## Solutions to Analysis Exam, August, 2003

1. Suppose $0<\alpha<2$.
(a) The principal value integral

$$
\int_{0}^{\infty} \frac{x^{\alpha}}{x-x^{3}} d x=\lim _{\epsilon \rightarrow 0}\left(\int_{0}^{1-\epsilon}+\int_{1+\epsilon}^{\infty}\right) \frac{x^{\alpha}}{x-x^{3}} d x
$$

Here it is necessary to consider a limit (called an improper integral) because the function $\frac{x^{\alpha}}{x-x^{3}}$ is not integrable near $x=1$. It is locally integrable near 0 and $\infty$. The choice of $1-\epsilon$ and $1+\epsilon$ for approximating integration limits is the simplest (the principal value) as opposed to other choices such as $1-\epsilon, 1+\epsilon^{2}$.
(b) Here one can apply the Cauchy integral formula to the principal branch $f(z)$ of $-\frac{z^{\alpha}}{z(z-1)(z+1)}$ on the domain $\Omega_{\epsilon}$ in the upper half plane bounded by the 4 oriented intervals $\left[-\frac{1}{\epsilon},-1-\epsilon\right],[-1+\epsilon,-\epsilon],[-\epsilon, \epsilon],[\epsilon, 1-\epsilon],\left[1+\epsilon, \frac{1}{\epsilon}\right]$, the upper counterclockwise oriented semicircle $C_{1 / \epsilon}$ of radius $\frac{1}{\epsilon}$, and the 3 clockwise oriented upper semicircles $D_{\epsilon}^{-1}, D_{\epsilon}^{0}, D_{\epsilon}^{+1}$ of radius $\epsilon$ centered at $-1,0,1$. As $\epsilon \rightarrow 0$, the integral over the big semicircle $C_{1 / \epsilon}$ approaches 0 because there $|f(z)|\left(\frac{1}{\epsilon}\right) \leq C\left(\frac{1}{\epsilon}\right)^{1+\alpha-3} \rightarrow 0$. Also the integral over $D_{\epsilon}^{0}$ approaches 0 as $\epsilon \rightarrow 0$ because there $|f(z)| \epsilon \leq C \epsilon^{\alpha} \rightarrow 0$. The integrals over $D_{\epsilon}^{+1}$ and $D_{\epsilon}^{-1}$ approach $-\pi i$ times the residues of $f$ at +1 and -1 , which are $-\frac{1}{2}$ and $-\frac{1}{2} e^{\pi i \alpha}$. On the positive $X$-axis $f(z)=\frac{x^{\alpha}}{x-x^{3}}$ and on the negative $X$-axis $f(z)=\frac{e^{\pi i \alpha}|x|^{\alpha}}{x-x^{3}}$. Changing variables $x \mapsto-x$ for the integrals on the negative $X$-axis now gives

$$
0=\int_{\Omega_{\epsilon}} f(z) d z=o(\epsilon)+\frac{\pi i}{2}\left(1+e^{\pi i \alpha}\right)+\left(1-e^{\pi i \alpha}\right)\left(\int_{\epsilon}^{1-\epsilon}+\int_{1+\epsilon}^{1 / \epsilon}\right) \frac{x^{\alpha}}{x-x^{3}} d x .
$$

Letting $\epsilon \rightarrow 0$ the principal value integral equals

$$
\int_{0}^{\infty} \frac{x^{\alpha}}{x-x^{3}} d x=\left(\frac{\pi i}{2}\right) \frac{e^{\pi i \alpha}+1}{e^{\pi i \alpha}-1}=\frac{\pi}{2} \cot \left(\frac{\pi \alpha}{2}\right)
$$

(c)

$$
\begin{aligned}
I(\alpha) & =\int_{0}^{\infty} \frac{x^{\alpha}}{x-x^{3}} d x=\int_{\infty}^{0} \frac{y^{-\alpha}}{\frac{1}{y}-\frac{1}{y^{3}}} \frac{-d y}{y^{2}}=\int_{0}^{\infty} \frac{y^{-\alpha}}{y-\frac{1}{y}} d y \\
& =\int_{0}^{\infty} \frac{y^{2-\alpha}}{y^{3}-y} d y=-\int_{0}^{\infty} \frac{y^{2-\alpha}}{y-y^{3}} d y=-I(2-\alpha)
\end{aligned}
$$

and $\cot \frac{\pi(2-\alpha)}{2}=\cot \left(\pi-\frac{\pi \alpha}{2}\right)=-\cot \frac{\pi \alpha}{2}$ agrees.
2. Suppose that $f(x, y)$ is continuous on the plane and that there is finite $M$ so that $|f(x, y)-f(x, z)| \leq M|y-z|$ for all $x, y, z \in \mathbf{R}$.
(a) For any $x \in \mathbf{R}$, the function $f(x, \cdot)$ is Lipschitz, hence absolutely continuous. So the partial derivative $\frac{\partial f}{\partial y}(x, y)$ exists for almost all $y \in \mathbf{R}$.
(b) Prove that $\frac{d}{d y} \int_{0}^{1} f(x, y) d x=\int_{0}^{1} \frac{\partial f}{\partial y}(x, y) d x$.

For each $y \in \mathbf{R}, x \in[0,1]$, and sequence $\epsilon_{i} \rightarrow 0$ let

$$
g_{i}(x, y)=\frac{f\left(x, y+\epsilon_{i}\right)-f(x)}{\epsilon_{i}}
$$

Then $\left|g_{i}(x, y)\right| \leq M$ for all $i$. So Lebesgue's Dominated Convergence Theorem implies that

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} \epsilon_{i}^{-1}\left[\int_{0}^{1} f\left(x, y+\epsilon_{i}\right) d x-\int_{0}^{1} f(x, y) d x\right]=\lim _{i \rightarrow \infty} \int_{0}^{1} g_{i}(x, y) d x \\
& =\int_{0}^{1} \lim _{i \rightarrow \infty} g_{i}(x, y) d x=\int_{0}^{1} \frac{\partial f}{\partial y}(x, y) d x .
\end{aligned}
$$

Since the RHS is independent of the sequence $\epsilon_{i} \rightarrow 0$, one finds that the derivative $\frac{d}{d y} \int_{0}^{1} f(x, y) d x$ exists and equals the RHS.
(c) Express $\frac{d}{d y} \int_{0}^{y^{2}} f(x, y) d x$ in terms of integrals of $f$ and $\frac{\partial f}{\partial y}$. Letting $F(s, t)=\int_{0}^{s} f(x, t) d x$, we see from the fundamental theorem and (b) that

$$
\frac{\partial F}{\partial s}(s, t)=f(s, t) \text { and } \frac{\partial F}{\partial t}(s, t)=\int_{0}^{s} \frac{\partial f}{\partial y}(x, t) d x
$$

So we use the chain rule to compute

$$
\begin{aligned}
\frac{d}{d y} \int_{0}^{y^{2}} f(x, y) d x & =\frac{d}{d y} F\left(y^{2}, y\right) \\
& =\frac{\partial F}{\partial s}\left(y^{2}, y\right) \frac{\partial y^{2}}{\partial y}+\frac{\partial F}{\partial t}\left(y^{2}, y\right) \frac{\partial y}{\partial y} \\
& =2 y f\left(y^{2}, y\right)+\int_{0}^{y^{2}} \frac{\partial f}{\partial y}(x, y) d x
\end{aligned}
$$

3. (a) Show that the direct analog of Rolle's theorem does not apply to holomorphic functions. Do this by exhibiting an entire holomorphic function $f$ such that $f(0)=f(1)$ and yet $f^{\prime}(z)$ never takes the value 0 .
$e^{z}$ doesn't vanish and $e^{z+2 \pi i}=e^{z}$. So we rotate the domain by $90^{\circ}$ and rescale by letting $f(z)=e^{2 \pi i z}$. Then $f(0)=1=f(1)$ and $f^{\prime}(z)=2 \pi i e^{2 \pi i z} \neq 0$.
(b) Suppose $f$ is a holomorphic function on the unit disk $\{z:|z|<1\}$. Show that $f$ must be constant if $f\left(a_{i}\right)=f\left(b_{i}\right)$ for two sequences $a_{i}, b_{i}$ of positive real numbers that satisfy the inequalities

$$
0<\ldots<a_{i+1}<b_{i+1}<a_{i}<b_{i}<\ldots<a_{1}<b_{1}<1
$$

Both monotone sequences converge to some real number $c$ with $0 \leq c<1$. Writing $f=u+i v$ we find from Rolle's theorem, points $a_{i}<c_{i}<b_{i}$ so that $\frac{\partial u}{\partial x}\left(c_{i}\right)=0$. Since $c_{i} \rightarrow c$, we deduce from the real analyticity of $u(\cdot, 0)$ that $\frac{\partial u}{\partial x}(\cdot, 0) \equiv 0$ and so $u$ is constant on the $X$-axis. Similarly $v$ is also constant on the $X$-axis. But then the holomorphic function $f$ being constant on the $X$-axis, must itself be constant.
4. Suppose $0<M<\infty$ and, for each positive integer $j, f_{j}:[0,1] \rightarrow[-M, M]$ is a monotone increasing function. Prove that there is a subsequence $f_{j^{\prime}}$ and a countable subset $A$ of $[0,1]$ so that $f_{j^{\prime}}(t)$ converges, as $j^{\prime} \rightarrow \infty$, for every $t \in[0,1] \backslash A$.

Proof: Suppose $\mathbf{Q} \cap[0,1]=\left\{a_{1}, a_{2}, \ldots\right\}$. A subsequence $f_{\alpha_{1}(1)}\left(a_{1}\right), f_{\alpha_{1}(2)}\left(a_{1}\right), \ldots$ of the bounded sequence of numbers $f_{1}\left(a_{1}\right), f_{2}\left(a_{1}\right), \ldots$ converges to a number $f\left(a_{1}\right)$. Inductively, choose a subsequence $f_{\alpha_{j}(1)}\left(a_{j}\right), f_{\alpha_{j}(2)}\left(a_{j}\right), \ldots$ of the sequence $f_{\alpha_{j-1}(1)}\left(a_{j}\right), f_{\alpha_{j-1}(2)}\left(a_{j}\right), \ldots$ convergent to a number $f\left(a_{j}\right)$.

Let $j^{\prime}=\alpha_{j}(j)$ and $f(x)=\sup _{a_{i}<x} f\left(a_{i}\right)=\lim _{\epsilon \downarrow 0} \sup _{x-\epsilon<a_{i}<x} f\left(a_{i}\right)$. Then $f$ is monotone increasing and the set $A$ of discontinuities of $f$ is at most countable. To see that $\lim _{j \rightarrow \infty} f_{j^{\prime}}(x)=f(x)$ for any $x \in(0,1) \backslash A$, we choose, for $\epsilon>0$, numbers $a_{i}<x<a_{\tilde{i}}$ so that $f\left(a_{\tilde{i}}\right)-\epsilon<f(x)<f\left(a_{i}\right)+\epsilon$, and then $J$ so that

$$
\left|f_{j^{\prime}}\left(a_{i}\right)-f\left(a_{i}\right)\right|<\epsilon \text { and }\left|f_{j^{\prime}}\left(a_{\tilde{i}}\right)-f\left(a_{\tilde{i}}\right)\right|<\epsilon
$$

for $j \geq J$. For such $j$ it follows that

$$
f(x)-2 \epsilon<f\left(a_{i}\right)-\epsilon<f_{j^{\prime}}\left(a_{i}\right)<f_{j^{\prime}}(x)<f_{j^{\prime}}\left(a_{\tilde{i}}\right)<f\left(a_{\tilde{i}}\right)+\epsilon<f(x)+2 \epsilon .
$$

Thus $\left|f_{j^{\prime}}(x)-f(x)\right|<2 \epsilon$.
5. (a) Is there a nonconstant real function $h$ that is continuous on the closed disk $\{z:|z| \leq 1\}$, harmonic on the open disk $\{z:|z|<1\}$, and vanishes on the upper unit semi-circle (that is, $h\left(e^{i \theta}\right)=0$ for $0 \leq \theta \leq \pi$ )?

The Poisson integral formula shows that, for any continuous function $g$ on the unit circle, one may find a harmonic function on the open ball which is continuous on the closed ball and has boundary values $g$. So it suffices to chose any nonconstant $g$ which vanishes on the upper semi-circle.
(b) Is there a nonconstant complex function $f$ that is continuous on the closed disk $\{z:|z| \leq 1\}$, holomorphic on the open disk $\{z:|z|<1\}$, and vanishes on the upper unit semi-circle (that is, $f\left(e^{i \theta}\right)=0$ for $0 \leq \theta \leq \pi$ )?

There is a conformal map from the unit disk to the upper half plane. This takes the upper semi-circle to an interval on the $X$-axis. Composing with this conformal map thus gives a holomorphic map on the upper half plane which vanishes on this interval. Schwarz reflection about this interval then extends this function to be a holomorphic function whose domain contains the interval and vanishes on the interval. The identity theorem implies that this function, and hence the original function, must vanish identically.
6. Assume that $f(x)$ is a Lebesgue measurable function on $\mathbf{R}$. Prove the function defined on $\mathbf{R}^{2}$ by $F(x, y)=f(x-y)$ is Lebesgue measurable

We need to show that $F^{-1}((a, b))$ is measurable in $\mathbf{R}^{2}$ for any interval $(a, b) \subset \mathbf{R}$. Note that $F=f \circ P$ where $P(x, y)=x+y$. Also note that $P=p \circ \sqrt{2} \cdot \phi$ where $\phi$ is a $45^{\circ}$ rotation of the plane and $p(x, y)=x$. So

$$
F^{-1}((a, b))=(\sqrt{2} \cdot \phi)^{-1}\left(p^{-1}\left[f^{-1}((a, b))\right]\right)
$$

$E=f^{-1}((a, b))$ is measurable in $\mathbf{R}$ by the measurability of $f$, and $p^{-1}(E)=$ $E \times \mathbf{R}$ is measurable by the definition of Lebesgue measure as a product measure. Moreover, since Lebesgue measurability is preserved under rotation and homothety $F^{-1}((a, b))=(\sqrt{2} \cdot \phi)^{-1}(E \times \mathbf{R})$ is measurable.

