2} e^{x}\right)^{k}$ we see that the series from 6(a) converges iff $\frac{1}{2} e^{x}<1$ or $x<\log 2$.
(b) For these z, the sum of this series is given by the formula for the sum of a geometric series, namely,

$$
\frac{1}{1-\frac{1}{2} e^{z}}=\frac{2}{2-e^{z}} .
$$

(c) The series $\sum_{k=0}^{\infty} 2^{-k} \cos k z$ is absolutely convergent iff $|y|<\log 2$. In fact, note that $\cos k z=\frac{1}{2}\left(e^{\mathbf{i} k z}+e^{-\mathbf{i} k s}\right)$. Also

$$
\left|\frac{1}{2} e^{\mathbf{i} z}\right|=\frac{1}{2} e^{-y}<1 \Leftrightarrow e^{y}>\frac{1}{2}
$$

and

$$
\left|\frac{1}{2} e^{-\mathbf{i} z}\right|=\frac{1}{2} e^{y}<1 \Leftrightarrow e^{y}<2
$$

Thus for $|y|<\log 2$ both geometric series of exponentials $\sum_{k=0}^{\infty}\left(\frac{1}{2} e^{\mathbf{i} z}\right)^{k}$ and $\sum_{k=0}^{\infty}\left(\frac{1}{2} e^{-\mathbf{i} z}\right)^{k}$ converge absolutely and hence so does $\sum_{k=0}^{\infty} 2^{-k} \cos k z$.

For $|y| \geq \log 2$ one of the two geometric series of exponentials does converge absolutely while the other definitely does not. Thus it is impossible that their average converges absolutely.

