Solutions to Analysis Exam, August, 2003

1. Suppose $0 < \alpha < 2$.

(a) The principal value integral

$$\int_0^\infty \frac{x^\alpha}{x - x^3} \, dx = \lim_{\epsilon \to 0} \Big(\int_0^{1-\epsilon} + \int_{1+\epsilon}^\infty \Big) \frac{x^\alpha}{x - x^3} \, dx \; .$$

Here it is necessary to consider a limit (called an improper integral) because the function $\frac{x^{\alpha}}{x-x^{3}}$ is not integrable near x = 1. It is locally integrable near 0 and ∞ . The choice of $1 - \epsilon$ and $1 + \epsilon$ for approximating integration limits is the simplest (the principal value) as opposed to other choices such as $1 - \epsilon$, $1 + \epsilon^{2}$.

(b) Here one can apply the Cauchy integral formula to the principal branch f(z)of $-\frac{z^{\alpha}}{z(z-1)(z+1)}$ on the domain Ω_{ϵ} in the upper half plane bounded by the 4 oriented intervals $[-\frac{1}{\epsilon}, -1 - \epsilon]$, $[-1 + \epsilon, -\epsilon]$, $[-\epsilon, \epsilon]$, $[\epsilon, 1 - \epsilon]$, $[1 + \epsilon, \frac{1}{\epsilon}]$, the upper counterclockwise oriented semicircle $C_{1/\epsilon}$ of radius $\frac{1}{\epsilon}$, and the 3 clockwise oriented upper semicircles $D_{\epsilon}^{-1}, D_{\epsilon}^{0}, D_{\epsilon}^{+1}$ of radius ϵ centered at -1, 0, 1. As $\epsilon \to 0$, the integral over the big semicircle $C_{1/\epsilon}$ approaches 0 because there $|f(z)|(\frac{1}{\epsilon}) \leq C(\frac{1}{\epsilon})^{1+\alpha-3} \to 0$. Also the integral over D_{ϵ}^{0} approaches 0 as $\epsilon \to 0$ because there $|f(z)|\epsilon \leq C\epsilon^{\alpha} \to 0$. The integrals over D_{ϵ}^{+1} and D_{ϵ}^{-1} approach $-\pi i$ times the residues of f at +1 and -1, which are $-\frac{1}{2}$ and $-\frac{1}{2}e^{\pi i\alpha}$. On the positive X-axis $f(z) = \frac{x^{\alpha}}{x-x^{3}}$ and on the negative X-axis $f(z) = \frac{e^{\pi i\alpha}|x|^{\alpha}}{x-x^{3}}$. Changing variables $x \mapsto -x$ for the integrals on the negative X-axis now gives

$$0 = \int_{\Omega_{\epsilon}} f(z) dz = o(\epsilon) + \frac{\pi i}{2} (1 + e^{\pi i \alpha}) + (1 - e^{\pi i \alpha}) \Big(\int_{\epsilon}^{1 - \epsilon} + \int_{1 + \epsilon}^{1/\epsilon} \Big) \frac{x^{\alpha}}{x - x^{3}} dx .$$

Letting $\epsilon \to 0$ the principal value integral equals

$$\int_0^\infty \frac{x^\alpha}{x - x^3} \, dx = \left(\frac{\pi i}{2}\right) \frac{e^{\pi i \alpha} + 1}{e^{\pi i \alpha} - 1} = \frac{\pi}{2} \cot\left(\frac{\pi \alpha}{2}\right) \, .$$

(c)

$$I(\alpha) = \int_0^\infty \frac{x^\alpha}{x - x^3} \, dx = \int_\infty^0 \frac{y^{-\alpha}}{\frac{1}{y} - \frac{1}{y^3}} \frac{-dy}{y^2} = \int_0^\infty \frac{y^{-\alpha}}{y - \frac{1}{y}} \, dy$$
$$= \int_0^\infty \frac{y^{2-\alpha}}{y^3 - y} \, dy = -\int_0^\infty \frac{y^{2-\alpha}}{y - y^3} \, dy = -I(2-\alpha)$$

and $\cot \frac{\pi(2-\alpha)}{2} = \cot \left(\pi - \frac{\pi\alpha}{2}\right) = -\cot \frac{\pi\alpha}{2}$ agrees.

2. Suppose that f(x, y) is continuous on the plane and that there is finite M so that $|f(x, y) - f(x, z)| \le M|y - z|$ for all $x, y, z \in \mathbf{R}$.

(a) For any $x \in \mathbf{R}$, the function $f(x, \cdot)$ is Lipschitz, hence absolutely continuous. So the partial derivative $\frac{\partial f}{\partial y}(x, y)$ exists for almost all $y \in \mathbf{R}$.

(b) Prove that $\frac{d}{dy} \int_0^1 f(x,y) dx = \int_0^1 \frac{\partial f}{\partial y}(x,y) dx$.

For each $y \in \mathbf{R}$, $x \in [0, 1]$, and sequence $\epsilon_i \to 0$ let

$$g_i(x,y) = \frac{f(x,y+\epsilon_i) - f(x)}{\epsilon_i}$$

Then $|g_i(x,y)| \leq M$ for all *i*. So Lebesgue's Dominated Convergence Theorem implies that

$$\lim_{i \to \infty} \epsilon_i^{-1} \Big[\int_0^1 f(x, y + \epsilon_i) \, dx - \int_0^1 f(x, y) \, dx \Big] = \lim_{i \to \infty} \int_0^1 g_i(x, y) \, dx$$
$$= \int_0^1 \lim_{i \to \infty} g_i(x, y) \, dx = \int_0^1 \frac{\partial f}{\partial y}(x, y) \, dx \, .$$

Since the RHS is independent of the sequence $\epsilon_i \to 0$, one finds that the derivative $\frac{d}{dy} \int_0^1 f(x, y) dx$ exists and equals the RHS.

(c) Express $\frac{d}{dy} \int_0^{y^2} f(x, y) dx$ in terms of integrals of f and $\frac{\partial f}{\partial y}$. Letting $F(s,t) = \int_0^s f(x,t) dx$, we see from the fundamental theorem and (b) that

$$\frac{\partial F}{\partial s}(s,t) = f(s,t) \text{ and } \frac{\partial F}{\partial t}(s,t) = \int_0^s \frac{\partial f}{\partial y}(x,t) \, dx \; .$$

So we use the chain rule to compute

$$\frac{d}{dy} \int_0^{y^2} f(x,y) \, dx = \frac{d}{dy} F(y^2,y)$$
$$= \frac{\partial F}{\partial s} (y^2,y) \frac{\partial y^2}{\partial y} + \frac{\partial F}{\partial t} (y^2,y) \frac{\partial y}{\partial y}$$
$$= 2y f(y^2,y) + \int_0^{y^2} \frac{\partial f}{\partial y} (x,y) \, dx$$

3.(a) Show that the direct analog of Rolle's theorem does not apply to holomorphic functions. Do this by exhibiting an entire holomorphic function f such that f(0) = f(1) and yet f'(z) never takes the value 0.

 e^z doesn't vanish and $e^{z+2\pi i} = e^z$. So we rotate the domain by 90° and rescale by letting $f(z) = e^{2\pi i z}$. Then f(0) = 1 = f(1) and $f'(z) = 2\pi i e^{2\pi i z} \neq 0$.

(b) Suppose f is a holomorphic function on the unit disk $\{z : |z| < 1\}$. Show that f must be constant if $f(a_i) = f(b_i)$ for two sequences a_i, b_i of positive real numbers that satisfy the inequalities

$$0 < \ldots < a_{i+1} < b_{i+1} < a_i < b_i < \ldots < a_1 < b_1 < 1$$

Both monotone sequences converge to some real number c with $0 \le c < 1$. Writing f = u + iv we find from Rolle's theorem, points $a_i < c_i < b_i$ so that $\frac{\partial u}{\partial x}(c_i) = 0$. Since $c_i \to c$, we deduce from the real analyticity of $u(\cdot, 0)$ that $\frac{\partial u}{\partial x}(\cdot, 0) \equiv 0$ and so u is constant on the X-axis. Similarly v is also constant on the X-axis. But then the holomorphic function f being constant on the X-axis, must itself be constant.

4. Suppose $0 < M < \infty$ and, for each positive integer $j, f_j : [0,1] \to [-M,M]$ is a monotone increasing function. Prove that there is a subsequence $f_{j'}$ and a countable subset A of [0,1] so that $f_{j'}(t)$ converges, as $j' \to \infty$, for every $t \in [0,1] \setminus A$.

Proof: Suppose $\mathbf{Q} \cap [0,1] = \{a_1, a_2, \ldots\}$. A subsequence $f_{\alpha_1(1)}(a_1), f_{\alpha_1(2)}(a_1), \ldots$ of the bounded sequence of numbers $f_1(a_1), f_2(a_1), \ldots$ converges to a number $f(a_1)$. Inductively, choose a subsequence $f_{\alpha_j(1)}(a_j), f_{\alpha_j(2)}(a_j), \ldots$ of the sequence $f_{\alpha_{j-1}(1)}(a_j), f_{\alpha_{j-1}(2)}(a_j), \ldots$ convergent to a number $f(a_j)$.

Let $j' = \alpha_j(j)$ and $f(x) = \sup_{a_i < x} f(a_i) = \lim_{\epsilon \downarrow 0} \sup_{x - \epsilon < a_i < x} f(a_i)$. Then f is monotone increasing and the set A of discontinuities of f is at most countable. To see that $\lim_{j \to \infty} f_{j'}(x) = f(x)$ for any $x \in (0, 1) \setminus A$, we choose, for $\epsilon > 0$, numbers $a_i < x < a_{\tilde{i}}$ so that $f(a_{\tilde{i}}) - \epsilon < f(x) < f(a_i) + \epsilon$, and then J so that

$$|f_{j'}(a_i) - f(a_i)| < \epsilon \text{ and } |f_{j'}(a_{\tilde{i}}) - f(a_{\tilde{i}})| < \epsilon$$

for $j \geq J$. For such j it follows that

$$f(x) - 2\epsilon < f(a_i) - \epsilon < f_{j'}(a_i) < f_{j'}(x) < f_{j'}(a_{\tilde{i}}) < f(a_{\tilde{i}}) + \epsilon < f(x) + 2\epsilon .$$

Thus $|f_{j'}(x) - f(x)| < 2\epsilon.$

5. (a) Is there a nonconstant real function h that is continuous on the closed disk $\{z : |z| \le 1\}$, harmonic on the open disk $\{z : |z| < 1\}$, and vanishes on the upper unit semi-circle (that is, $h(e^{i\theta}) = 0$ for $0 \le \theta \le \pi$)?

The Poisson integral formula shows that, for any continuous function g on the unit circle, one may find a harmonic function on the open ball which is continuous on the closed ball and has boundary values g. So it suffices to chose any nonconstant g which vanishes on the upper semi-circle.

(b) Is there a nonconstant complex function f that is continuous on the closed disk $\{z : |z| \le 1\}$, holomorphic on the open disk $\{z : |z| < 1\}$, and vanishes on the upper unit semi-circle (that is, $f(e^{i\theta}) = 0$ for $0 \le \theta \le \pi$)?

There is a conformal map from the unit disk to the upper half plane. This takes the upper semi-circle to an interval on the X-axis. Composing with this conformal map thus gives a holomorphic map on the upper half plane which vanishes on this interval. Schwarz reflection about this interval then extends this function to be a holomorphic function whose domain contains the interval and vanishes on the interval. The identity theorem implies that this function, and hence the original function, must vanish identically.

6. Assume that f(x) is a Lebesgue measurable function on **R**. Prove the function defined on \mathbf{R}^2 by F(x, y) = f(x - y) is Lebesgue measurable

We need to show that $F^{-1}((a,b))$ is measurable in \mathbb{R}^2 for any interval $(a,b) \subset \mathbb{R}$. Note that $F = f \circ P$ where P(x,y) = x+y. Also note that $P = p \circ \sqrt{2} \cdot \phi$ where ϕ is a 45° rotation of the plane and p(x,y) = x. So

$$F^{-1}((a,b)) = (\sqrt{2} \cdot \phi)^{-1} (p^{-1}[f^{-1}((a,b))])$$

 $E = f^{-1}((a, b))$ is measurable in **R** by the measurability of f, and $p^{-1}(E) = E \times \mathbf{R}$ is measurable by the definition of Lebesgue measure as a product measure. Moreover, since Lebesgue measurability is preserved under rotation and homothety $F^{-1}((a, b)) = (\sqrt{2} \cdot \phi)^{-1}(E \times \mathbf{R})$ is measurable.